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This article introduces modified exponentially weighted moving average (modified EWMA) control 
chart. The modified EWMA control chart is very effective in detecting small and abrupt shifts in 
monitoring process mean. This chart is based on modified EWMA control chart statistic, which is a 
correction of EWMA chart statistic and it is free from inertia problem. The advantage of using modified 
EWMA chart is its good performance for observations that are autocorrelated or independently normal 
distributed. The performances of Modified EWMA chart are illustrated along with EWMA chart for the 
two types of analytical process data. The average run length (ARL) properties of modified EWMA 
scheme are derived using Markov Chain approach.  
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INTRODUCTION  
 
The control charts namely, Shewart chart (Shewhart, 
1924), EWMA chart (Roberts, 1959) and CUSUM chart 
(Page, 1954) are often used for detecting shifts in a 
sequence of independent normal observations with 
common variance coming from a particular process. The 
usefulness of a chart is determined from the timely 
detection of shifts as they occur. The literature on 
evaluation of properties of these three charts indicates 
that Shewhart chart detect all single large shifts, CUSUM 
chart detects shifts by accumulating changes in a 
direction, while EWMA chart detects shifts through 
changes accumulated under exponential smoothing. In 
general, these three control charts will fail to detect shift 
in one case, either the large shift or the small shift in the 
process. Moreover, these charts cannot be used directly 
in chemical and pharmaceutical industries because the 
observations from processes in these industries are 
frequently autocorrelated. This autocorrelation has a 
large impact on the control charts developed under the 
independence assumption. A typical effect of 
autocorrelation is to decrease the in-control average run 
length (ARL) leading to a higher false alarm rate than for 
an  independent  process.  Moreover,  the  autocorrelated  
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processes may  also  have abrupt changes. Both the 
situations are bothersome for these industries. 

In particular, in most of the industrial processes, 
temperature is an essential process variable and the 
process is sensitive to the cumulative small changes as 
well as some abrupt changes in temperature values. An 
abrupt change is the unpredictable large shift occurring in 
the process being monitored for small shifts. Recently, 
research efforts have been put for the process subject to 
abrupt changes. EWMA chart has received more 
attention as it also provides an estimate of forecast of 
process mean. Yaschin (1995) have discussed estima-
tion of current process mean in a process subject to small 
changes, as well as abrupt changes on the basis of 
EWMA. Capizzi and Masarotto (2003) have provided a 
class of new control charts, AEWMA charts on the basis 
of EWMA to detect shifts of all types for independent 
data. Reynolds and Stoumbos (2006) suggested using 
two EWMA controls simultaneously, one for process 
mean and another for process variance to tackle 
detection of small shifts with abrupt changes. Woodall 
and Mahmoud (2005) have proposed a measure of 
inertia, the signal resistance, and shown that EWMA 
suffers from inertia problem more than the CUSUM. On 
the other hand, several authors have discussed process 
control methods for autocorrelated observations. 
Montgomery  and  Mastrangelo (1991) presented method  



 

 
 
 
 
that consists of modeling the autocorrelative structure in 
the original data using EWMA and applying Shewhart 
control charts to the independent normal residuals. Their 
paper led to discussion, and one of the reviewers: Ryan 
(1991) stated that, residual chart for AR(1) will perform 
poorly unless autoregressive (AR) parameter is negative 
or extremely close to 1 and that the derivation of ARL 
properties was unclear because most of the time, the true 
state of autocorrelation in the process is not known. Faltin 
and Woodall (1991) appreciated their method for the 
virtue of simplicity in the interest of operators and 
engineers. Cox (1961) have shown that the EWMA is not 
a useful predictor for an AR(1) process having an 
autoregressive parameter less than 1/3. It is found that 
for ARMA (1,1) processes, the EWMA is useful as a 
predictor provided that, the AR term sufficiently 
dominates the moving average (MA) component. Harris 
and Ross (1991) studied the impact of traditional control 
charts based on residuals under several correlation 
structures of process and concluded that the traditional 
EWMA, CUSUM charting techniques perform poorly in 
the presence of serial correlation and the use of residuals 
in Shewhart chart is not effective for detecting small shifts 
when the observations are highly positively correlated. Lu 
and Reynolds (1999) considered the problem of 
monitoring the mean of a process in which the 
observations can be modeled as an AR(1) process plus a 
random error. They have suggested EWMA control chart 
based on the residuals from the forecast values of the 
model using an integral equation method. They showed 
that when the level of autocorrelation is low or moderate, 
the EWMA chart for residuals and the EWMA chart for 
original observations require about the same amount of 
time to detect various shifts; but for high levels of 
autocorrelation and large shifts, the EWMA chart of the 
residuals is faster a little. In all the efforts, an easy 
solution to control charting is missing. Control charts are 
effective tools for improving process quality and 
productivity and simplicity is always demanded by the 
users.  

