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Given the compressive strength of concrete, yield strength of steel, span, dead and live loads, singly 
reinforced concrete simple beams are first optimally designed using genetic algorithms with 
constraints satisfying the specifications of the ACI code. The objective function is to minimize the total 
cost of tension steels, stirrups and concrete. A variety of beams are designed for the use of the neural 
network. To train and test the effectiveness of the neural network, these optimal results are randomly 
divided into three sets: the training set, validation set and test set. This paper uses a two-layer feed 
forward neural network: one hidden layer and one output layer. The transfer functions for the hidden 
layer and output layer are tan-sigmoid and linear functions, respectively. The inputs of the neural 
network are the compressive strength of concrete, yield strength of steel and span, width and effective 
depth of the beam, as well as vertical loads the beam is subjected to; the targets of the neural network 
are the steel ratio and cost of the beam. To evaluate the accuracy, the regression analysis of the target 
and network output is carried out. Numerical results show good performance of the neural network, 
which can be used as a model to predict the lowest cost and steel ratio of singly reinforced concrete 
simple beams. 
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INTRODUCTION 
 
There exist many optimization and computational 
methods which are inspired by the biological evolution. 
The genetic algorithm (GA) is one of the most popular 
algorithms belonging to these evolutionary methods. It 
solves both constrained and unconstrained optimization 
problems based on natural selection, the process that 
drives biological evolution. The constraints can be in the 
form of linear or nonlinear equality or inequality with 
bounds on the optimization variables. This algorithm is 
inspired by biological evolution based on Charles 
Darwin's “survival of the fittest” theorem. It is less 
susceptible to getting stuck at local optima than gradient 
search methods. The concept of genetic algorithms was 
formally introduced in 1970s by Professor John Holland 
at the University of Michigan, who in  1975  published  the  
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ground-breaking book “Adaptation in Natural and Artificial 
System” (Holland, 1975). From then on, the continuing 
price/performance improvements of computational 
systems have made the genetic algorithm more attractive 
and popular. Genetic algorithms have a number of 
applications in a wide spectrum of problem areas, 
including structural designs, such as truss systems 
(Rajeev and Krishnamoorthy, 1992; Coello and 
Christiansen, 2000), the plane frame (Jenkins, 1992), a 
welded beam (Deb, 1991), etc.  

The neural network was originated by McCulloch and 
Pitts (McCulloch and Pitts, 1943), who claimed that 
neurons with binary inputs and a step-threshold activation 
function were analogous to first order systems. Hebb 
(1949) revolutionized the perception of artificial neurons. 
Rosenblatt (1958), using the McCulloch-Pitts neuron and 
the findings of Hebb, developed the first perception 
model of the neuron which is still widely accepted today. 
Hopfield (1982) and Hopfield et al. (1983) demonstrated 
from   work   on  the  neuronal  structure  of  the  common  
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garden slug that ANNs (artificial neural networks) can 
solve non-separable problems by placing a hidden layer 
between the input and output layers. Rumelhart and 
McClelland (1986) developed the most famous learning 
algorithm in ANN-back propagation, which uses a 
gradient descent technique to propagate error through a 
network to adjust the weights in an attempt to find the 
global error minimum, marking a milestone in the current 
artificial neural networks. Since then, a huge proliferation 
in the ANN methodologies has occurred.  
 
 
BACKGROUNDS ON THE GENETIC ALGORITHM AND 
NEURAL NETWORK 
 
More knowledge about genetic algorithms and neural 
networks is illustrated as follows. 
 
 
Genetic algorithms 
 
The genetic algorithm begins by creating a random initial 
population, and then creates a sequence of new 
populations. At each step, the algorithm uses the 
individuals in the current generation to create the next 
population. To create the new population, the algorithm 
performs the following steps: (1) Scores each member of 
the current population by computing its fitness value; (2) 
Scales the raw fitness scores to convert them into a more 
usable range of values; (3) Selects members, called 
parents, based on their fitness; (4) Some of the 
individuals in the current population that have lower 
fitness are chosen as elite. These elite individuals are 
passed to the next population; (5) Produces children from 
the parents. Children are produced either by making 
random changes to a single parent—mutation—or by 
combining the vector entries of a pair of parents—
crossover; and (6) Replaces the current population with 
the children to form the next generation. The algorithm 
stops when one of the stopping criteria is met, such as 
the number of generation, the weighted average change 
in the fitness function value over some generations less 
than a specified tolerance, no improvement in the best 
fitness value for an interval of time in seconds, etc.  

