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High performance concrete is one of the most commonly used materials in non-standard building 
structures. Aside from the basic components used for its manufacture (water, cement, fine and coarse 
aggregates), other components such as fly ash, blast furnace slag and superplasticizers are 
incorporated. In the present study, two types of additives and two types of microsilica have been used. 
The proportions of all the elements involved in preparing concrete have an influence on its final 
strength. Artificial neural networks have been used to estimate the compressive strength of high 
performance concrete mixtures using the results obtained with 296 specimens corresponding to 
various fabrication parameters. The estimate given by the neural network was evaluated by measuring 
the correlation between network responses and the expected values, which are the strength values 
measured in the laboratory. The artificial neural network response obtained in the present work had a 
correlation of 92% with the expected values used for the training and 89% when predicting values for 
new data. 
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INTRODUCTION 
 
High performance concrete (HPC) is used for building 
structures subjected to high loads, in the construction of 
columns and beams of high-rise buildings, marine or 
military structures, security vaults, tunnels, bridges, 
among other applications. In all cases, a compression 
test is required after 28 days of immersion curing. The 
dynamics of HPC are very complex and the relationship 
between its strength and components is highly nonlinear. 
Several studies have shown that its strength depends not 

only on the water-cement ratio, but also on all concrete 
ingredients: cement, fly ash, blast furnace slag, water, 
superplasticizer, age, coarse, and fine aggregates (Chou 
et al., 2011; Yeh, 1998, 2007). In Peru, there are practical 
experiences in the manufacture of HPC with additions of 
microsilica, mineral additives and chemicals, achieving 
28-day strengths over 700 kg/cm

2
 and reaching 1200 

kg/cm
2
 or more at 90 days (Rivva, 2008). In some studies 

of HPC with unsupervised neural networks, groups or 
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Table 1. Variables and statistics. 
 

S/N Variable MIN MAX STD MEAN CORREL 

1 Age (days) 7.00 56.00 12.52 18.16 0.74 

2 Area (cm²) 80.40 83.50 0.52 82.08 -0.24 

3 Additive 1.00 2.00 0.34 1.86 -0.53 

4 % Additive 1.60 2.50 0.35 2.12 0.14 

5 Additive (kg/m
3
) 8.52 18.64 3.46 14.61 0.38 

6 % Microsilica 5.00 10.00 2.08 7.24 0.13 

7 Microsilica (kg/m
3
) 26.63 74.56 16.68 49.88 0.30 

8 w/c ratio 0.25 0.35 0.03 0.28 -0.71 

9 Cement (kg/m
3
) 505.91 708.28 63.35 632.54 0.74 

10 Sand (kg/m
3
) 282.54 546.95 82.26 376.16 -0.65 

11 Strength (kg/cm²) 565.00 1022.00 95.79 752.27 1.00 

 
 
 
clusters of specimens have been found with common 
characteristics (Nataraja et al., 2006; Cal, 1995; Moromi 
et al., 2013). The published literature also contains large 
amount of information on the properties of concrete 
containing 10 to 30% fly ash. 
 
 
Database 

 
In the present study, 296 concrete specimens (Figure 1) 
were manufactured with different types and amounts of 
cement, sand, aggregates, water and other compounds, 
in accordance with ASTM C 192/C 192M of 2000. The 
axial compression tests were performed (Figure 2) in 
accordance with ASTM C 39/C 39M of 2001, after 
various curing times. 

The database (DB) recording the values of the 
manufacturing variables and the strength of the High-
Performance Concrete (HPC) specimens (Table 1) was 
obtained by the Material Testing Laboratory of the 
Faculty of Civil Engineering of UNI. The original DB 
recorded 23 variables, including manufacturing variables 
and subsequent measurements, such as strength, load, 
test dates, among others. After preliminary data analysis, 
this original DB was reduced to another one including 
only 11 variables: 10 manufacturing variables and the 
compressive strength, as shown in Table 1, which also 
includes basic statistics and the correlation of each 
variable with the compressive strength (CORREL). 
 