In this article, we introduce a Modified EWMA (Modified  
EWMA) chart that combines the features of a Shewhart 
chart and an EWMA chart in a simple way and has the 
ability to detect small, as well as large shift as soon as 
possible as required by some industrial processes with 
high level of first order autocorrelation. Modified EWMA 
control statistic gives weight to the past observations in 
slightly different way than EWMA and each current 
change is considered with full weight. This corrects 
EWMA statistic for suffering from inertia problem. The 
underlying idea is to adapt the weight of the past 
observations, past changes, the current observation and 
the current change. Unlike AEWMA control chart which 
corrects EWMA statistic by considering the difference 
between process value and control statistic value as the 
“error“=Yn-Xn-1 to detect shifts of different sizes, Modified 
EWMA  control  chart  does  it by  measuring  the “current  
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fluctuation” contained in EWMA control statistics, as Yn - 
Yn-1, the difference between two consecutive process 
values to detect abrupt changes. This is a new approach 
and does not require consideration of score function 
(error function) and separate detection limits; hence it is 
simpler to operate in comparison to AEWMA chart. We 
feel that just like EWMA, AEWMA should be applicable to 
autocorrelated processes, whenever EWMA is apt. The 
Modified EWMA control statistic is defined as: 
  
Xn = (1-�)Xn-1 + �Yn + (Yn - Yn-1), 0< � � 1. 
 
Note that Xn is the geometric sum of past observations, 
past changes, current observation and the current 
change in the process. This make Modified EWMA 
scheme perform like an EWMA scheme for small shifts 
and at the same time detect abrupt changes alike 
Shewhart scheme.  
 
 
EXPONENTIAL WEIGHT BASED QUALITY CONTROL 
CHARTS  
 
Let Yn, n =1, 2,… be a sequence of first order 
autocorrelated or independent normal observations with 
the process target mean as �0 and a common variance 
�

2, such as single measurements of the process.  
 
 
EWMA control chart 
 
An EWMA control chart is based on the statistic: 
 
Xn = (1-�)Xn-1+ �Yn ,                                                             (1) 

                   
where � is a suitable constant, such that 0< � � 1, Xn is nth 
statistic and Yn is nth observation . The quantity X0 
represents the starting value, often the target value �0.  
 
This schemes signals when Xn value exceeds specified 
control limit. In general upper and lower control limits of 
EWMA Chart are: 
 
UCL = �0 +L � 

)2( λ
λ
−

 

CL = �0 

LCL= �0 -L � 
)2( λ

λ
−

.                                               (2)                                   

 
L is suitable in control width limit, and � is the process 
standard deviation. The detailed discussion on EWMA 
control schemes can be found in Montgomery (1996).  
 
 
Adaptive EWMA control chart 
 

EWMA control chart cannot detect abrupt change/s, and 
thus  fail   in   worst-case    situation.  To   overcome   this  
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problem, Capizzi and Masarotto (2003) designed 
Adaptive EWMA (AEWMA) control charts. Their class of 
control charts considers the following statistic: 
 
Xn= Xn-1 + �(en), X0= �0                                                              (3)               

   
Where en = Yn- Xn-1 and �(en) is a “score” function. An 
alarm is raised when | Xn-µ0| > h, where �0 denotes the 
target value of the process mean and h is a suitable 
threshold. The h value is mainly determined by ensuring 
that the desired mean time between false alarms is large. 
They have designed AEWMA schemes for three score 
functions, each based on exponential weight parameter � 
and specified values of one or two constants. The 
AEWMA scheme is effective in detecting shifts of 
different sizes, but the monitoring scheme is not simple. 
 
 
Modified EWMA (Modified EWMA) control chart 
 
The desirable properties of a control chart are that it is 
easy to implement and is effective for detecting shifts of 
all sizes as per technical specifications. The Modified 
EWMA chart that we introduce considers past 
observations similar to EWMA scheme and additionally 
considers past changes, as well as latest change in the 
process. A Modified EWMA control chart is based on the 
statistic: 
 
Xn = (1-�)Xn-1 + �Yn + (Yn - Yn-1),                                    (4) 
    
where, n = 0,1,… 0< � � 1 is a constant and the starting 
value is, X0 = µ0 = Y0.  
 
