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Modern high-performance concrete is one of the most versatile, durable, and cost-effective building 
materials known to man. Its composition has been well-characterized in 'test sample' reports from 
laboratory specimens and trial castings. The compressive strength of concrete is the most common 
performance measure used by engineers when designing concrete structures (e.g. buildings, pipes, 
roads and bridges). However, concrete performance often reveals large differences from that of 'test 
sample concrete'. To resolve specific problems related to environmental hazards and constructional 
materials a new approach, including methods for near-real-time analysis, is required. In this study, 
diffuse reflectance spectroscopy was used across the visible, near- and shortwave-infrared spectral 
regions (400 to 2500 nm) as a tool to assess the strength of high-performance concrete in situ. The 
suggested spectral model was constructed as a data-mining method that enables differentiating sample 
reflectance and extracting quantitative information. To examine the potential of this model for 
predicting compressive strength, several controlled experiments were conducted in which concrete 
samples were spectrally measured and simultaneously tested for compressive strength. Spectral 
analysis provided accurate predictions of concrete strength. Since low-cost, rapid methods are 
required; this might be an ideal tool for concrete-strength estimation in situ in near real-time, and 
warrants further study. 
 
Key words: High-performance concrete, compressive strength, diffuse reflectance spectroscopy, spectral 
model, non-linear iterative partial least squares (NIPALS) analysis. 

 
 
INTRODUCTION 
 
Modern high-performance concrete (HPC), with its low 
ratio of water to cementitious material (w/c), is 
characterized by superior tensile properties (tensile 
stress and strength is approximately one-tenth of its 
compressive strength) and enhanced durability in the 
face of severe environmental conditions (Morgan, 1996). 
The compressive strength of concrete is the most 
common performance measure used by engineers when 
designing concrete structures (e.g. buildings, pipes, 
roads and bridges). This parameter is calculated from the 
failure   load   divided   by   the   cross-force   per   square  
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centimeter (psc) (Modjeski and Masters, Inc, 2003) in 
megapascals (MPa), by breaking a concrete sample that 
is inherent to the entire tested structure (artificially 
prepared samples are representative for the complete 
building or structure) in a compression-testing machine 
(ASTM, 2009/2010). The determination of concrete 
strength requires the collection of spatial (equally 
distributed on the surface) specimens, their transferal and 
testing under laboratory conditions. Compressive 
strength test results may be used for quality control or 
acceptance of concrete, or to evaluate the adequacy of 
curing and protection afforded to the structure. The 
results are usually documented in 'test sample' reports 
from laboratory specimens and trial castings. Thus, 
results of tests performed by different testing laboratories 
on the same concrete  samples  might  differ,  but  should  
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not differ by more than ~15% of the average of two test 
results (ASTM, 2009/2010). 

The range between companion samples from the same 
set should be ~3% of the average strength. If the 
difference exceeds 10%, the testing procedures should 
be evaluated and rectified (ASTM, 1999). Investigation of 
the strength and deformation characteristics of concrete 
testing sample (e.g. cast under the conditions at the 
construction site) is essential for ascertaining 
homogeneity of strength and deformation characteristics 
in different zones and testing sample. 

The key to achieving a strong, durable concrete rests in 
the careful proportioning and mixing of the ingredients. 
The character of the concrete is determined by the quality 
of the paste, the strength of which depends on the ratio of 
water to cement (w/c). High-quality concrete is produced 
by lowering the w/c ratio as much as possible without 
sacrificing the workability of the fresh concrete. At the 
molecular level, cement - a paste of calcium silicate 
hydrates that polymerizes into a densely cross-linked 
matrix (Blezard, 1998), is the most important component 
in the concrete mixture. Analyses of cement chemistry 
and the complex processes surrounding its production 
and hydration (Blezard, 1998; Daugherty and Robertson, 
1972) have led to a better understanding of concrete 
materials, as the cement's properties influence its quality 
and strength. The process of maximizing the hydration of 
the cementatious binder to achieve the intended design 
parameters is known as curing (Fischer and Li, 2003). 
Retaining water within the concrete, particularly early on, 
optimizes this process, providing an example of a short-
term process with long-term beneficial results. Thus it has 
a strong influence on the properties of the hardened 
concrete, such as durability, strength, water- tightness, 
abrasion resistance, volume stability, and resistance to 
freezing/thawing and deicing salts. Chemical admixtures 
are the ingredients in concrete that modify its properties 
in the hardened form, to ensure its quality during mixing, 
transport, placing, and curing  and to overcome certain 
emergencies during concrete operations. 