 
Objective 
 
The purpose of the study was to find a function of 10 
variables evaluating the compressive strength of each 
specimen. But it is possible to build functions giving its 
approximate value using manufacturing data, through 
supervised artificial neural networks (ANN). The methods 
used in finding these approximate functions are based on 
the minimization of functions of many variables, in 

particular functions that are sum of squares, known as 
least squares problems. 
 
 
MATERIALS AND METHODS 
 
In addition to the materials normally used in manufacturing 
concrete, additives and microsilicas have also been used. Two 
brands of polycarboxylate-based liquid (polymers in aqueous 
solution) additives and two brands of microsilica (silica fume) have 
been used. Microsilica is a by-product of high-purity quartz 
reduction and its content of silicon dioxide (SiO2) is above 85% and 
in some brands, exceeds 93%. The type of additive used for each 
sample has been introduced as a qualitative variable. For 
proprietary reasons, no further details can be provided on these 
additives. The process for the manufacture of the mixture and the 
test specimens can be seen in Figures 5 and 6. 
 
 
Additives 
 

Additives are components added to the concrete mix immediately 
before or during mixing. The main reasons for their use are: (a) to 
reduce the cost of concrete structure, (b) to reach the desired 
concrete properties more effectively, (c) to maintain concrete quality 
during mixing, transportation, placement and curing in adverse 
weather conditions, and (d) to overcome emergencies during 
mixing, transportation, placement and curing. 
 
 

Superplasticizer additives 
 

Superplasticizer additives are premium water-reducing additives 
complying with ASTM C494-2013. They are used to give the 
concrete same properties as the usual water-reducing additives but 
carry out this task more efficiently. They correspond to ASTM C 
494-2013 types F (water reducer) and G (water reducer and 
retarder). These additives can greatly reduce water demand and 
cement content and can produce concrete with low water/cement 
ratio, high strength and normal or high workability. 

In the present investigation, percentages (p) of 1.5 to 2.5% of the 
cementing material have been used, depending on the ratio w / (c + 
p) to be used. 
 
 

Microsilica 
 

Microsilica,  a  by-product  used  as  a  pozzolan, results   from   the 
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Table 2. ANN input, matrix P. 
 

S/N Variable p1 p31 p70 

1 Age (days) 28.00 56.00 7.00 

2 Area (cm²) 81.70 82.50 81.60 

3 Additive 1.00 1.00 2.00 

4 % Additive 1.60 1.60 2.50 

5 Additive (kg/m
3
) 11.93 11.93 18.64 

6 % Microsilica 5.00 5.00 7.50 

7 Microsilica (kg/m
3
) 37.28 37.28 55.92 

8 w/c ratio 0.25 0.25 0.25 

9 Cement (kg/m
3
) 708.28 708.28 689.64 

10 Sand (kg/m
3
) 345.12 345.12 305.16 

 
 
 

Table 3. Values of T for each P entry. 
 

T Strength (kg/cm²) 836.00 969.00 758.00 

 
 
 
reduction of high purity quartz by coal in electric furnaces during the 
production of ferrosilicon. Microsilica comes out of the furnaces as 
vapor at about 2000°C (3620°F). On cooling, it is condensed and 
collected in large dust bags. Microsilica is then processed to 
remove impurities and control particle size. It is an extremely fine 
material with particles less than 1 μm in diameter and with an 
average diameter of about 0.1 μm, approximately one hundredth of 
the size of the average cement particle. The surface area of 
microsilica is about 20,000 m2/kg. Its specific gravity is generally 2.2 
to 2.5, while the specific gravity of Portland cement is close to 3.15. 
The specific weight of microsilica varies from 130 to 430 kg/m3. It is 
sold as a powder but is most commonly found in the liquid form. It is 
used in amounts ranging from 5 to 10% of the total mass of the 
cementing material when a high degree of concrete impermeability 
and strength are necessary. The microsilica should conform to 
ASTM C 1240-2013.  In the present work, percentages between 5 
and 10% of the cementing material weight have been used for all 
the w / (c + p) ratios. 
 
