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Modern high-performance concrete (HPC) is one of the most versatile, durable, and cost-effective 
building materials known to man. Its composition has been well-characterized in 'test sample' reports 
from laboratory specimens and trial castings: however, its internal structure often reveals large 
differences from that of 'test sample concrete'. Moreover, the test procedure is considered destructive. 
To resolve specific problems related to global urban environmental indicators, a new approach, 
including methods for near-real-time analysis and vast coverage, is required. The use of reflectance 
spectroscopy across the visible near- and short-infrared spectral region (400 to 2500 nm) was 
suggested as a tool to assess the status of concrete in situ. To examine this technique's potential, 
several controlled experiments were conducted in which concrete was spectrally measured after 
applying several treatments, including use of different matrix components and post-curing, ageing and 
corrosion processes. More than 3000 collected samples revealed that spectral measurement combined 
with spectral analysis tools provides significant and accurate information on the concrete's status. The 
spectral models were applied to spatial information obtained using a ground image spectrometer. It was 
concluded that the suggested tool provides near-real-time information on concrete status and might 
serve as an innovative application in civil engineering. 
 
Key words: High-performance concrete, hydration, curing, hardening, diffuse reflectance spectroscopy, 
spectral model.  

 
 
INTRODUCTION 
 
Modern high-performance concrete (HPC), with its low 
ratio of water to cementitious material (w/c) is 
characterized by superior tensile properties and 
enhanced durability in the face of severe environmental 
conditions. The literature indicates three main processes 
in concrete production: hydration, curing, and hardening. 
Increasing attention toward environmental aspects of 
material conversion has driven research into modifi-
cations that might better meet the increasing demand for 
sustainability in the construction sector. Such 
modifications involve the use of additives and changing 
the composition of the cement (Lura et al., 2009). Many 
different experimental techniques have been employed to 
investigate   the   effects   on  material  conversion.  Vicat  
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measurements are often employed to determine setting 
times (Lura et al., 2009). At later stages in the hydration 
process, an ultrasonic cement analyzer determines 
changes in the elastic modulus of the mortar (Ljungkrantz 
et al., 1994; Malhotra et al., 2004). Calorimetry is 
employed to monitor the heat released upon hydration 
(Malhotra and Carino, 2004), whereas X-ray diffraction 
(Stepkowska, 2002), nuclear magnetic resonance 
(Richardson, 2000) and Fourier transform infrared 
spectroscopy (FTIR) are used to obtain chemical 
information.  

Morphological information may be obtained by means 
of scanning electron microscopy and transmission 
electron microscopy (Richardson, 2000). A microscopy-
based method has also been developed to estimate the 
w/c ratio of unknown mixtures and degree of hydration 
(Wong and Buenfeld, 2009). Chemical studies of 
concrete  and  cement  commonly  make  use  of  diffuse-  
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Table 1. Spectral data set of concrete samples. 
 

Data set Properties Number of objects 

Data set 1 Different matrix components (standard and non-standard component ratio) 1800 

Data set 2 Different periods of time for the curing process 1250 

Data Set 3 Influence of liquid hardeners 650 

 
 
 

spectroscopy methods (Lura et al., 2009). It thus appears 
that HPCs are well characterized for their composition 
and mechanical properties, usually documented in 'test 
sample' reports from laboratory specimens and trial 
castings. However, the internal structure of the HPC often 
reveals serious differences from that of the 'test sample 
concrete', because in-situ measurements are compli-
cated, if not impossible. In addition, due to the duration of 
traditional test methods and the need for sample 
collection, the test procedure is considered destructive.  

In diffuse reflectance spectroscopy (DRS), radiation 
reflected across a selected spectral region is examined 
with regard to materials' characteristics. The fundamental 
vibrations of most building materials generate spectral 
information in the mid-infrared region (2500 to 14,000 
nm), and overtones and combination modes in the near 
and shortwave infrared region (NIR-SWIR, 900 to 2500 
nm) (Clark, 1999; Hunt, 1982). Electronic transitions 
generate spectral information in the visible-near infrared 
range (VIS-NIR, 400 to 900 nm) (Friedman and 
Robinson, 2002; Mualem and Friedman, 1991; Wold et 
al., 2001), which is seen as color and is governed mostly 
by Fe-bearing minerals. Since the reflectance across 400 
to 2500 nm is always below saturation level, it can be 
used as an inexpensive tool to quantitatively predict the 
constituents of the material in question (Awiti et al., 2007; 
Ben-Dor and Banin, 1995; Grace et al., 2002; Islam et al., 
2003; Reeves and Van Kessel, 2000; Reeves et al., 
2000; Tittonell et al., 2008). 

In previous studies, diffuse reflectance-infrared (DR-
FTIR) spectroscopy has been used for chemical investi-
gations of concrete, cement and its components. The 
results of those studies suggested that the DR-FTIR 
technique is preferred for investigations of that external 
physico-chemical interference. However, several 
drawbacks of DR-FTIR make it virtually impossible to 
perform in-situ studies, where water's strong absorption 
in the mid-IR range and the surface's flatness make it 
difficult to use the DR techniques. These considerations 
validate DR-FTIR technique for ex-situ approaches 
(Ylmיn et al., 2009). 

The purpose of the present study was to demonstrate 
the efficiency of the DRS technique (VIS-NIR-SWIR) for 
rapid assessment of the status of HPC detected in situ. 
To examine the potential of the DRS technique, we 
conducted several controlled experiments in which 
concrete was spectrally measured, after applying several 
treatments which included using different matrix 
components   and   post-curing,   ageing   and   corrosion  

processes.  
 