Recently, many experimental techniques have been 
employed to investigate concrete properties (Lura et al., 
2009; Malhotra and Carino, 2004). These techniques 
attempt to measure and evaluate concrete properties 
other than strength, and then relate them to strength, 
durability, or any other property which has been 
developed. Setting times are determined using Vicat 
measurements (Lura et al., 2009). An ultrasonic cement 
analyzer (OFI Testing Equipment, Inc) determines 
changes in the elastic modulus of the mortar at later 
hydration-process stages (Ljungkrantz et al., 1994; 
Malhotra and Carino, 2004; Qasrawi, 2000). Calorimetry 
is employed to monitor the heat released upon hydration 
(Malhotra and Carino, 2004), whereas X-ray diffraction 
(Stepkowska, 2002), nuclear magnetic resonance 
(Richardson, 2000) and Fourier transform infrared spec-
troscopy (FTIR) are used to obtain  chemical  information.  

 
 
 
 
Morphological information may be obtained by means of 
scanning electron microscopy and transmission electron 
microscopy (Richardson, 2000). Chemical analyses of 
concrete and cement commonly use diffuse 
spectroscopic methods (Lura et al., 2009). 

Diffuse reflectance spectroscopy (DRS) is widely used 
in both research and industry for many applications as a 
simple and reliable technique for measurement, quality 
control and dynamic measurement and changes in the 
character or quantity over time. Electromagnetic radiation 
that is incident onto any type of matter may be reflected, 
absorbed or transmitted. The specific light interactions of 
a certain wavelength with specific material can be 
observed. The electromagnetic radiation might almost be 
completely reflected in one wavelength and absorbed at 
another wavelength. 

Reflectance spectroscopy is based on the absorption of 
electromagnetic radiation at wavelengths in the range 
400 to 2500 nm. A plot of energy versus wavelength is 
called a spectrum. While infrared spectroscopy is mainly 
used for qualitative laboratory analysis, near infrared 
spectroscopy is mainly used for quantitative laboratory 
and industrial process analysis. Advantages of diffuse 
reflectance spectroscopy (DRS) over infrared (IR) 
spectroscopy are that it requires no sample preparation, 
that measurements are nondestructive and non-contact, 
and that it allows real-time measurements and is 
therefore suitable for on-line, in-situ monitoring and 
analysis of many kinds of compounds, mixtures and 
materials.  http://www.ofite.com. 

The fundamental vibrations of most building materials 
generate spectral information in the mid-IR region (2500-
14,000 nm), with overtones and combination modes 
being generated in the NIR-SWIR (near IR and short 
wave IR) region (900 to 2500 nm) (Clark, 1999; Hunt, 
1982). Electronic transitions (Adams, 1974) generate 
spectral information in the VIS-NIR (Visible and near IR) 
range (400 to 900 nm) (Friedman and Robinson, 2002; 
Mualem and Friedman, 1991; Wold et al., 2001), which is 
seen as color and is mostly governed by Fe-bearing 
minerals. Since the reflectance across the 400 to 2500 
nm region is always below saturation level (100% of 
reflected energy), it can be used as an inexpensive tool 
to quantitatively predict the constituents of the material in 
question (Awiti et al., 2007; Ben-Dor and Banin, 1995; 
Grace et al., 2002; Islam et al., 2003; Reeves and Van 
Kessel, 2000; Reeves et al., 2000; Tittonell et al., 2008). 

