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The paper intends to survey and assess the random change of the form in the shallow shells, which is
caused by the usual faults in the technology construction, the influence of which is ignored by the use
of safety factors. The surface of the shallow shells with the random function is modulated by the
asymptotic method, surveying the stress and strain in the shell. The results of the research can be used

in the structural plans of the important projects.
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INTRODUCTION

The shallow shells, having very light weight, enjoy a high
loading capability (Losif and Lebedev, 1999; Peter and
Andrei, 2001; Bucco et al., 1982), random curving may
occur in the construction of the planes and ships, and in
the thin-walled structures and shells because of some
execaptive conditions, construction, form and the shape
of the structure, as contrasted to the ideal model
(Mohamad, 1992; Xingwu et al., 2011; Olson and
Lindberg, 1988; Pin and Maoguang, 1992). This
probability may cause an incident and it may even
destroy the structure. The random deforming factor may
happen in the automobile.

The problem is solved by the asymptotic method,
suggested by Kasumov and Sobolev (1991), Kasumov
(1996), Bathe and Ho (1980) and Delpark (1980).
According to the mentioned analysis, the mode of stress
and strains of shallow shells is investigated on the basis
of the following differential equations:

{DL W(x,y)-L 2(x,y)=a(xy)
D,LD(x,y)+L, W(x,y)=0

Y
Solution of differential Equation 1 should satisfy the

following boundary condition on the boundary Gs of the
shell: (Figure 1)
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Figure 1. Shows the boundary Gs of the shell
surface in vertical plan with Cartesian coordinate of
the shell.
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shells, and correspondingly, flextutal stiffness of the

vertical and horizontal sections. v E,h poission ratio,
modulus of elasticity and thickness of shell. K, being the
curvature of the shell in the direction of the axis y and g
being the intensity of the load, and the displacement in
the drection of axis z and stress function correspondingly.
Assume that the neutral plane of the shell with stochastic
function.

Fuy)=Floy)+Fooyk Fy)=<Fley)>

F(x,y) is described as follows:

KF:a,iexp?a[(x—x’)ﬁ(y—y’)z]”z} <F>=0 -

We assume that the ordinates of stationary function F
according to Gauss law development and they are set by
correlation function.

F(x,Y)

We will present the stochastic function in the form of
orthogonal series and it is displayed as follows:

-~ K - ~
F(xy)=0: > ﬂk(ak cosa, r +b, sin @, r),

k=0

(6)

r=(+y?)",

Where:

o, =krzld

Here Ao @y standard deviation of section of function

o
F(x,y), and F

d
D, (x,0,)=1, J‘KF (X=X, y—y)®(X,y', ®) dx dy’
Zd

are defined as follows:

2y =1(ed), 4 =2a/(da’+a?)

cosw, r
(D(r'wk):{sinwkr
k

Ke =exp {— a[(x X'V +(y-y') ]1/2} (7)

Ak bk_ Random quantity of Gauss and they are
determined as follows:
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On the basis of Equation 4 for stochastic operators, we
have:

Lk :Ek+ L~k1
— 02 02
Lk =< Lk >:Kyax—2+KX?
. 2
€5X:<£5X>:Ky%, Ky:<Ky>a—E:const,

ESX 275x+€5x

/€5y :?5y+/€5y,

o _ 2
U5y =< Ly, >:Ky§, Kx%, K=K, >£:const,

From the condition of stationary of function F there
follows stationary of on element of curvature of the shell,
we get.

< K~X’ K~y >:0, kaky(x, y, X',}/')= kaky (X_Xri y_y,)

The following definitions are offered for the function of
shell cuvature:
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As seen, during the setting of the surface of the shell Z =
F (X, y) by stochastic function of curvature there will be
also stochastic functions. In special cases for the shells
with transferred surfaces and constant curvature with the
constant curvature Equation 1 will be with constant
coefficients. Now we will proceed to the solution of
stochastic boundary problem for shallow shells by
asymptotic method. Solution of the problem adds up to
the solution of the system.

g(xy)= le(x2 +y2)

&3 (X, y): y* /(Xz + y2>

DLW-Lko -elk =g
D,Lo +LkW-eLgW=0 ©
The solution of this problem considered in the form of g
g
=0 =0 (10)

Taking it into account, this solution adds up to the
analysis of shallow shells with constant curvature on the
random load,

DLW® -1, 4" =g

D,L¢"-Lw® =0 a

For null approximation, and random load, we have:
DLW Ly g =L, g

D,L g~ LW =L W w2



To estimate i, the boundary conditions change
correspondingly. The solution of the system (12) is
considered in the form of
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The Following equations exists between X, B, Au
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The following equations exists between Kinnr Bunr A

an :(Amn Clmn/Eh_AkmnCZmn)/an;
Amn :(DAmn C21mn _Akmnclmn)/xmn;

D

an = a Amn _Akmn;

Apn= m2+\|’n2; Amn:Kx\VnZ"‘Ky m2;
Cimns C2mn:“F1' F (va) sin X siny,y dxdy;

FR=F 09 F=-Lcw®

(15)
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The probable characteristics of the stochastic function
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following equations:

are determined from the

probabilistic characteristics of the
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Or in more abbreviated form ™
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CONCLUSION

The elements of matrix [A] are defined exactly. Other
approximations  are built  analogically. Every
approximation is realized by method of statistical
experiments of Monte Carlo. According to the results of
the investigation the following conclusions are derived.
During the investigation of MD of shallow shellsts with
random variable curvature with asymptotic method the
decision is brought to the calculation of the shellt on
random load. As unknowns of resolving system of
algebraic equations varies, during their determination,



one should use method of statistical testing of Monte
Carlo. It is determined that during the investigation of MD
by asymptotic method after null and first approximation,
building of algebraic equations for successive
approximation is practically impossible. It is natural, when
the netural surface is non stasionaty function, two
mentioned approximations will differ markedly from true.
Transformation of netural surface for each realization
makes the decision more difficult and makes it practically
unsolvable by asymptotic method.

In spite of the indicated disadvantages of using
asymptotic method, it allows tracing all the peculiarities of
the investigated problem.
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