 
METHODOLOGY 
 

Spectral measurements 
 

The reflectance data set was collected from selected areas of 
subsamples of each of the concrete surfaces using a ASD 
"Fieldspec Pro FRQ" (ASD.Inc, Boulder, CO) VNIR-SWIR 
spectrometer. To keep the spectral measurement constant and 
stable, the concrete was scanned from below and spectral 
measurements were acquired by using a high-intensity contact 
source probe assembly and a white light source (Tungstarn-
Halogen), with a Duraplan borosilicate optical-glass and a 
Spectralon panel as a white reference. The number of spectra for 
each measurement was 30, which were then averaged to give a 
sample spectrum. Internally averaged scans were 100 ml/s each. 
The wavelength-dependent signal-to-noise ratio (S/N) for our 
instrument was estimated by taking repeat irradiance measure-
ments of a Spectralon white-reference panel over a 10 min interval 
and analyzing the spectral variation across this period. For each 
sample, three spectral replicates were acquired and the average 
was used as the representative spectrum. To represent a 
continuously large area of the concrete surface, spectral 
measurements of 3  3׳ cm

2
 areas were taken using the contact 

probe assembly over the entire area. These measurements were 
gathered into a spectral cube which was later used to generate a 
spatial view of the concrete indices. 
 
 
Materials and composition 
 
The prepared data set consisted of 3700 reflectance spectra in the 
VIS-NIR-SWIR region (365 to 2485 nm) of the concrete surfaces 
(Table 1).  

The general preparation protocol for all of the measured samples 
of concrete included a standard mixture of the following 
components: Type-I Portland cement (CEMI 52.5 N), class-F fly 
ash, lime, solid aggregates (coarse and fine), normal-weight 
microsilica sand (CEN standard sand) with an average and 
maximum grain size of 200 µm, and tap water (Figure 1). All of the 
samples were treated by the same method of internal curing by 
retaining water on the concrete surface during the early stage of 
hydration first few hours. After the initial 24 h, the samples, still in 
their plastic containers, were wrapped in cling film and sealed in 
plastic bags at 20°C until the age of 250 days.  

Three controlled experiments were conducted to yield three 
different data sets of concrete samples. The specific recipes for the 
three data sets are summarized in Table 2. 

The first experiment (Data set 1) was focused on generating a 
versatile database characterized by concretes with different matrix 
components. Thus, we generated two categories of concrete with 
different mechanical and strength properties as opposed from the 
mix composition. Two ordinary Portland cement pastes with w/c 
ratios of 0.25 and 0.50 were prepared using cement complying with 
CEMI 52.5 N and tap water. After the initial 24 h, the samples, still 
in their plastic containers, were wrapped in cling film and  sealed  in  
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Figure 1. Pie diagram of standard concrete components. 

 
 
 

plastic bags at 20°C until the ages of 15, 30, 90, 120 and 250 days. 
The second experiment (Data set 2) included four concrete 

samples that were treated by the same method of internal curing by 
retaining water on the concrete surface. The difference in each 
treatment related to the duration of the curing process (0, 3, 5, and 
7 days). The samples were spectrally measured of the age of 250 
days.  

The third experiment (Data set 3) was designed to test the 
influence of polyvinyl alcohol-acetate (PVAA, Celvol 805 of 
Celanese Chemicals), an 87 to 89% hydrolyzed polyvinyl acetate, 
added at different percentages (polymer/cement ratio of 0 to 0.8%), 
w/c of 0.5 and sand-cement ratio of 3, during the standard 7-day 
internal curing. All of the polymer solutions formed transparent 
crack-free films at room temperature. The samples were spectrally 
measured at the age of 250 days.  
 
 
Spectral data pre-processing  

 
The spectral calibration process was standardized and normalized 
using measurements of an internal standard. This process enables 
the isolation of noisy wavelengths (from the signal) and the 
generation of a noise-less smooth data set for further analysis. The 
reflectance spectra of the internal standard and the measured 
reflectance spectra of the concrete were normalized to the 
continuum level by interactively choosing continuum points, linearly 
interpolating between them, and then dividing the final spectrum by 
the continuum. Equivalent widths (EWs) were measured by 
choosing the linear boundaries interactively (Figure 2). The average 
EWs and standard deviation from the mean (σµ) were tabulated 
(Table 3).  

The measure of internal error (σµ) mostly reflects the individual's 
consistency in choosing the continuum level. From the calculated 
ratio between continuum-removed spectra (spectral repetitions) of 
the internal standard, a normalization factor is provided. 

Data-classification task 
 
The task of classifying data consists of deciding class membership 
y' of an unknown data item x' based on a data set (Dreiseitl and 
Ohno-Mechado, 2002). In this research, as in most problem 
domains, there is no function relationship y = f(x). Thus, the 
relationship has to be described more generally by a probability 
distribution P(x, y); it is then assumed that the data set contains 
samples independent of P. There are two different approaches to 
data classification: the first considers only a dichotomous distinction 
between the two classes, and assigns class labels 0 or 1. The 
second attempts to model P(y|x) not only as a class label for a data 
item, but also as a probability of class membership. Logistic 
regression (LR), artificial neural network (ANN), k-nearest neighbor, 
and decision tree are algorithmic implementations of ideas from 
statistical learning theory, which concerns itself with building 
consistent estimators which perform on a training set (Dreiseitl et 
al., 2002).  

Algorithmically, support vector machines build optimal separation 
boundaries between data sets by solving a constrained quadratic 
problem. The disadvantage of support vector machines is that the 
classification result is purely dichotomous, and no probability of 
class membership is given (Dreiseitl and Ohno-Machado, 2002; 
Scholkopf and Smola, 2002). 

Classification based on the k-nearest neighbor algorithm differs 
from the other methods, and here, this algorithm uses the data 
directly from classification, without building a model first. The major 
drawback of k-nearest neighbor lies in the calculation of the neigh-
borhood. Thus, a matrix needs to be defined that measures the 
distance between data items based on trial and error (Dasarathy, 
1991; Ripley, 1996). 

Decision tree is an algorithm that repeatedly splits the data set 
according to a criterion that maximizes the separation of the data, 
resulting in a tree-like structure (Breiman, 2001; Quinlan, 1993). A 
major   disadvantage   of   the decision  tree  is  in  the  construction 
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Table 2. Specific recipes for the three data sets from tested concrete samples. 
 