The purpose of the present study was to enlarge the 
application envelope of our previously published research 
(Brook and Ben-Dor, 2011), which demonstrated the 
efficiency of the DRS technique (VIS-NIR-SWIR) for in 
situ real time assessment of the status (hydration, curing 
and hardening) of HPCs (includes standard mixture of 
Portland cement fly ash, lime, coarse and fine solid 
aggregates normal-weight micro silica sand and tap 
water (Barry and Glasser, 2000)). The present study 
examines   the   potential   and   efficiency   of   the   DRS  
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Table 1. Chemical composition of cement (%). 
 

CaO SiO2 Al2O3 Fe2O3 Other 

68 20 5 3 4 

 
 
 

Table 2. Description of input data sets. 

 

Dataset Hydration period (days) Curing period (days) Hardeners (%) 

1 7 0 0.4 

2 7 3 0.1 

3 7 3 0.4 

4 28 7 0.1 

5 28 7 0.4 

6 28 0 0.4 

 
 
 
technique for in situ real time strength assessment of 
HPCs surface layer. Therefore, we conducted several 
controlled experiments in which concrete samples were 
spectrally measured, analyzed and simultaneously tested 
for compressive strength. 
 
 
METHODOLOGY 
 

Spectral measurements 
 
The reflectance data set was collected from selected areas of 
subsamples of each of the concrete surfaces using a "Fieldspec 
Pro FRQ" [Analytical Spectral Devices Inc. (ASD), Boulder, CO] 
VNIR-SWIR spectrometer. To keep the spectral measurements 

constant and stable, all concrete sample surfaces (top, bottom and 
sides) without any prior preparations were scanned. The samples 
were placed on the table and spectral measurements were 
acquired with a high-intensity contact source probe assembly and a 
white light source (Tungsten-Halogen), with a Duraplan borosilicate 
optical-glass and a Spectralon panel as a white (100%) reference. 
The number of spectra for each measurement was 30, which were 
then averaged to give a “working” sample spectrum. Internally 
averaged scans were 100 ml/s each. The wavelength-dependent 
signal-to-noise ratio (S/N) for our instrument was estimated by 
taking repeat irradiance measurements of the Spectralon white 
reference panel over a 10-min interval and analyzing the spectral 
variation over this period. For each sample, three spectral replicates 
were acquired and the average was used as the representative 
spectrum. To represent a continuously large area of the concrete 
surface, spectral measurements in the center of 3 × 3 cm

2
 areas 

were taken using the contact probe assembly over the entire area. 

These measurements were gathered into a spectral cube (2-D grid 
of point covers the surface and 3-D spectral information for each 
point), which was later used to generate a spatial view of the 
concrete indices. 
 
 
Spectral data pre-processing 
 
The spectral calibration process was standardized and normalized 

using measurements of an internal standard. This process enables 
the isolation of noisy wavelengths (from the signal) and the 
generation of a  noise-less (smooth)  data  set  for  further  analysis. 

The reflectance spectra of the internal standard and the measured 
reflectance spectra of the concrete were normalized to the 
continuum level by interactively choosing continuum points, linearly 
interpolating between them, and then dividing the final spectrum by 
the continuum. The measure of internal error (σμ) mostly reflects 
the operator's consistency in choosing the continuum level. A 
normalization factor is obtained from the calculated ratio between 
continuum-removed spectra (spectral repetitions) of the internal 

standard (Brook and Ben-Dor, 2011). 

 
 
Mix proportion, specimen preparation and curing 
 
The general preparation protocol for all of the measured concrete 
samples included a standard mixture of the following components: 
type-I Portland cement (CEMI 52.5 N), class-F fly ash, lime, solid 
aggregates (coarse and fine , normal-weight microsilica sand (CEN 
standard sand) with an average and maximum grain size of 200 
µm, and tap water. The cement was a locally produced ordinary 
Portland cement CEMI 52.5 N with a fineness of 4200 cm²/g, which 
is recommended by IBAC (Institute of Building Materials Research) 
as it has no upper strength limit.  The chemical composition of the 
cement is shown in Table 1. 

The sand was a siliceous sand of 5 mm maximum aggregate 
size. The included coarse aggregates were natural crushed 

limestone, with granulometry of 8/15 mm (G1) and 15/25 mm (G2). 
A polycarboxylate superplasticizer with a density of 1.11 was used. 