The Matlab Toolbox for Genetic Algorithm (The 
MathWorks, 2010) is employed in this paper, which uses 
the Augmented Lagrangian Genetic Algorithm (Conn et 
al., 1991; Conn et al., 1997) to solve nonlinear constraint 
problems with bounds. The optimization problem of the 
simple beam is to     Minimize f(x) (the fitness function) 
such that: 

 
Ci(x)0,  i=1,…, m    
Ci(x)=0,  i=m+1,…, mt                                                (1) 

LBxUB 

 
Where   Ci(x)   represents   the  nonlinear  inequality  and 

 
 
 
 
equality constraints, m is the number of nonlinear 
inequality constraints, mt is the number of nonlinear 
constraints, f(x) is the total cost of tension steels, stirrups 
and concrete, and LB and UB are the vectors of lower 
and upper bounds of design variables, respectively. A 
subproblem is formulated by combining the fitness 
function and nonlinear constraint functions using the 
Lagrangian and the penalty parameters. A sequence of 
such optimization problems are approximately minimized 
using the genetic algorithm such that the bounds are 
satisfied. A sub-problem formulation is defined as 
 

                    
                                                                                (2) 
 
where the components λi of the vector λ are nonnegative 
and known as Lagrange multiplier estimates. The 
elements si of the vector s are nonnegative shifts, and ρ 
is the positive penalty parameter. The algorithm begins 
by using initial values for the parameters. The genetic 
algorithm minimizes a sequence of the subproblem, 
which is an approximation of the original problem. If the 
subproblem is minimized to a required accuracy, then the 
genetic algorithm stops. Otherwise, the Lagrangian 
estimates are updated or the penalty parameter is 
increased by a penalty factor. This results in a new 
subproblem formulation and minimization problem. These 
steps are repeated until the stopping criteria are met. 
 
 
Neural networks  
 
The neural network used in this paper is a two-layer feed 
forward neural network with the back propagation training 
algorithm, as shown in Figure 1. The transfer function 
used in the single hidden layer with 2R neurons is the 
tan-sigmoid function: 
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where ni=wi,1x1+ wi,2x2+…+wi,RxR+ bi, x1, x2,…,xR are the 
inputs, R is the number of input elements, wi,1 , wi,2 ,…, 
wi,R  are the weights connecting the input vector and the 
ith neuron, and bi is the bias of the ith neuron. The output 
layer with two neurons uses the linear transfer function  
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where Ni=Wi,1a1+ Wi,2a2+……+Wi,2Ra2R+ Bi, 
Wi,1,Wi,2,…,Wi,2R are the weights connecting the neurons 
of the hidden layer and the ith neuron of the output layer, 
and Bi is the bias of the ith output neuron. 

There are many variations of the back propagation
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Figure 1. The feed forward neural network with two layers. 

 
 
 
algorithm, which is aimed at minimizing the network 
performance function, i.e., the mean square error 
between the network outputs and the targets, that is,  
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where tj and aj are the jth target and network output, 
respectively. This paper selects the Levenberg-Marquardt 
algorithm (Hagan and Menhaj, 1994; Levenberg, 1994; 
Marquardt, 1963) as the training function to minimize the 
network performance function. This algorithm interpolates 
between the Newton’s algorithm and the gradient descent 
method. If a tentative step increases the performance 
function, this algorithm will act like the gradient descent 
method, while it shifts toward Newton’s method if the 
reduction of the performance function is successful. In 
this way, the performance function will always be reduced 
at each iteration of the algorithm. 