Data set 
Aggregates and sand (in kg) 

Water/Cement Ratio Free air in bulk (%) Hardener (%) 
Coarse (1-2 cm) Fine (100-500 mm) Sand (200 µm) Fine/coarse ratio 

1 98 48 87 0.5 0.25 1.6 NA 

1 98 48 146 0.5 0.5 1.8 NA 

2 98 48 87 0.5 0.25 1.5 NA 

3 98 48 87 0.5 0.25 1.6 0.1 

3 98 48 87 0.5 0.25 2.4 0.2 

3 98 48 87 0.5 0.25 4.1 0.3 

3 98 48 87 0.5 0.25 4.5 0.4 

3 98 48 87 0.5 0.25 5.1 0.6 

3 98 48 87 0.5 0.25 5.7 0.8 

 
 
 

 
 
Figure 2. Average reflectance spectrum of concrete (red) and internal standard (blue) with continuum points for the normalization 
process. 
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Table 3. Mean absolute error for all reflectance spectra normalized to the continuum level by interactive continuum points. 
 

Parameters n λ488 nm λ 800 nm λ 1085 nm λ 1277 nm λ 1633 nm λ 1860 nm λ 2160 nm λ 2370 nm 

Internal standard  879 9.3±0.24 4.9±0.1 1.97±0.06 1.4±0.09 1.32±0.11 0.96±0.01 1.05±0.15 2.3±0.34 

Concrete 3700 8.6±0.31 3.9±0.14 0.82±0.1 0.38±0.05 5.45±0.31 6.87±0.24 4.76±0.28 3.95±0.3 

 
 
 
process, where at each step, the combination of single 
best variable and optimal split-point is selected. 

LR and ANN models differ from others algorithms in the 
sense that they both provide a functional (f) form and 
parameter vector (α) to express P(y|x) = f(x,α). Although 
the functional forms for the LR and ANN models are quite 
different, a network without a hidden layer is actually 
identical to a LR model if the logistic activation function is 
used.  
 
 
Input data set for spectral analysis  
 
The spectral models applied at this stage can be trained to 
weight the significant variables and discount less important 
ones; nevertheless, we reduced the input data set, since 
this has proven to enhance overall performance. The data 
reduction was performed by the following methods: 
spectral re-sampling, feature-selection algorithms and 
spectral indices that produce data for the training subset. 

The first data set was spectrally re-sampled by box car 
averaging of three neighboring data points using the 
Savitzky-Golay algorithm (Savitzky and Golay, 1964) to 
calculate first and second derivatives of the initial spectra. 
The simple sample-to-wavelength ratio in the model 
calibration was a practical data set of 2555 samples versus 
717 wavelengths for each spectrum after re-sampling.  

Information from the second data set was reduced by 
parameterization of feature-selection algorithms. The 
parameterization consists of transforming the signal into a 
set of feature vectors. The aim of this transformation is to 
obtain a new representation which is more compact, less 
redundant, and more suitable for statistical modeling and 
the calculation of a distance score, or any other kind of 
score. In a pre-transformation stage, the reflectance 
spectra were converted to Log(1/R') absorption values 
(where R' is the reflectance), referred to as multiplicative 
property. The main transformation techniques, example, 
principal component analysis (PCA), fast Fourier trans-
formation (FFT),  and Haar transform  (HT),  were  selected 

for the spectral data set after conversion to Log(1/R') 
values (Figure 3). 

PCA transforms the original set of variables by way of an 
orthogonal transformation to a new set of uncorrelated 
variables or principal components (PCs) (Clark, 1999). The 
technique amounts to a straightforward rotation from the 
original axes to the new ones and of the derivation of PCs 
in decreasing order of importance. In a successful deriva-
tion, a few components account for most of the variation in 
the original data, but the results of the PCA are strongly 
dependent on existing variation and uniformity of the data 
set. The PCA was applied to the Log(1/R')-converted 
spectral data set (Figure 4) and the scores of all factors 
with eigenvalues greater than a predefined threshold were 
used in the spectral model (Geladi and Dabakk, 1995; 
Osborne et al., 1997).  

The FFT, on the other hand, enhances the high frequen-
cies of the spectrum that are generally reduced during the 
process of obtaining them (Hana et al., 1995). The FFT 
uses the internal values and, through a second-order 
interpolation, obtains waveform samples based on a user-
specified number of points. The windowing functions can 
reduce the effects of waveform truncation on the spectral 
content. FFT was performed by Matlab R2009b (Signal 
Processing Toolbox). 

The HT is a complete set of orthonomal functions, as 
their partial sum is constantly convergent (Haar, 1910). 
Thus it is a simple wavelet transformation that provides an 
adjusted volume of data by normalized average per 
transformation cycle, performed by Matlab R2009b.    

The subspace for sample distribution built by the PCA, 
FFT and HT was determined only on the training set, and 
the validation samples were projected in this subspace 
using pattern files that drive and control the network 
simulator in batch mode (Table 4).  

Finally, spectral indices were calculated based on 
normalized spectra. The tuning of decision thresholds is 
very difficult during the processing and verification stages. 
If the choice of numerical value remains an open issue in 
the domain, its robustness cannot be verified. This  type  of 

uncertainty is a well-known fact in the domain. The choice 
of normalizing was initially guided by two facts: firstly, in 
real applications and for text-independent systems, it is 
easy to compute feature variations; secondly, normalized 
distribution represents the largest part of the original 
distribution variance. 

The spectra were normalized to an internal standard to 
minimize measurement instability. The modified reflectance 
spectra were then manipulated using a continuum removal 
(CR) technique (Clark and Roush, 1984) (Figure 5). This 
manipulation enhances high-frequency features while 
normalizing low-frequency ones.  The following features 
were enhanced: 1. VIS iron oxides (465 nm), 2. IR hygro-
scopic water (1140 nm), 3. SWIR 1 (1350nm), 4. SWIR 1 
hygroscopic water (1450 nm), 5. SWIR 2 liquid water (1940 
nm), 6. clay (2220 nm) and 7. calcium (2300 nm). 

The input variables from continuum-removed absorption 
features were reduced through a sequential forward 
selection (SFS) algorithm (Whitney, 1971). The SFS was 
the feature-selection technique. This method starts with the 
inclusion of feature sets one by one to minimize the 
prediction error of a linear regression model. This stage 
focuses on conditional exclusion based on feature 
significance (Pudil et al., 1994). The first step is to use the 
basic SFS method to select features from the set of 
available measurements to form of significant feature set. 
The second step is finding the least significant features in 
the set. The third step is initialization of the selected 
algorithm (Step 1) until the feature set obtains its 
cardinality.  