The mean and variance of control statistic Xn are 

respectively, the process mean � and �
�

�

)2( λ
λ
−

+ 

)2(
)1(2

λ
λλ

−
−

�
�

�
 �2 for autocorrelated process (Appendix 

1), based on 1→ρ , the first order autocorrelation 
coefficient, and correlation structure of the process 
observations and process fluctuations.   
 
Therefore, the upper and lower control limits of Modified 
EWMA chart are: 
 
UCL = �0 +L � 

λ
λλ

λ
λ

−
−+

− 2
)1(2

2
   

     
 CL = �0      

   

LCL = �0 -L � 
λ
λλ

λ
λ

−
−+

− 2
)1(2

2
                                  (5)    

     
Where �0 is the target mean, �2 is the process variance, � 

    
 
 
 
and L are suitable Modified  EWMA scheme constants 
representing exponential weight and in control width limit. 
This chart reduces to Shewhart chart for highly 
autocorrelated process for �=1, L=3. Modified EWMA 
chart is capable for capturing signals of small shift in the 
process, as well as abrupt changes in an autocorrelated 
process. The process is in control, as long as the values 
are plotted within the control limits. A point plots outside 
the control limits is interpreted as evidence that the 
process is out of control, and action are required to find 
and eliminate the assignable causes responsible for this 
behavior.  
 
We know that EWMA chart suffer from inertia problem 
because of ‘error’ in EWMA statistic. Modified EWMA 
statistic is a corrected EWMA statistic and EWMA is the 
best predictor in the class of linear predictors (Yashchin, 
1993). Hence Modified EWMA is the best predictor of 
process mean; its mean square error (MSE) is nil for 
autocorrelated process with nearly one autocorrelation 
(Appendix 1). It forecasts the process mean state 
accurately. This makes Modified EWMA chart free from 
inertia problem. Now we apply Modified EWMA control 
scheme monitoring along with EWMA scheme on 
temperature data and capsule weight data from an 
analytical process.  
 
 
Application 1: Modified EWMA chart for highly 
autocorrelated normal process 
 
Table 1 displays the part of measurements on 
temperature column taken every minute from a chemical 
process that is working in control and out of control 
situations, abrupt changes and small shifts occur. The 
target mean is 110.468°C, and the process standard 
deviation is � = 1.131°C (�2 =1.279) (Table 1).  

Here, EWMA (�=0.1, L=2.814, UCL= 111.198, 
LCL=109.738, CL=110.468) control scheme could not 
detect two abrupt changes at 21st and 28th observations, 
and the small shifts were detected from 71st observation. 
Modified EWMA (�=0.1, L=1.683, UCL = 111.199, 
LCL=109.737) detects those two abrupt changes and 
desired small shifts early, timely in 61st run. In Modified 
EWMA statistic, the smaller the value of �, the larger is 
the effect of past history of the process. Therefore, if we 
select �=0.1, then L=1.683 is automatically fixed through 
ARL. 
 
 
Application 2: Modified EWMA chart for independent 
normal process 
 
The data in Table 2 are part of the measurements (in 
grams) taken every 30 s from a manufacturing process 
that  is  working  in  control and an out of control situation,  
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Table 1. Monitoring performance of EWMA and modified EWMA for the chemical process temperature data. 
 

EWMA Modified  EWMA 
� = 0.1 No. n 

Yn 
AR(1)�1 

L = 2.814 L = 1.683 
0  110.468 110.468 
1 110.004 110.422 109.958 
… … … … 
20 110.379 110.282 110.390 
21 108.750 110.123 108.597* 
22 110.419 110.129 110.448 
… … … … 
27 110.518 110.291 110.543 
28 107.800 110.042 107.551* 
29 110.596 110.097 110.651 
… … … … 
60 111.169 110.969 111.191 
61 111.189 110.991 111.211* 

62 111.208 11.013 111.230* 

… … … … 
70 111.366 111.181 111.387* 

71 111.386 111.201* 111.407* 

… … … … 
780 113.610 113.628* 113.608* 

 

*Shift. 
 
 
 

Table 2. Monitoring performance of EWMA and Modified EWMA for the pharmaceutical process capsule weight data. 
 