 

Study of high strength concrete 
 

In the following, MATLAB Version 7.10.0.499 (R2010a; licensed to 
Universidad Nacional de Ingeniería-UNI) has been used for 
numerical processing and the equations shown in the text uses its 
syntax. The Process of development of artificial neural network 
Backpropagation is seen in Figure 7 
 
 

Data entry 
 

The DB was imported in MATLAB as two matrices: matrix P (10 
rows, 296 columns) corresponding to the manufacturing variables 
of the test specimens; and matrix T (1 row, 296 components), 
corresponding to the compressive strengths. The columns of P are 
the input vectors of the ANN in Table 2 and are located in space 
R10. T contains the expected values and consists of a row array of 
296 components. 
 
 

Classification of the columns of P and T for the simulation 
 

The columns of matrix P and the components of T  were  numbered 

from 1 to 296, as in Table 3. These values were separated into 5 
subsets or disjoint classes, noted as Clas1, Clas2... Clas5. For 
example, Clas2 includes the values corresponding to the sequence 
of all the integers beginning with 2, to which 5 is added until one 
obtains a number smaller or equal to 296, such as: 2, 7, 12, ..., 287, 
292. These groups of numbers are part of the equivalence classes 
of integers modulo 5. 

The columns of P and the values of T corresponding to Clas5 
were selected (any other class could have been taken) and these 
values were stored in matrices Pb and Tb respectively. These data 
were not used for network training, whereas the remainder of the 
data was stored in matrices Pa and Ta and used for network 
training.  

 
 
Standardization of data 
 
The rows of Pa and Ta were transformed into others with means 
equal to zero and standard deviation equal to 1. This was achieved 
by doing: [pna, ps1] = mapstd(Pa); and [tna, ts] = mapstd(Ta). The 
Pa matrix was transformed into matrix pna, with the elements of the 
transformation corresponding to this process stored in file ps1. The 
mapstd function transformed the components (x) of each row of 
matrix Pa into another matrix, using the formula:  

 
H (x) = (x - mc) / dc, 
 
where mc and dc are respectively the mean and standard deviation 
of the row containing x. Similarly, the tna file was generated through 
the mapstd (Ta) transformation. 

 
 
Transformation of the dimension of pna columns 
 
The second transformation is: [ptransa, ps2] = processpca (pna, 
0.001). In this step, the pna matrix was transformed into ptransa 
and the elements of this transformation are found in the file ps2. 
The ps2 file contains a linear transformation (from R10 to R6) 
transforming the pna columns (dimension 10) into others 
(dimension 6), without deleting any pna rows. This is possible 
because the covariance matrix of the transposed pna is a  10  ×  10  
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Figure 1. Concrete specimens. 

 
 
 
symmetric orthonormal matrix, and as such, has 10 real 
eigenvalues, of which 4 are of the order of 10-14, that is, very small. 
This led to the linear transformation mentioned earlier and explains 
the reduction in the dimension of the pna columns. 
 
 
ANN training, validation and testing 
 
To carry out these three phases, the ptransa columns were 
separated into three disjoint groups (using the equivalence classes 
of integers modulo 4), each group being as varied as possible 
within the column universe. The 1st and 3rd classes together (50%) 
were chosen for the training phase, the 2nd class (25%) for 
validation, and finally, the 4th class (25%) for testing. 
 
 
Creation of the backpropagation ANN 
 
This network, called RN1, consists of 4 layers with: 14 neurons in 
the first layer (this does not correspond to the number of rows, 
variables, of ptransa, which are 7; 12 neurons in the second; 10 in 
the third; and 1 neuron in the output layer, since the expected value 
tna is a 1 × 237 matrix. The transfer functions are tansig (hyperbolic 
tangent) for the first three layers and purelin (identity) for the last 
layer. Trainlm was the implemented algorithm, using the Levenberg 
and Marquardt methods (Levenberg, 1944 and Marquardt, 1963). 
 
 

SIMULATION 
 

RN1 response with training data 
 
The result of interest is the correlation between RN1 
response and Ta, the expected value. However, in order 
to clarify the process, this has been evaluated in another 
way. The response of RN1 to the ptransa matrix was 
simulated, that is, the response matrix: ra = sim (RN1, 
ptransa). The original or real values of the response were 
obtained using the inverse function of mapstd: Ra = 
mapstd ('reverse', ra, ts), so that the matrix Ra was the 
response of RN1. 