Based on loading scores of the samples from the test set 
in the PC space, spectral regions were selected to 
describe the most spectrally active regions within the 
concrete material. The following features were selected: 
VIS iron oxides (460 nm), VIS pigment (556 nm), SWIR 1 
hygroscopic water (1400 nm), additional hardener (1780 
nm), SWIR 2 liquid water (1960 nm), clay (2225 nm), 
calcium (2309 nm), and hardener (2395 nm). This 
suggests that despite the monotonous visual spectrum ob-
served for concrete matter, significant  spectral  information 
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Figure 3. Reflectance spectra converted to Log(1/R') absorption values (R' is the reflectance) where 1 is 460 
nm - iron oxide, 2 is 1400 nm - hygroscopic water, 3 is 1780 nm - hardener, 4 is 1930 nm - liquid water, 5 is 
2225 nm - clay, 6 is 2309 nm - calcium, 7 is 2395 nm – hardener. 

 
 
 

 
 
Figure 4. Clustering of concrete samples (hydration, curing and hardening experiments) by the first 
three principal components (PCs) on Log(1/R')-converted absorption values of reflectance spectra 
from the training set divided by the D-optimality algorithm. 
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Table 4. Short description of the features and data sets transformed by selection 
algorithms. 
 

Feature  Remarks 

PCA PC scores (eight per spectrum) 

FFT FFT coefficients (13 per spectrum) 

HT Third-order HT coefficients (9 per spectrum) 

 
 
 

 
 
Figure 5. Concrete reflectance spectra manipulated by continuum-removal technique. 

 
 
 
does exist within the concrete. It also suggests the need for further 
spectral analysis to evaluate a spectral model that will predict those 
parameters. 

Aside from the spectral data manipulation, we also applied CR, 
first derivation (using only absolute values in the calculations), 
polynomial normalization of spectral curves, and calculation of 
spectral slopes at certain wavelengths.  

The results of the continuum-removed spectra reduced through 
SFS were: VIS iron oxides (465 nm), NIR hygroscopic water (1140 
nm), SWIR 1 (1270nm), SWIR 1 hygroscopic water (1450 nm), 
additional hardener (1770 nm), SWIR 2 liquid water (1940 nm), clay 
(2220 nm), calcium (2300 nm), and hardener (2340 nm). An 
additional spectral index was estimated by Equation (1) in the VIS 
range. The pigment data in the VIS spectral region were normalized 
to a range between 0 and 1 using slope calculation of the spectrum: 
 

VISslope =                                                        (1) 
 
Indirect (inter) correlation of the spectral features across the 
selected regions and the concrete's properties were examined. 
Table 5 provides all possible relationships between a property and 
a spectral response (direct)  or  a property  (indirect).  For  example, 

iron oxide was spectrally recognized at 540 and 840 nm and 
affected the slope of the spectral measurements in the VIS region 
(400 to 800 nm) (direct). Iron oxides are also correlated to clay 
content and hence clay content, although having no response in the 
VIS region, can be correlated to the iron oxide spectral parameters 
(indirect). 

Statistical methods used included multiple analysis of variance 
(M_ANOVA) to examine group mean differences among the 
spectral measurements (Huberty and Morris, 1989). Before 
subjecting them to M_ANOVA, the values of each variable were 
scaled to a range of 0 to 1. Three M_ANOVA models were used to 
determine whether the mean values of the spectrally determined 
variables differed between the processes of concrete hydration, 
curing and hardening. Bonferroni correction was obtained with 
confidence intervals. All tests were carried out with up to 120 
degrees of freedom.   

Table 6 shows the F-statistics of the M_ANOVA model for each 
process. It presents significant variables, which exceeded the 
critical value of 5.143, or equivalently, were below the p-value 
0.00625, at 0.05 levels under Bonferroni correction. Interpretation 
for each M_ANOVA model was that means for selected variables 
differ significantly from one another. 

The most practical way to prepare the input data consisted of  the    

1 2 3 4 5 6 7



176          J. Civ. Eng. Constr. Technol. 
 
 
 

Table 5. Indirect (inter)correlation of spectral regions. 
 

Variable a assignment Variable B assignment R square % (correlation coefficient) Direction 

VIS slope Iron oxides 92.46203 Negative 

VIS slope Liquid water 85.09365 Negative 

Iron oxides Clay 93.94732 Negative 

Hygroscopic water  Liquid water 97.50428 Positive 

Liquid water Hardener in SWIR1  96.34285 Negative 

Liquid water Clay 72.5849 Positive 

Hygroscopic water  Calcium 78.94835 Positive 

Hardener in SWIR 2 region Calcium 89.57327 Positive 

Hygroscopic water  Hardener in SWIR2  73.94361 Positive 
 
 
 
Table 6. M_ANOVA results for three models: hydration based on sand-cement ratio, curing, and hardener. The bold numbers are F-statistics; italic numbers are p-values. 
 

Variable 
Hydration sand/cement ratio  Curing period in days  Hardener percentage 

High Low  0 3 5 7  High Low 

N 746 514  220 220 200 200  255 200 

VIS slope 27.54, 0.002 7.58, 0.005  34.92,<0.001 21.40, <0.001 28, <0.001 12.75, <0.001  0.59, 0.02 12.75, <0.001 

Iron oxides 38.09, <0.001 25.71, <0.001  0.54, 0.273 0.59, 0.073 4.19, 0.13 3.31, 0.009  1.46, 0.09 3.31, 0.009 

Hygroscopic water (class) 1.05, 0.105 4.93, 0.384  4.15, 0.145 1.92, 0.341 0.51, 0.341 0.79, 0.341  8.74, <0.001 6.93, <0.001 

Hardener in SWIR 1 region 3.46, 0.092 1.97, 0.109  3.91, 0.194 2.57, 0.008 3.15, 0.104 1.87, 0.06  21.49, <0.001 20.51, 0.003 

Liquid water 21.73, 0.004 11.41, 0.005  7.73, <0.001 12.37, <0.001 10.73, <0.001 9.36, <0.001  11.06, 0.004 9.92, 0.005 