EWMA Modified EWMA 
� = 0.04 No. n Yn 

L = 2.477 L = 1.423 
0 5 5 5 
1 5.22 5.009 5.229* 
2 4.95 5.007 4.948 
3 5.2 5.014 5.208* 
4 5.41 5.030 5.426* 
5 5.2 5.037 5.207* 
6 5.02 5.036 5.019 
7 5.11 5.039 5.113* 
8 5.26 5.048 5.269* 
9 5.27 5.057 5.279* 

10 3.83 5.009 3.780* 
 

*Shift. 
 
 
 
abrupt change occurs. The target mean is 5 g, and the 
process standard deviation is � = 0.3 g. Data were 
adapted from Capazzi and Masarotto (2003). 

Here, EWMA (�=0.04, L=2.477, UCL= 5.106, 
LCL=4.894, CL=5) control scheme could not detect any 
changes   in   observations.   Modified   EWMA  (� = 0.04, 

L=1.423, UCL = 5.104, LCL=4.896) detects upper shifts 
at 1st , 3rd to 5th , 7th to 9th, and lower shift at 10th 
observations.  

From Figure 1, we can see that EWMA chart could not 
detect any Shift. On the other hand Modified EWMA chart 
detects all type of shifts as shown in Figure 2. 
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Figure 1. Plot of EWMA control chart. 
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Figure 2. Plot of modified EWMA control chart. 

 
 
 
PROPERTIES OF MODIFIED EWMA SCHEME AND 
COMPARISONS WITH EWMA SCHEME 
 
ARL properties  
 
All the ARL computations were carried out using Markov-
chain approach described in Appendix 2. ARL properties 
of   Modified   EWMA  scheme  have   been   derived   for 

different choices of {�, L} and in control ARL to be 500 for 
detection of small shift only, because the abrupt changes 
are detected as they occur.  

The Modified EWMA scheme introduced in this article 
is a modification of EWMA scheme for detecting small 
shifts along with abrupt shifts. Here, we have compared 
the ARL values for Modified EWMA scheme with ARL 
values of EWMA scheme over a wide range of parameter  
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Table 3. Average run lengths of modified EWMA schemes. 
 

 Modified  EWMA ARL0 = 500 
L 2.5 2.155 2.048 1.948 1.9 1.843 1.683 1.423 
� 0.75 0.5 0.4 0.3 0.25 0.2 0.1 0.043 

       Abrupt 
Shift 

> 2 � > 2 � > 2 � >2 � >1 � >1 � >0.5� >0.5� 

0.0 501 505 502 497 500 500 498 500 
0.25 293 232 209 183 170 150 104 73.4 
0.50 131 83.1 67.7 53.7 47.7 41.2 30.3 27.3 
0.75 58.3 33.3 26.73 21.3 19.24 17.3 14.9 16.6 
1.0 28.4 15.87 13.01 10.9 10.2 9.6 9.35 11.6 

1.50 8.99 5.52 4.87 4.53 4.49 4.53 5.09 7.08 
2.0 3.96 2.8 2.61 2.58 2.64 2.76 3.37 4.99 

2.50 2.29 1.84 1.75 1.75 1.8 1.91 2.45 3.8 
3.0 1.65 1.47 1.42 1.39 1.4 1.44 1.87 3.03 

3.50 1.36 1.34 1.32 1.27 1.24 1.23 1.47 2.33 
4.0 1.21 1.28 1.29 1.23 1.23 1.17 1.2 1.98 
5.0 1.04 1.07 1.08 1.1 1.13 1.06 1.07 1.15 

 
 
 

Table 4. Average run lengths of EWMA scheme (Lucas and Saccucci, 1990). 
 

EWMA ARL0 = 500 
Shift 0 0.25 0.50 0.75 1 1.50 2 2.5 3 3.5 4 5 
� = 0.75, L = 3.087 500 321 140 62.4 30.5 9.86 4.52 2.67 1.87 1.46 1.23 1.04 
� = 0.5, L = 3.071 499 254 88.4 35.7 17.3 6.44 3.58 2.47 1.91 1.58 1.36 1.10 
� = 0.1, L = 2.814 492 104 30.6 15.5 10.1 5.99 4.31 3.41 2.85 2.47 2.20 1.83 
� = 0.04, L = 2.477 487 78.4 28.0 16 11.2 7.03 5.18 4.14 3.48 3.02 2.68 2.22 

 
 
 
values. In Table 3, the ARL values of Modified EWMA for 
all choices of � are smaller than those for EWMA 
scheme. ARL values for EWMA schemes as per Markov 
Chain approach are shown in Table 4 for the sake of 
easy comparisons.  