All of the samples were treated by the same method of internal 
curing by retaining water on the concrete surface during the first 
few hours of hydration. The curing periods were 0, 3 and 7 days, 
and the liquid hardeners (calcium hydroxide to form more C-S-H) 
were added at 0.1 and 0.4% of the concrete mixture in total mass. 
After the initial 24 h, the samples, still in their  pattern cube and 

cylinders containers, were wrapped in cling film and sealed in 
plastic bags at 20°C until the age of 7, 14 and 28 days. 

We collected 72 samples for training and 50 samples for testing 
and validation. The 72 selected samples presented the most 
extreme samples of concrete of hydration, curing profiles and 
percentage of liquid hardeners within the original mixture. For the 
hydration process, three stages were chosen: 7 days (early stage), 
14 days (middle stage), 28 days (final stage). The data set was 
divided into six different categories of concrete (Table 2). Each 

category was replicated 12 times, and therefore 12 samples of the 
same concrete mixture and treatments were introduced into the 
models. 
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Figure 1. Cross-validated predictions of concrete strength (measured in MPa) by the 

NIPALS model. Also provided is the 1:1 line.  

 
 
 
FINDINGS 
 
Concrete strength 
 

In this work, partial least squares regression (PLSR) 
computed by nonlinear iterative partial least squares 
(NIPALS) technique (Martens, 2001; Wold et al., 2001) 
was used to examine the predictive potential of the 
reflectance spectra's indication of concrete physical 
strength. Non-linear iterative partial least squares 
(NIPALS) was chosen because the independent 
variables do not have to be normally distributed, or of 
equal variance, within each group.  

Each concrete sample was spectrally measured 
(following the spectral measurement protocol) and the 
reflectance was pre-processed prior to the spectral 
analysis (following the spectral data pre-processing 
protocol). The spectral data (77 samples) were analyzed 
by the artificial neural network (ANN) model (Brook and 
Ben-Dor, 2011) which provides three outputs (hydration, 
curing and hardening), output scores that evaluate and 
assess the status of the concrete, and the measured 
compressive strength of each sample using NIPALS 
(Martens, 2001; Wold et al., 2001).  

In the current analysis, the data set, divided into 
training and test sets and a model with 10 samples, 
including leave-one-out (LOO) cross-validated predictions 
was computed. This preliminary model gives an overview 
of the fit and validation results. The test data were 
independent of the training procedure. Due to the 
unknown structure of the variables, we decided to use the 
NIPALS model and the test set was therefore used to 
assess the generalization capacity of the NIPALS model. 
The weights of the  spectral  variables  (hydration,  curing  

and hardening evaluated by ANNs) reveal which 
variables are responsible for patterns in the scores by 
calculating the weight of each. Once the weights of the 
variables have been chosen, one can inspect the 
different aspects of the fit by plotting the prediction score 
loadings. The plot of the estimated root mean square 
error of prediction (RMSEP) as a function of all predicted 
strengths (measured in MPa) and tested strengths 
(measured in MPa) is presented in Figure 1. The RMSEP 
gave a value of 0.236 with 98.51% variance explained in 
the training set, whereas all points fell close to the 1:1 
(predicted to measured strength) line, suggesting no 
curvature or other anomalies. 

An additional validation procedure was carried out to 
determine the accuracy and precision of the model for 
determining concrete strength using the RPD (Equation 
1), which is the ratio of the standard deviation (STD) for 
the validation samples to the standard error of prediction 
(performance) (SEP).  
 

RPD = STD      yi − yi  
2 (N − 1)−1

n

i=0

 

 

 

1/2

 

−1

 
        (1) 

 

where  is the strength value for the validation sample; 

 is a measured strength value; N is number of samples 

and STD is standard deviation. The RPD (Equation 1) of 
the six data-set values above the cut-off point of 3 
(Williams and Sobering, 1996) were tabulated (Table 3). 

The results of this study showed that the spectral 
measurement, combined with the spectral analysis tool, 
provides significant and accurate information on the 
concrete's status  and  physical  strength.  Further  in-situ  
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Table 3. RPD values of the six data sets of the NIPALS model.  
 