Clay 18.92, <0.001 9.27, 0.006  0.76, 0.352 2.192, 0.384 1.054, 0.139 0.89, 0.07  0.09, 0.24 0.15, 0.2 

Calcium 1.97, 0.0724 4.82, 0.0932  5.032, 0.370 1.539, 0.054 1.94, 0.005 1.56, 0.08  5.83, 0.007 5.41, 0.006 

Hardener in SWIR 2 region 4.867, 0.052 5.043, 0.194  1.703, 0.130 3.06, 0.093 3.47, 0.23 2.96, 0.154  24.72, <0.001 19.67, <0.001 
 
 
 
selection done by the loading scores in the PC space. The 
results of two other transformation methods (FFT and HT) 
were based on a larger data set (Table 1). The results of 
the SFS algorithm were similar to the PCs but failed during 
the backtracking process, in which the values of the 
criterion function are always compared to the same feature 
subset. Thus, tolerance to deviation features in the case of 
a new object (spectrum) is limited.  
 
 
Spatial distribution of spectral models 

 
The spatial representation  of  a  continuous  large  area  of  

concrete surface was achieved by systemically covering 3 
x 3 cm

2
 areas with spectral measurements using the 

contact probe assembly to cover the entire area (~40 
spectra). These measurements were gathered into a 
spectral cube that can generate a spatial view of the 
concrete indices and spectral-based models. The Kriging 
(Sacks et al., 1989) model is used to interpolate all 
measured point-source data onto a 3-D surface. The 
interpolated data cube contains spatial distribution (x/y) of 
spectral information (z).  

The combination of a polynomial model and departures 
of the form has been suggested as a modeling response 
(Welch et al., 1990, 1992). 

                                                  (2) 
 

Where y(x) is the unknown function of interest, f(x) is a 
known polynomial function of x, and z(x) is the realization 
of a normally distributed Gaussian random process with 
zero mean variance σ2

, and non-zero covariance. The f(x) 
term in Equation (2) is similar to the polynomial model in a 
response surface and provides a ‘global’ model of the 
design space (Sacks et al., 1989).  

While f(x) is a ‘global’ approximation of the design 
space, z(x) creates ‘localized’ deviations so that the Kriging 
model interpolates the ns sampled data points (spectra). 
The covariance matrix of z(x) is given by: 
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Table 7. Analysis of LR estimates for hydration process. 
 

Variable DF 
Parameter 
estimate 

Standard 
error 

Wald chi-square Pr >chi-square 
Standardized 

estimate 
Odds 
ratio 

Intercpt 1 2.4563 0.3942 12.4245 0.0001 - - 

VIS slope 1 -0.9452 0.5984 10.12853 0.0015 0.46397 4.957 

Iron oxides 1 -1.0839 0.4738 11.38477 0.0011 0.39483 5.477 

Clay 1 1.9908 0.53828 9.372719 0.001 0.47932 4.875 

 
 
 

                                       (3) 

 
Where R is the correlation matrix, and R(x

i
,x

j
) is the correlation 

function between any two of the ns sampled data points x
i
 and x

j
. R 

is a (ns │x ns) symmetric matrix with ones along the diagonal. We 
employed a Gaussian correlation function of the form: 

 

                              (4) 

 

Where are the unknown correlation parameters used to fit the 

model, and the  and  are the kth components of sample 
points x

i
 and x

j
. Depending on the choice of correlation function in 

Equation (2), Kriging can either "honor" the data, providing an exact 
interpolation of it, or "smooth" the data, providing an inexact 
interpolation.  

 
 
LOGISTIC REGRESSION MODEL 
 
In this work, the LR technique (Dreiseitl and Ohno-
Mechado, 2002) was used to examine the predictive 
potential of the reflectance spectra's indication of 
mechanical properties and processes at the concrete 
surface. LR was chosen because the independent 
variables do not have to be normally distributed, or of 
equal variance within each group.  
Three models were constructed using the LR technique:  
 

(1) Hydration predicted by w/c as the original component 
in the concrete mixture,  
(2) Internal curing period predicted by spectral absorption 
of liquid water in the SWIR2 region,  
(3) Hardening predicted by percentage of liquid hardener 
in the concrete.  
 
 
Hydration model 
 

The hydration model was based on the w/c ratio in the 
concrete mixture as provided by the concrete manu-
facturer (physical property and mixture components). We 
used 850 spectra for the LR model and 300 spectra to 
test the hydration model (Data set 1). The sand-to-
cement ratio was predicted with three estimated spectral 
parameters of VIS slope, iron oxides and clay (Table 7). 
Individual effects in the model were tested by Wald chi²/s,  

the squared ratio of each parameter divided by its 
standard error. These tests, shown further on, indicated 
that all selected spectral features are highly significant. 
 
 

Hydration model interpretation 
 
The hydration process was evaluated by percentages of 
w/c and sand-to-concrete ratio within the concrete 
mixture (Fitted model (1)). This was most easily 
interpreted by considering the odds ratios corresponding 
to the parameters: 2 is the increment to log odds for the 
clay spectral feature in the SWIR 2 region, and the odds 
ratio 2 = 4.8 indicates that the clay feature is nearly 2.5 
times more likely to achieve a better outcome than a 
hydration model without the clay parameter. 
 

  
                                                                                       (5) 
  
Where A is clay in SWIR 2, B is iron oxide in VIS, C is the 
slope in VIS, and D is liquid water in SWIR 2. 

The output statement produces a data set containing 
estimated logit values for each group, and corresponding 
predicted probabilities of improvement and confidence 
limits for these probabilities. To plot the predicted 
probabilities of improvement and confidence limits from 
the results data set, we selected a spatial interpretation 
based on a Kriging approach (Figure 6). 

The ROC (receiver operating characteristic) curve for 
the hydration model was calculated from the posterior 
probabilities of LR analysis (Figure 7). The area under 
the ROC curve was 0.98, larger than any of the areas 
obtained when using only a single metrics (Table 8). 
 