To improve the network generalization, the error on the 
validation set is monitored during the training process. 
When the network begins to overfit the training data, the 
error on the validation set typically begins to rise. Once 
the validation error increases for a specified number of 
iterations (usually set to be 5), the training is stopped and 
the weights and biases at the minimum of validation error 
are returned. To evaluate the prediction accuracy, this 
paper performs the regression analysis between the 
network outputs and targets. The results are expressed 
by the parameters of the linear regression, including the 
correlation coefficient (Wackerly et al., 2008).  

METHODOLOGY 
 
Strength and deflection requirements of a simple beam 

 
A number of simple beams with uniformly distributed dead load wD 
and live load wL are optimally designed by the genetic algorithm, 
based on which the neural network is then trained and tested. The 
constraints required to design the beam are formulated according to 
the ultimate-strength design of the ACI Building Code 
Requirements for Structural Concrete and Commentary (2008), 
considering the moment, shear force and deflection. Due to the 
ratio of the clear span to the depth greater than 4, the case of deep 
beams will not be considered in this paper. The equality and 
inequality constraints used in this paper when the genetic algorithm 
is executed are discussed as follows. 
 
 
The strength requirement for flexure  

 
The moment diagram is shown in Figure 2(a). In order to yield 
optimal results, the strength requirement for flexure takes the 
equality form of 
 

nmu MM                                                                               (6)  

 
where Mu = wL

2
/8 is the factored bending moment and w =1.2 wD 

+1.6 wL is the factored uniformly distributed load applied to the 

simple beam, 9.0m  is the strength reduction factor for flexure 

and 
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is the nominal resisting moment, where fy is the yield strength of the

 

 

 

   

              

         

                              

Input Hidden Layer Output Layer 

HN2R 

x1 

x2 

x3 

xR 

b2R 

A2 

 

HN2 

HN1 

b2 

b1 

a1 

a2 

a2R 

W1,2 

W1,1 

W2,2R 

W2R,R 

w1,1 

w1,2 

w2,R w1,R 

w1,3 






ON1 

ON2 

B2 

B1 

A1 

 

W1,2R 



102         J. Civ. Eng. Constr. Technol. 
 
 
 

 
 
Figure 2(a). The moment diagram and (b) shear diagram of a simple beam 

subjected to the uniformly distributed load w. 

 
 
 

tension reinforcement, cf   is the compressive strength of concrete, 

b and d are the width and effective depth of the beam, respectively, 

and  is the tension reinforcement ratio. To have reasonable 

assurance of ductile mode of failure, ACI code limits the amount of 
tension steel to not more than 75% of that required for a balanced 
section, that is,  
 

b 75.0                                                                                  (8) 

 

where b is the balanced reinforcement ratio. The code also 
stipulates the minimum steel requirement as  
 

yy

c
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Once  is decided, the total amount of tension steel can be found, 

which is bdL. 
 
 
The strength of shear reinforcement  

 
The shear diagram is shown in Figure 2(b). Assuming that vertical 
stirrups are used, the strength of shear reinforcement  
 

s

dfA
V

yv

s                                                                              (10) 

 

where s is the shear reinforcement spacing. If the nominal 

resistance shear bdfV cc
 2  is less than the nominal vertical 

shear force nsu VV / , the shear reinforcement has to carry the 

difference in the two values, but the strength of shear reinforcement 

cannot be more than bdfc
8 ; hence  
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Where Vu is the factored shear force and 85.0s  is the 

strength reduction factor for shear. Because # 3 vertical closed 
stirrups are used, two stirrup bar areas Av= 0.22 in

2 
in Equation 

(10).  

 
 
Shear reinforcement spacing 

 
According to the ACI code, the critical section for determining the 
closest stirrup spacing may be taken at a distance d from the face 
of support. It also stipulates that the maximum stirrup spacing is d/2 

but no to exceed 24 inch or 
b
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csu VV  3 .   Since   the  spacing  of  stirrups  cannot  be  varied 
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Figure 3. Four regions (I), (II), (III) and (IV) to arrange the stirrups. 