 
 
 
 
Correlation between Ra and Ta 
 
The correlation between Ra and Ta was obtained with: 
[m, b, r] = postreg (Ra, Ta), where in [m, b, r], the values 
of m and b are respectively the slope and intersection 
with the y-axis of the regression line, and r is the linear 
correlation. The answers obtained are: ans = 0.8965, 
79.6377, and 0.92305. 
 
 
Relationship between RN1 response Ra, the expected 
values Ta, and the errors Ea 
 
The components of the Ta matrix were ordered from 
smallest to largest, together with the other two matrices. 
It can be seen from Figure 3 that the cloud of points 
representing Ra is very close to Ta. 
 
 
Predictive capability of RN1 
 
Network response with data Pb and expected value 
Tb 
 
It is now possible to find out the compressive strengths 
predicted by RN1 for each column of Pb and to compare 
these with the actual strengths Tb. Following the same 
methodology as before, the first step consisted of 
normalizing the matrix Pb, thus obtaining the matrix pnb. 
Thereafter, the dimension of the columns of this matrix 
was reduced, using the same linear transformation 
defined by ps2. Thus, the matrix ptransb was obtained 
and the columns of this matrix were entered in RN1 for 
the simulation: rb = sim (RN1, ptransb); Rb = mapstd 
('reverse', rb, ts). As previously, the actual values of RN1 
response were obtained through the inverse of the 
mapstd function and stored in matrix Rb. 
 
 
Correlation between Rb and Tb 
 
The postreg function was used to find the level of 
correlation between Rb and Tb, making: [m, b, r] = 
postreg (Rb, Tb). In [m, b, r], the values of m and b are 
respectively the slope and intersection with the y-axis of 
the regression line, with r representing the linear 
correlation. These are: ans = 0.7914, 153.9445, and 
0.8973. 

 
 
Graphs of Tb, Pb and Eb  
 
Another way of interpreting the relationship between Tb 
and Rb is by plotting these two variables, after ordering 
the first matrix from smallest to largest, together with the 
other two matrices. It can be seen in Figure 4 that the 
cloud of points corresponding to Rb is located very  close 
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Figure 2. Toni/Technik 3.000 KN testing 
equipment. 

 
 
 

Table 4. Results obtained with different network architectures. 
 

ESTRUCTURE R R
2
 MSE RMSE #Weight+Biases 

[14   12   10   1] 0.92 0.85 1,313 36.24 419 

[7 14 1] 0.92 0.85 1,358 36.85 176 

[7 1] 0.89 0.78 1,913 43.74 57 

[1] 0.90 0.81 1,634 40.43 7 
 
 
 

 
 

Figure 3. Comparison between network response Ra and 
expected values Ta, with training data. Ta: concrete 
strength / Ra: network response / Ea = |Ta – Ra|: error; 
Vertical: Ordered values of Ta and Ra; Horizontal: Rank. 

 
 
 

to Tb. 
 
 
Other network architectures 
 
While using the same database and methodology as for 
RN1  with  architecture  [14 12 10 1],   these   tests   were 

conducted with three different network architectures, with 
the results as shown in Table 4. 
 
 
Conclusions 
 
RN1 network with 4 layers of 14, 12,  10  and  1  neurons, 
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Figure 4. Comparison between network estimates Rb 
and expected values Tb, with test data. Tb: concrete 
strength / Rb: network estimate / Eb = |Tb – Rb|: 
error; Vertical: Ordered values of Tb and Rb; 
Horizontal: Rank. 

 
 
 

 
 
Figure 5. Flow diagram of the mix 

 
 
 
 

 
 

Figure 6. Flow chart of the sample 
manufacturing process. 

 
 
 

respectively, obtained the highest correlation level (R = 
0.92; R

2
 = 0.85) and the lowest values for the mean 

squared errors. The predictive capacity of RN1 was 
tested using a set of 59 vectors not used for training. This 
test showed that RN1 provided satisfactory responses, 
with a correlation R = 0.90. The number of weights and 
biases of RN1 is 419, which is also the number of 
components of the variable x in the function e (x) and 
measures the quadratic mean of the difference between 
the RN1 response Ra and the expected value Ta. In spite 
of the number of variables, the RN1 response is highly 
correlated. 
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Figure 7. Process of development of artificial neural network Backpropagation. 
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