 

Curing period model  
 

The internal curing model was based on actual curing 
periods of 0, 3, 5 and 7 days at an early concrete age 
(second experiment, Data set 2). We use 500 spectra for 
the LR model and 300 spectra to test the curing model. 
The estimation of liquid water related to the curing 
process was based on two spectral parameters: VIS 
slope and liquid water absorption in the SWIR 2 region. 
Individual effects in the model were tested by Wald chi²/s 
(Table 9). 
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Figure 6. Kriging 3-D map of sand-cement ratio according to Equation (1). 

 
 
 

 
 
Figure 7. ROC curves calculated for hydration model based on probabilities of LR analysis. 

 
 
 

Table 8. Area under ROC curve calculated for LR analysis of each model. 
 

 Hydration Curing Hardener 

Area under ROC curve 0.98 0.995 0.95 
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Table 9. Analysis of LR estimates for curing period. 
 

Variable DF 
Parameter 
estimate 

Standard 
error 

Wald chi-square Pr >chi-square 
Standardized 

estimate 
Odds 
ratio 

Intercept 1 15.9435 0.4563 9.47320 0.0115 - - 

VIS slope 1 1.68743 0.1298 11.7637 0.0015 0.3927 2.043 

Liquid water 1 2.30556 0.4982 13.0466 0.0001 0.2053 7.309 

 
 
 

 
 
Figure 8. Kriging 3-D map of predicted curing period according to Equation (2). 

 
 
 
Curing period model interpretation 
 
The curing period was evaluated by examining the 
percentage of liquid water in the concrete matrix, which 
signifies the strength of the concrete (Fitted model (2)). 
The model was interpreted by the odds ratio of liquid 
water vs. VIS slope. The odds ratio of liquid water was 
2.3 = 7.3, indicating that liquid water absorption is nearly 
3.2 times more likely to achieve a better outcome than a 
curing period model without the liquid water parameter 
(Figure 8). On the other hand, the odds ratio of the VIS 
slope was 1.7 = 2, indicating that VIS slope is only 1.17 
times more likely to achieve a better outcome. This test 

indicated that liquid water is a highly significant 
parameter. 
 

        (6) 
 
Where A is liquid water, B is VIS slope. 
 
 
Hardener model 
 

The hardener model was based on percentage of liquid 
hardener added to the concrete matrix in the third  

 

         (7) 
 
experiment (Data set 3). We used 350 spectra for the LR 
model and 200 spectra to test the hardener model. The 
liquid and hygroscopic water estimation was related to 
the hardening process based on two spectral parameters 
of hardener features in the SWIR1 and SWIR2 regions. 
Individual effects in the model were tested by Wald chi²/s 
(Table 10).  
 
 
Hardener model interpretation 
 
The hardener percentages were evaluated by  examining  

the percentages of liquid and hygroscopic water in the 
concrete matrix, which indicate the concrete's strength 
(Fitted model (3). It is most easily interpreted by 
considering the odds ratios corresponding to the 
parameters: 2 is the increment to log odds for the liquid 
water, and the odds ratio 3.89 = 9.52 indicates that this 
feature is nearly 2.5 times more likely to achieve a better 
outcome than a hardener model without the liquid water 
parameter (Figure 9 

Where A is hardener in SWIR 1, B is liquid water in 
SWIR 2, C is hygroscopic water in SWIR1, D is hardener 
in SWIR 2. 
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Table 10. Analysis of LR estimates for hardening process. 
 

Variable DF 
Parameter 
estimate 

Standard 
error 

Wald 

chi-square 

Pr > 

chi-square 

Standardized 
estimate 

Odds ratio 

Intercept 1 -4.2195 0.2104 10.0321 0.0015 - - 

Hardener in SWIR1  1 7.21569 0.4932 7.40134 0.0001 0.1932 12.92 

Hardener in SWIR2  1 12.8642 0.1023 8.94315 0.001 0.0932 13.92 

Hygroscopic water  1 0.36021 0.0022 13.799 0.0015 0.1127 4.32 

Liquid water 1 3.89022 0.0143 10.005 0.0105 0.2832 9.52 
 
 
 

 
 
Figure 9. Kriging 3D map of predicted additional hardener according to Equation (3). 

 
 
 

ARTIFICIAL NEURAL NETWORK 
 
The ANN applied at this stage can be trained to weight 
the significant variables and discount the less important 
ones; nevertheless, we reduced the input data set, since 
this has been shown to improve overall performance 
(Zupan and Gasteiger, 1991).  
 
 
Network topologies 
 
The architecture of an ANN is determined by the way in 
which the neurons' outputs are connected to other 
neurons (Despagne and Massart, 1998). We consider 
layered feed-forward ANNs trained (Sanchez and 
Sarabia, 1995) with the back-propagation learning 
algorithm. The network includes three layers of 
processing stages:  
 
(1). Input distribution,  
(2). Layer hidden units (weighted sum of inputs according 
to nonlinear sigmoid transformation),  
(3). Output units (sum of inputs).  
 
Due to nonlinearity in the hidden layers, the output  of  an  

ANN is a nonlinear function of the inputs (Udelho ֽ◌en and 
Schuttr, 2000). The sigmoid transformation function is 
subdivided into three separate domains: region with 
positive second derivative, linear region, and region with 
negative second derivative. The network was carried out 
for each class separately. The 2600 concrete spectra 
(~70% of the objects) chosen from every class 
constituted the training set (Table 11). 

In a classification context, the decision boundary can 
be nonlinear as well, making the model more flexible 
compared to multinormal LR (Dreiseitl and Ohno-
Mechado, 2002). The optimal number of hidden layers, 
determined by calculation of the full connection of two 
layers in which single hidden units were effectively 
inserted, generally varied between 10 and 20% of the 
input nodes.  

The number of input nodes is reduced according to the 
range of weights and has to be adaptive as the number of 
nodes in a hidden layer is fixed. If all weights of one 
output are large (total range associated), then its variable 
plays an important role in the network. Thus, the 
variables can be reduced in terms of network 
performance (Borggaard and Thodberg, 1992).    

The output layer, in which quality of the concrete 
materials    was   coded   in   one   output   unit,  provided  
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Table 11. Spectral data set (size of the training and test sets) of concrete samples. 
 