 
 
 
continuously, they must change by jumps. Therefore, half the span 
of the beam is divided into four regions, as shown in Figure 3, 

where 3 csV is assumed to be less than or equal to (wL/2-wd). If 3

csV is greater than (wL/2-wd), then let 3 csV = (wL/2-wd). Based 

on the above statements, the range of each region and the 
maximum spacing s of the shear reinforcement required in each 
region are described as follows. 
 

Region I: The factored shear force is between (wL/2-wd) to 3 csV  
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Region II: The factored shear force is between 3 csV  and csV . 
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Region III: The factored shear force is between csV and 0.5 csV . 
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Region IV: The factored shear force is less than 0.5 csV . No 

shear reinforcement is required according to the ACI code. 
Once the minimum spacing of stirrups in each region is found, 

the total number and amount of stirrups required in the beam can 
be obtained.  
 
 
Deflection 

 
Serviceability of a structure is determined by its deflection, cracking, 
extent of corrosion of its reinforcement and surface deterioration of 
its concrete. This paper only deals with deflection. The maximum 

instantaneous deflection in an elastic simple beam caused by dead 
load plus live load can be expressed as  
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If there is only dead load applied to the elastic beam, the maximum 
instantaneous deflection  
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and the instantaneous deflection due to live load can then be 
obtained by subtracting Equation (16) from Equation (15), that is,  
 

iL=iDL-iD                                                                                       (17) 
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Table 1. Some optimal results from the genetic algorithm. 

 

fy 

(ksi) 

fc 

(psi) 

L 

(ft) 

wd 

(lb/ft) 

dist1/spacing 

(in/in) 

(dist2-
dist1)/spacing 

(in/in) 

(dist3-dist2)/spacing 

(in/in) 
b (in) d (in)  

C 

(10
3
NT$) 

40 3000 19.68 1410 24.56/6.14 (43.76-24.56)/12.28 (80.93-43.76)/12.28 9.86 24.56 0.0108 3.723 

40 4000 26.24 1545 32.63/8.16 (48.11-32.63)/16.32 (102.8-48.11)/16.32 9.87 32.64 0.0111 6.459 

50 4000 26.24 1545 34.48/8.62 (40.94-34.48)/17.24 ( (99.21-40.94)/17.24 9.96 34.48 0.0078 5.928 

50 5000 32.8 1815 46.35/11.59 (55.19-46.35)/23.17 (126.02-55.19)/23.17 8.74 46.35 0.0083 8.761 

60 3000 19.68 1410 32.53/8.13 (38.19-32.53)/16.26 (78.15-38.19)/16.26 8.0 32.53 0.0049 3.033 

60 3000 32.8 1545 51.42/11.81 (77.76-51.42)/23.62 (137.3-77.76)/23.62 7.87 51.42 0.0059 7.863 
 

 
 

In Equations (15) and (16), Ec is the modulus of elasticity of 

concrete, which is equal to cf 57000 psi, and Ie is the 

effective moment of inertia, a smooth transition between 

the moment of inertia Icr of the cracked section and the 
moment of inertia Ig of the gross uncracked concrete 
section. The effective moment of inertia is defined as 
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Where Ma is the maximum moment along the simple beam 
and  
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is the cracking moment. Suppose that the simple beam will 
support or be attached to nonstructural elements likely to 
be damaged by large deflections. The ACI code stipulates 
that sum of long-term deflection due to the sustained dead 

load plus immediate deflection due to the live load has to 
be less than L/480, that is,  
 

480

L
iLiDsum                                        (20) 

 

Where  is a multiplying factor considering long-term 
loading and shrinkage. According to the ACI code: 




501

T
                                                              (21) 

 

Where  is the compression reinforcement ratio and T is 

a time-dependent factor. Because  is zero for a singly 

reinforced beam and 5 years or more are considered, the 

multiplying factor  = 2. 