Thus, detection of small, as well as large shifts by a 
single Modified EWMA chart is possible with proper 
choice of � and knowledge of AR(1) parameter and/or 
correlation structure of the process observations and the 
process fluctuations. It should be clear that, the process 
fluctuation variance would be smaller for process being 
controlled for small shifts and few large abrupt changes.  
 
 
Inertia (Signal resistance) properties 
 
Woodall and Mahmoud (2005) proposed a measure of 
inertia, the signal resistance, to be the largest standard 
deviation from target not leading to an immediate out-of-
control signal. They define a simple measure of inertia 
that they called "signal resistance". In physics, "inertia" 
refers to the state of resistance an object has to a change 
in its state of motion. Similarly, in statistical process 
control, "inertia" can refer to a measure of  the  resistance 

of a chart to signaling a particular process shift. For the 
EWMA chart, the signal resistance is: 
  
SR(EWMA) = [ h – (1-�) w ] / �                               (6)    
 
Where w is the value of the EWMA statistic, h = L � 

)2( λ
λ
−

. The asymptotic control limits for the EWMA 

chart are ±h. The signal resistance for an EWMA control 
chart in conjunction with Shewhart control limits is: 
 
SR (EWMA + Shewhart) = 

�
�
	

≤≤−−−−

−−<≤−

hwLhifwh

LhwhifL

)1(/)(/])1([

)1(/)(

λλλλ
λλ

    (7) 

 
Where L is the value of the multiplier used to obtain the 
Shewhart limit and w is the value of the EWMA statistic.  
 
Obviously, in this case, the signal resistance cannot 
exceed the value of the multiplier used to obtain the 
Shewhart limit, that is, L. The signal resistance for 
Modified EWMA control chart is: 
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SR(Modified EWMA) = 11111 /])1([ hwhifwh ≤≤−−− λλ   
                                                                               (8)      
 
Where w1 is the value of the Modified EWMA statistic, 
 

 h1 = L � 
λ
λλ

λ
λ

−
−+

− 2
)1(2

2
 is the Modified EWMA decision 

limit.  
 
 
Conclusion  
 
A simple control chart for monitoring small, as well as 
large shifts in highly autocorrelated or independent 
normally distributed observations, such as analytical 
processes are given. In addition, the Modified EWMA 
chart can also be used to forecast the observation in the 
next period, which can help analysts take preventive 
actions before process departures to the out-of-control 
state. 
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APPENDIX 
 
Appendix 1: Mean and variance of modified EWMA 
control statistic 
  
Let {Yn, n� 1} are first order auto correlated ( 1→ρ ) 
process observations following normal distribution with 
mean � and variance �2. For mean and variance, 
consider expanding Modified EWMA statistic: 
 
Xn = �Yn + (1-�) Xn-1 + (Yn - Yn-1) 
   = �Yn + (1-�) [�Yn-1 + (1-�) Xn-2+ (Yn-1 - Yn-2)] + (Yn - Yn-1) 
  = �Yn + �(1-�)Yn-1 + (1-�)2 Xn-2 + (1-�) (Yn-1 - Yn-2) + (Yn - 
Yn1) 
   = �Yn + �(1-�)Yn-1 + (1-�)2 [�Yn-2 + (1-�) Xn-3+ (Yn-2 - Yn-

3)] + (1-�) (Yn-1 - Yn-2) + (Yn - Yn-1)  
= �Yn + �(1-�)Yn-1 + � (1-�)2 Yn-2 + (1-�)3 Xn-3 + (1-�)2 (Yn-2 
- Yn-3) + (1-�)1 (Yn-1 - Yn-2) + (1-�)0 (Yn - Yn-1)     
 
And continuing like this recursively for Xn-j, j = 2, 3, . . . ,n, 
we obtain: 
  

Xn = �

−

=

1

0

n

j
(1-�)j Yn-j + (1-�)n X0+


−

=

1

0

n

j
(1-�)j(Yn-j-Yn-j-1).                       