Categories Data set 

Number of objects 3700 

Training set 2600 

Test set 1100 

Iterations (epochs)  500-3000 

Prediction ability (%) 90-100 
 
 
 

information on hydration stage, curing period in the early 
stage, and spatial distribution of liquid hardening on the 
surface. 

The data of the training set were subjected to PCA, 
with the first seven PCs taken into consideration. The 
main goal of net training was to minimize the root Mean   
square error (RSME Equation 8) and to avoid over fitting.  
 

                                       (8) 
 

Where  is the element of target matrix ( ) for the 

data considered training or testing sets, and  is the 

element of the ANN matrix ( ). 
The performance of the network was tested every 200 

epochs during the training, and the weights for which the 
minimal RMSE for the test set was observed and 
recorded. The back-propagation training algorithm 
contributes information to the learning algorithm that is 
able to build a complex relationship between input and 
output data sets. Thus, the local schemes where the 
signs of partial derivatives of error measurements are 
used for determining the directions of weight update. The 
error modification function helps avoid overfitting of the 
model during training if it has too many weights 
(adjustable parameters). To speed up back-propagation, 
the following techniques were used: batching operation, 
adaptive learning rate and momentum. In batching 
operation, multiple input vectors may be applied 
simultaneously, and a network response is obtained to 
each of them. Adaptive learning requires that weights 
receive fortification during back-propagation of the error 
values through the network (Mutanga and Skidmore, 
2004). Thus, the most important weights have high 
values of derivatives of the error function, while weights 
which do not change are decreased to zero. If the new 
error is less than the old error, the learning rate is 
increasing. Momentum decreases back-propagation 
sensitivity to small details such as spectral systematic 
noises in the error and helps to avoid attaching to low 
minima (Kokaly and Clark, 1999; Mutanga et al., 2003). 
The final output of the network can be evaluated in two 
different ways: 1. the object can be considered as 
correctly classified if the largest output, regardless of its 
absolute value, is observed on a node signaling the 
correct   class,  or  2.  the  object  can  be  considered  as  

correctly classified if the largest output is observed on a 
node signaling the correct class and its value is higher 
than a predefined threshold. A local out-of-N code was 
used for output classes encoding labels. In this study, we 
determined a node dependence minimum threshold of 
0.5 (the number of correctly classified objects of the 
training and test set divided by the total number of 
objects) that allows soft modeling of data. 
 
 

Design of the training set 
 

The architecture of the network was optimized for the 
data divided into training and test sets by he D-optimality 
algorithm (Choueiki and Mount-Campbell, 1999). In our 
work, the D-optimal design cannot be directly applied 
because of the singularity of the information matrix 
(Cohn, 1996). Therefore, the Log(1/R')-converted spectra 
were pretreated by PCA (Figure 3). The number of 
variables was reduced to n'-1 variables. Thus, X 
becomes a score matrix for n' objects and n'-1 variables. 
Then we applied the D-optimality method to select 
objects for the network (Equation 9): 
 

                                                     (9) 
 

Where   is the latent variable  
Table 12 summarizes the RMSE results from testing 

each trained ANN model on an identical data set. It is 
very clear from the ANN RMSE results that the 
methodology for selecting the input data and the size of 
the training data set have an impact on ANN perfor-
mance. Avoiding over-learning/fitting, a cross-validation 
data set was launched while training the network (Cohn, 
1996). This additional data set, however, was not used in 
estimating the weights of the ANN model, but rather to 
identify when to stop training.  

The results of the ANOVA of the data in Table 4 were 
summarized in Table 5. Examining the results in Table 
13, we observe that the ANN modeling appears to benefit 
from selecting a training data set using a D-optimal 
design. Since the D-optimal factor (Equation 9) is not 
statistically significant, the ANN model is robust to the 
spectral complexity within a given restricted region. The 
size of the training data set has a significant impact on 
ANN performance. Thus, as expected, when the size of 
the   training    data   set   increases,   ANN   performance   
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Table 12. Experimental design and RMSE results. 
 

Source Training  Components N RMSE 

PCA D-Optimal 8 2000 0.0049 

PCA D-Optimal 5 2300 0.0052 

PCA D-Optimal 4 2600 0.0053 

FFT D-Optimal 13 1800 0.094 

HT D-Optimal 9 1000 0.172 

Savitzky-Golay D-Optimal 84 860 0.186 

Continuum removal reduced through SFS D-Optimal 9 1300 0.165 

 
 

 
Table 13. ANOVA results. 
 

Source Degree of freedom Mean square F-value 

PCA 3 0.0001 0.85 

PCA 2 0.0004 1.15 

PCA 2 0.0008 1.9 

FFT 4 0.0164 165.3 

HT 3 0.0386 0.001 

Savitzky-Golay 24 0.0256 1025.61 

Continuum removal reduced through SFS 3 0.0058 0.15 
 
 
 

improves. 
 
 
Artificial neural network results 
 
We used a fixed structure in which input and output 
values were scaled between 0.1 and 0.9 by variable. 
Then the back-propagation learning rule with adaptive 
learning rate (fixed at 0.1) and momentum (fixed at 0.2) 
were used.  

The scale of weights used in the network can be plotted 
as a diagram that displays the elements of the weight 
matrix with areas proportional to their scale. The bias 
vector is separated from main weights by a vertical line. 
This diagram displays the element of the weight matrix 
that stays proportional to their magnitude. The sum of the 
weights connected to the node can approximate the 
importance to a well-performing network (Figure 10). 
Table 14 presents the results of the optimization of the 
network architecture for the data set: a 95% correct result 
is obtained for the network with four input nodes (the first 
four PCs) and three nodes in the hidden layer. 

To examine and understand the performance of the 
network, the correlation structure of the estimated 
chemical characteristics and processes is important, 
since ANNs make use of the correlation structure among 
intercorrelated variables. The performance of the network 
with eight inputs, and three hidden and three output 
nodes (8  3׳  3׳) is presented in Figure 11 by calculated 
RMSE and percentage of correct classification (success 
rate) of back-propagation with adaptive learning algorithm 

and momentum. The weights of input nodes 6 to 8 are 
smaller and suggest that PCs 5 to 7 do not contribute to 
the network's performance. However, the prediction rates 
decrease when the number of hidden nodes decreases to 
two (the first four PCs). Therefore, the best possible 
structure for the data is four nodes (the first four PCs) 
and three hidden layers. The optimal network with final 
weights is presented in Figure 12.  