Dataset N (Concrete samples) Mean strength (MPa) STD RPD 

1 8 21.4 2.1 4.19 

2 7 36.6 1.8 3.89 

3 8 47.1 2 4.56 

4 9 54.5 1.6 4.77 

5 9 67.3 1.1 4.59 

6 9 71.2 1.3 4.68 

 
 
 

0.5m

1 m

 
 
Figure 2. Spatial illustration of spectral measurements (systematic grid).  

 
 
 

validation of the suggested method was performed during 
a hyperspectral campaign (ground and airborne 
campaign accomplished by ground truth spectral 
measurements, spectral imagery acquired by ground 
camera and airborne hyperspectral sensor) in Maalot 
Tarshiha (Israel), which was selected as the case study 
area. 
 
 
Case study: Construction site   
 
To further validate the spectral models demonstrated in 
this study, the reflectance spectra of concrete were 
measured in the Israeli settlement of Maalot Tarshiha 
(33°00'52''N/35°17'E). The reflectance data were 
measured on a selected area of a concrete wall using an 
ASD Field SpecPro VNIR-SWIR spectrometer. The 
concrete targets were spectrally measured (following the 
spectral measurement protocol) and pre-processed prior 
to spectral analysis (following the spectral data pre-
processing protocol). The selected wall was part of a 
cottage. The wall was composed of two parts: 1) a 
hydrated prefabricated concrete wall, 2) cast in situ 
crossbeams  and  windows  frames  in an  early  stage  of 

hydration (21 days after casting). The spectral data set 
contained 280 reflectance spectra of the hydrated 
prefabricated wall and 352 reflectance spectra of the 
crossbeam (selected patch of 1 × 0.5 m) cast concrete at 
the construction site (Figure 2). In order to validate the 
method, the selected patch was limited in size and all the 
measurements were performed simultaneously (limited in 
time). This relatively small (in size) patch showed no 
visual differences, dissimilarity or defects on the concrete 
surface, and even seemed to be continuously homogeny. 

The general recipe (ISO 1920-1:2004 Testing of 
concrete -- Part 1: Sampling of fresh concrete) for the 
measured concrete (the crossbeam) included a standard 
mixture (Table 4) of the following components: type-I 
Portland cement (CEMI 52.5 N), class-F fly ash  lime, 
solid aggregates (coarse and fine , normal-weight micro 
silica sand (CEN standard sand) with an average 
maximum grain size of 200 µm, tap water and polyvinyl 
alcohol-acetate (PVAA, Celvol 805 of Celanese 
Chemicals) with a polymer-cement ratio of 0.2%. The 
concrete was treated by the same method of internal 
curing that is, retaining water on the concrete surface 
during the early stage of hydration (first 5 days). 

The  collected  spectra  were a nalyzed  in situ  by ANN 
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Table 4. The recipes for casted concrete at the construction site.  
 

Aggregates and sand (kg) Water/Cement 
ratio 

Free air in 
bulk (%) 

Hardener 
(%) Coarse (1-2 cm) Fine (100-500 mm) Sand (200 μm) Fine/Coarse ratio 

100 50 90 0.5 0.25 2.3 0.25 
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Figure 3. Results of ANN P(Hydration) model. 
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Figure  4. Results of ANN P(Hardening) model. 

 
 
 

model, providing three outputs (hydration, curing and 
hardening), and then by the NIPALS model to predict 
physical strength (Brook and Ben-Dor, 2011). The spatial 
interpretation of the hydration parameter of the ANN 
model was based on a Kriging (Brook and Ben-Dor, 
2011) interpolation approach (Figure 3). This model 
evaluates   the  w/c  ratio  of  the  concrete   mixture   and 

provides hydration stage (early-middle-progressive). The 
spatial interpretation of the hardening parameter of the 
ANN model was also based on a Kriging interpolation 
approach (Figure 4). This model evaluates percentage of 
liquid hardener (according to the mix proportion, 
specimen preparation and curing subparagraph) added to 
the concrete matrix. 
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Figure 5. Laboratory results of compressive strength test for three different samples of casted 
concrete. X axis is days after initial casting. Y axis is measured compressive strength (in MPa). 