 
 
RESULTS  
 
The width b and effective depth d of the beam and 

tension reinforcement ratio  are the three 
variables for genetic algorithms. The fitness 
function is the total cost in New Taiwan Dollars of 
the tension reinforcement, stirrups and concrete. 
The inequality and equality constraints are 
formulated according to the requirements 
discussed in Sec. 3. Based on the often-used 
materials and customs in Taiwan, this paper 
selects three kinds of yield strength fy of the 
tension reinforcement: 40 ksi (2.8 ton/cm

2
), 50 ksi 

(3.5 ton/cm
2
) and 60 ksi (4.2 ton/cm

2
), three kinds 

of compressive strength fc of the concrete: 3000 
psi (0.21 ton/cm

2
), 4000 psi (0.28 ton/cm

2
)and 

5000 psi (0.35 ton/cm
2
), three kinds of span L: 

19.68 ft (6 m), 26.24 ft (8 m) and 32.8 ft (10 m) 

and four kinds of dead load wd: 1410 lb/ft (2.1 
ton/m), 1545 lb/ft (2.3 ton/m), 1680 lb/ft (2.5 
ton/m) and 1815 lb/ft (2.7 ton/m). For simplicity, fix 
the live load at 1210 lb/ft (1.8 ton/m). Accordingly, 
there are 108 combinations of beams to be 
designed.  

 
 
Genetic algorithms 

 
To run the genetic algorithm of MATLAB, some 
parameters need to be selected. Here are the 
values used in this paper: The population size is 
set to be 20, crossover rate 0.8, and elite number 
2. Furthermore, all the individuals are encoded as 
real numbers; “Rank” is used as the scaling 
function that scales the fitness values based on 
the rank of each individual; “Roulette” is the 
selection function to choose parents for the next 
generation; The crossover function applies the 
“Single Point Strategy” to form a new child for the 
next generation; The “Adaptive Feasible Function” 
is chosen as the mutation function to make small 
random changes in the individuals and ensure 
that linear constraints and bounds are satisfied. 
Taken as examples, some of the optimal results 
are listed in Table 1, where dist1 represents the 
range of region I, dist2- dist1 the range of region
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Figure 4. The training process of the neural network. 

 
 
 
II, and dist3-dist2 the range of region III, as indicated in 
Figure 3, and spacing represents the stirrup spacing in 
each region. 
 
 
Neural networks 
 
For the purpose of training and testing the neural 
networks, the optimal results of the 108 beams are 
divided into three sets: training set (68 data), validation 
set (20 data) and test set (20 data). The input vector of 

the neural network consists of six elements: fy, fc, wd, L, 
b, and d, and the targets are the minimum price C and 

tension reinforcement ratio . The process of training is 
shown in Figure 4, where the training stops at epoch 14 
and the performance function is minimized to be 4.9771e-
4. After the neural network is trained, the test data is 
input to it to do simulation. Regression analysis of the 
network outputs and desired outputs (targets) are then 
carried out to characterize the network accuracy. The 
slope m and y-intercept of the linear regression as well as 
the correlation coefficient are shown in Table 2. Figures 5  

and 6 show the  network  outputs  and  targets  of  the  20 

test data for C and , respectively.    
 
 
Conclusions 
 
Using the optimal results from the genetic algorithm as 
the data to train and test the neural network, this paper 
successfully acquires a model to predict the steel ratio 
and lowest cost of singly reinforced concrete simple 
beams. As long as the desired width, effective depth, and 
span of the beam, dead and live load the beam is 
subjected to, the yield strength of the tension 
reinforcement as well as the compressive strength of the 
concrete are provided, the neural network will 
immediately forecast the minimum cost and the tension 
reinforcement ratio of a singly reinforced concrete simple 
beam for quick reference. In addition, by means of 
inputting those already known values into a computer 
program written according to the formulas earlier 
described, the spacing and number of the stirrups can 
instantly be obtained, which completes the design of the  
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Table 2. Regression analysis of the network outputs and targets for the test data. 
 

Parameters targets Slope of the linear regression. Y-intercept of the linear regression Correlation Coefficient 

Steel Ratio  1.0352 -0.00080854 0.9832 

Minimum Cost C 0.9092 0.5053 0.9977 
 
 
 

 
 
Figure 5. The network outputs and targets of 20 test data for the cost C.  

 
 

 

 
 

Figure 6. The network outputs and targets of the 20 test data for the 

tension reinforcement ratio . 
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