The performance of the optimal network (4  3׳  3׳) 
presented in Figure 13 does not decrease compared to 
the first model presented (8  3׳  3׳) in Figure 11.  This 
indicates that the number of input variables can be 
reduced without changing the performance of the network 
(effective only in the case of good performance).  

The validation stage (Table 15) measure performance 
of the model by mean square error (MSE), mean 
prediction error (MPE), and a final total accuracy of the 
model. In summary, the ANN algorithms appear to 
achieve consistently high accuracies. The proposed 
network provides three outputs that evaluate and assess 
the status of the concrete. These outputs score each of 
the three dominant processes (hydration, curing and 
hardening) involved in concrete production. The hydration 
process, assessed as a quantitative evaluation of the 
cement-sand ratio, could be interpreted qualitatively as 
low, medium and high, with high relating to a well-
integrated concrete product. The effectiveness of curing 
is estimated as the period of time that this procedure 
takes in days. The hardening process as hydration can 
be assessed by quantitative evaluation of liquid 
hardeners in the original concrete  mixture,  or  it  can  be   
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Figure 10. (a) Sum of absolute values of the weights of eight nodes in the input layer 
(eight input nodes). (b) Sum of the absolute values of the weights of three nodes in the 
hidden layer. 

 
 
 

qualitatively interpreted as low, medium and high with 
respect to existing standards. 
 
 
DISCUSSION 
 
The present complex classification problem of concrete's 
mechanical properties—hydration, curing and 
hardening—led to parameter-poor models with excellent 
generalization properties. With LR, model complexity is 
low, especially when variable transformations (e.g. 
Log(1/R') and  PCA)   are   used.   A  modification   which 

enhances the generalization properties of ANNs is the 
consideration of a weight-decay term.  

The LR model collects variables based on schematic 
selection which is used to remove spurious covariates. If 
computationally feasible, it should include interaction 
terms to make the model more flexible. The optimal 
ANNs is assumed to be the simplest one that achieves 
the minimum error on the test set. From the available 
data, we determined that the network with three hidden 
units is the optimum for all different sets of features. The 
advantage of using PCs in the context of ANNs, however, 
is rapidity, since the  dimensionality  of  the  input  data  is  
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Table 14. Correct results (%) for training and test data sets. Data selected with the D-optimality algorithm; 3000 epochs.  
 

Input nodes Hidden nodes Training (correct rate %) Test (correct rate %) Output nodes 

First 8 PCs 3 100 100 3 

First 5 PCs 3 99 95.7 3 

First 4 PCs 3 98.6 95.1 3 

First 4 PCs 2 82.9 79.5 3 

 
 
 

 

 

 

 
 
Figure 11. Network of eight input, three hidden and three output nodes. (a) RMSEas a 
function of the number of training iterations. (b) Correctly classified targets as a function 
of number of training iterations 

 
 
 

reduced (Wise et al., 1995). The ratio between the 
number  of  trainable  weights  and  available  samples  is 

important, since it strongly influences the generalization 
property of the ANN (Riedmiller and Braun, 1993). 

 
a 

a 
b 
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Figure 12. Final weights. (a) Sum of absolute values of the weights of four nodes in the 
input layer (four input nodes). (b) Sum of the absolute values of the weights of three 
nodes in hidden layer. 

 
 
 

A major criticism of ANNs is their black-box aspect, 
since the model is constructed solely based on informa-
tion obtained from the data themselves. Some attempts 
have been made to interpret ANN models by graphical 
and numerical interpretation of the hidden and input units' 
output (Despagne and Massart, 1988). The suggested 
back-propagation (Riedmiller and Braun, 1993; 
Riedmiller, 1994) achieves fast training when the error 
can be locally approximated by an open parabola and the 
changes of the weights can be performed independently. 
As the aim of the classification is to derive the border of 
every class, we suggested using D-optimal selection, 
which has proven to be slightly better (Wu et al., 1996) 
than other methods (example, Kennard-Stone), since the 
D-optimal selection selects representative training targets 

for the entire available data set. The main conclusions for 
developing training data sets are as follows: 
 
(1). A set of data points chosen from a restricted region 
according to the D-optimality criterion might provide an 
estimation of minimum variance for the model.  
(2).The quadratic polynomial is the most accurate method 
for approximating complex spectral features (treated as 
classification surfaces),  
(3). Increasing the number of input nodes or observations 
does not drastically improve network performance.  
 
The main difference between these two models is the 
basic identification as a white/black box. The LR is a 
white box model in which coefficient sizes determine their
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Figure 13. Network of four input, three hidden and three output nodes. (a) RMSE as a function 
of the number of training iterations. (b) Correctly classified targets as a function of number of 
training iterations. 

 
 

 
relative importance for the classification result. In 
contrast, ANN is a black box model which does not allow 
any interaction and can only be verified externally.  
 
Conclusion 
 
HPC is an extremely durable and complex material 
including hardening, hydration and internal curing, 
processes  which   may   provide   additional   complexity. 

However, measuring these processes in situ is complex, 
if not impossible. Indeed, no single method yet exists that 
can completely determine all chemical reactions taking 
place in a concrete structure from the mixing stage 
onward. In the present study, we suggest using the DRS 
technique (VIS-NIR-SWIR) for rapid assessment of the 
status of concrete in situ. This pioneering study shows 
that reflectance spectroscopy can be used as a promising 
and powerful tool to assess the concrete's status  in  both 

a  

 
b 
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Table 15. Results for back-propagation with adaptive learning and momentum. 
 

Network MSE MPE Accuracy (%) 

4 × 3 × 3 0.003 0.0009 93.21 
 
 
 

point and spatial domains. Since the reflectance mea-
surement is easy, rapid, and accurately obtained, it can 
be used in the field and provides an in-situ tool for 
engineers to inspect the concrete's status. To the best of 
our knowledge, this is the first attempt to show that 
spectral reflectance information can shed light on the 
concrete's quality, and if further developed, this approach 
could provide a unique tool for many applications in the 
fields of construction and building engineering. 
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