 
 

 

The concrete surface mapping in Figures 3 and 4 
shows the spatial dependency or relationship between 
hydration stage and percentage of liquid hardener 
exposed on the surface of concrete. The general pattern 
of these maps exposes and visualizes regions, which 
could be evident in the correspondences between these 
two parameters. It could seem that relatively mature (in 
progressive hydration stage) regions corresponding to 
relatively low percentage of liquid hardener are exposed 
on the surface of concrete, and vise versa. This spatial 
correlation could be explained by the nature of these 
parameters and their contribution to the concrete's 
maturity. Whenever, the liquid hardener components are 
exposed on the surface of concrete, the concrete is in 
earlier stage of hydration (ongoing stage of formation). 

The results of the ANN algorithm, that is the three 
outputs evaluating and assessing concrete status 
(hydration, curing and hardening), were loaded into the 
NIPALS model to predict concrete strength (in MPa). 
Figure 5 shows the results of a laboratory test of 
compressive strength (provided by the construction 
company) and Figure 6 shows the predicted strength 
based on ANN-evaluated concrete status. The laboratory 
compressive strength was measured for three different 
samples (named samples 1, 2, 3) of concrete collected 
from the construction site, in three stages of hydration, 7, 
14 and 28 days after initial casting at the construction 
site. The concrete cubes were placed in container and 
covered by water according to ISO standard (ISO 1920-
3:2004 Testing of concrete -- Part 3: Making and curing 
test specimens) for curing purposes.  

The average strength (red line in Figure 6) of the 
NIPALS model for the 352 spectra of casted concrete, 
which  were  measured  in situ  after  21  days,  was  54.1 

MPa  and the STD was 1.2 MPa (black dashed lines in 
Figure 6). The compressive strength tested in the 
laboratory showed three different results for the collected 
samples after 28 days: 54.4, 56.4 and 56.9 MPa, 
respectively with average strength of 55.9 MPa and STD 
of 1.3 MPa. 
 
 
DISCUSSION 
 
The PLSR method is a linear regression technique that 
allows relating a set of predictor variables to one or 
several response variables. It has become a standard 
tool in facing problems with a high degree of linear 
correlation, but it is not useful for all types of problems. 
On the other hand, the fit model of NIPALS first looks for 
the specified variables in a supplied data frame, and it is 
advisable to collect all variables at once; this makes it 
easier to know which data have been used for fitting, to 
keep different variants of the data available, and to 
predict new data. Since in NIPALS the mean trajectories 
are subtracted and then the PLS gives a different weight 
to each variable, NIPALS can provide a nonlinear model 
(or more correctly, a locally linear model). The difficulty of 
nonlinear model applications is that these techniques 
increase the number of predictors. However, the 
suggested algorithm does not include a high number of 
predictors and thus does not face this problem.  

The suggested algorithms appeared to yield 
consistently high accuracy. The proposed ANN model 
provided two Kriging-interpolated maps, of the hydration 
and hardening process. All three outputs provided by the 
ANN model evaluating and assessing concrete status 
were loaded into the  NIPALS  analysis,  which  accesses 
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Figure 6. NIPALS model results of predicted strength for the 352 spectra of casted concrete. X 

axis is spectral number. Y axis is predicated strength (in MPa). The red line is average strength 
and the black dashed lines are STD. 

 
 
 
accurate predictions of the concrete's physical strength. 
 
 
Conclusion 
 
We suggest using the DRS technique (in the visible-near 
infrared- short wave infrared spectral region) for rapid 
strength assessment of concrete in situ. This pioneering 
study shows that reflectance spectroscopy can be used 
as a promising and powerful tool to assess the concrete's 
strength and strength in both point (spectral local 
inspection and point data analysis) and spatial (surface 
interpolation and mapping of the element under 
investigation) domains. In this regard, the physical 
strength, the most important property of the concrete, 
was modeled by spectroscopy using spectral analysis 
approaches. 
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