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The paper intends to survey and assess the random change of the form in the shallow shells, which is 
caused by the usual faults in the technology construction, the influence of which is ignored by the use 
of safety factors. The surface of the shallow shells with the random function is modulated by the 
asymptotic method, surveying the stress and strain in the shell. The results of the research can be used 
in the structural plans of the important projects. 
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INTRODUCTION 
 

The shallow shells, having very light weight, enjoy a high 
loading capability (Losif and Lebedev, 1999; Peter and 
Andrei, 2001; Bucco et al., 1982), random curving may 
occur in the construction of the planes and ships, and in 
the thin-walled structures and shells because of some 
execaptive conditions, construction, form and the shape 
of the structure, as contrasted to the ideal model 
(Mohamad, 1992; Xingwu et al., 2011; Olson and 
Lindberg, 1988; Pin and Maoguang, 1992). This 
probability may cause an incident and it may even 
destroy the structure. The random deforming factor may 
happen in the automobile. 

The problem is solved by the asymptotic method, 
suggested by Kasumov and Sobolev (1991), Kasumov 
(1996), Bathe and Ho (1980) and Delpark (1980). 
According to the mentioned analysis, the mode of stress 
and strains of shallow shells is investigated on the basis 
of the following differential equations: 
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Solution of differential Equation 1 should satisfy the 
following boundary condition on the boundary Gs of the 
shell: (Figure 1) 
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-flextutal rigidity and tension stiffness respectively.  

   ,/1,112/ 2
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Figure 1. Shows the boundary Gs of the shell 

surface in vertical plan with Cartesian coordinate of 
the shell. 
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In above cited expressions, torsional stiffness of shell ribs 
on the edges parallels to axis oy sectional area of these  
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shells, and correspondingly, flextutal stiffness  of the 

vertical and horizontal sections.


E,h poission ratio, 
modulus of elasticity and thickness of shell. Ky being the 
curvature of the shell in the direction of the axis y and q 
being the intensity of the load, and the displacement in 
the drection of axis z and stress function correspondingly. 
Assume that the neutral plane of the shell with stochastic 
function.  
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F(x,y) is described as follows: 
 

      0,exp
~2/1222  FyyxxK FF 

       (5) 
 

We assume that the ordinates of stationary function F 
according to Gauss law development and they are set by 
correlation function. 
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We will present the stochastic function in the form of 
orthogonal series and it is displayed as follows: 
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Where: 
 

Here kk ,
 
standard deviation of section of function 

F(x,y), and F
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In above expressions 1,3yc is the torsional stiffness of No. 1,3 shell ribs on the 

boundary  
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Fig (1):  Shows the boundary Gs of the shell surface 

in vertical plan with Cartesian coordinate of the shell. 
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<E>-unitary matrix  
 

k,1j,i,k,0b,aba
~

k

~

k

~

k

~

k 
 

yxkL 55 ,, 
 

 
On the basis of Equation 4 for stochastic operators, we 
have:     
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From the condition of stationary of function F there 
follows stationary of on element of curvature of the shell, 
we get.  
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The following definitions are offered for the function of 
shell cuvature:  
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    rωcosy,xεrωsiny,xεωωβ k2k1kkxk 
                                                                                   (8)
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As seen, during the setting of the surface of the shell Z = 
F (x, y) by stochastic function of curvature there will be 
also stochastic functions. In special cases for the shells 
with transferred surfaces and constant curvature with the 
constant curvature Equation 1 will be with constant 
coefficients. Now we will proceed to the solution of 
stochastic boundary problem for shallow shells by 
asymptotic method. Solution of the problem adds up to 
the solution of the system. 
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The solution of this problem considered in the form of  
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Taking it into account, this solution adds up to the 
analysis of shallow shells with constant curvature on the 
random load,  
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For null approximation, and random load, we have: 
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To estimate i , the boundary conditions change 
correspondingly. The solution of the system (12) is 
considered in the form of 
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The following equations exists between
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The Following equations exists between :,, mnmnmn ABX
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The probable characteristics of the stochastic function 
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following equations: 
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Or in more abbreviated form  
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CONCLUSION 
 
The elements of matrix [A] are defined exactly. Other 
approximations are built analogically. Every 
approximation is realized by method of statistical 
experiments of Monte Carlo. According to the results of 
the investigation the following conclusions are derived. 
During the investigation of MD of shallow shellsts with 
random variable curvature with asymptotic method the 
decision is brought to the calculation of the shellt on 
random load. As unknowns of resolving system of 
algebraic equations varies,   during   their   determination, 
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one should use method of statistical testing of Monte 
Carlo. It is determined that during the investigation of MD 
by asymptotic method after null and first approximation, 
building of algebraic equations for successive 
approximation is practically impossible. It is natural, when 
the netural surface is non stasionaty function, two 
mentioned approximations will differ markedly from true. 
Transformation of netural surface for each realization 
makes the decision more difficult and makes it practically 
unsolvable by asymptotic method. 

In spite of the indicated disadvantages of using 
asymptotic method, it allows tracing all the peculiarities of 
the investigated problem. 
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