  

Here, 

−

=

1

0

n

j
(1-�)j(Yn-j-Yn-j-1) accounts for sum of the past 

and latest change/fluctuations in the process; the 
unaccounted current fluctuations accumulated to time n 
in EWMA statistic: 
  

Let Xn = �

−

=

1

0

n

j
(1-�)j Yn-j + (1-�)n Y0+


−

=

1

0

n

j
(1-�)j(Yn-j-Yn-j-1) 

 
Taking expectation on both side: 
 

E(Xn) = �

−

=

1

0

n

j
(1-�)j E(Yn-j )+ (1-�)n E(Y0 )+


−

=

1

0

n

j
(1-�)j E(Yn-j-

Yn-j-1) 
 

But ])1(1[
)]1(1[

])1(1[
)1(

0

n
n

j

n
j λ

λ
λλλλ −−=

−−
−−=−


=

 

 

∴ E(Xn) = 0)1(])1(1[ +−+−− µλµλ nn             (i) 
        = �       
 
The starting value of process is, X0 = µ0 = Y0 and 0< � � 1 
is a constant. The mean is: 
 
E(Xn) = E((1-�)Xn-1 + �Yn + (Yn - Yn-1)) = µ0. 
 
The variance of  Modified  EWMA  control  statistic  Xn  is: 
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Since Yn’s are autocorrelated normal with variance �2, 
the variance of (Yn-Yn-1) (n�1) is: 
  

2222
1 )1(222 σρρσσσ −=−=  (small when �� 1).  

 
The weights �(1-�)2j decrease geometrically with the age 
of sample mean. Suppose Yn’s are correlated to the 
forward fluctuation (Yn-Yn-1) (n�1) with common 
correlation �1 and correlated to the backward fluctuation 
(Yn+1-Yn), (n�0) with common correlation �2, and forward 
fluctuation (Yn-Yn-1) are correlated to the backward 
fluctuation (Yn+1-Yn), (n�1) with common correlation �3, 
then asymptotic variance for large n is given as: 
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In normal autocorrelated process (a) with 3ρ nearly 

negative half and 1ρ  , 2ρ nearly equal and opposite in 
sign and being monitored for small shifts, (b) with 
autocorrelation ρ nearly one, the aforementioned 

expression (ii), reduces to: 
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and small λ , sometimes  even  negligibly small such that  
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Modified EWMA limits equal EWMA limits. 
 
Therefore: 
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The upper-lower control limits for Modified  EWMA chart 
are: 
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Appendix 2: Cyclical steady state average run 
lengths of modified EWMA scheme using Markov-
chain approach  
 
The use of Markov chains to approximate ARL of 
CUSUM schemes was discussed by Brook and Evans 
(1972). Crosier (1986) modified their Markov chain 
approach to compute conditional and cyclical steady 
state ARLs for CUSUM scheme. Further, Lucas and 
Saccucci (1990) customized their approach for ARL 
properties of EWMA scheme. They evaluated the 
properties of the continuous state Markov chain by 
discretizing the infinite state transition probability matrix. 
This procedure involves dividing the interval between the 
upper and lower control limits into t = 2m+1 subintervals 
of width 2	. The control statistic, Xn, is said to be in 
transient state i at time n, if Si- 	 < Xn � Si + 	 for i = -m,-
m+1, . . . , m, where Si represent the midpoint of the ith 
interval. For example, when the LCL = -0.6455759 to 
UCL = 0.6455759 distance is divided into 5 sub-intervals 
each of width 2	 (	=0.1291), -0.6455759, -0.3873455 ,-
0.1291152, 0.1291152 , 0.3873455 , 0.6455759; the Si ‘s 
are -0.5165 ,-0.2582 , 0.0000, 0.2582, 0.5165. 
 
The transition probability matrix (t.p.m.), represented in 
partitioned matrix form, is given by: 
 

 P= ��
�

−
��
�

�

1
���

�

� )(
T

,  

 
where the sub matrix R contains the probabilities of going 
from one transient state to another, �  is the identity 
matrix, and 1 is a column vector of ones. Hence Pij 
represents the probability that the control statistic goes 
from state (i) to state (j) in one step. We have derived 
algorithm for calculating cyclical steady state ARL of 
Modified EWMA scheme using the Markov chain 
approach following Crosier (1986) and Lucas and 
Saccuscci  (1990).  The  transition  probabilities  in  R are  

 
 
 
 
approximated by assuming that the control statistic is 
equal to Si whenever it is in state (i), i = -m, -m+1, … , m. 
 
Let Yn, n = 1, 2 … denote the sequence of process 
observations, which are first order autocorrelated normal 
with mean � and variance �2. Then the transient change 
occurring in state of Modified EWMA control statistic is 
Xn-(1-�) Xn-1, which is equivalent to �Yn + (Yn-Yn-1). The 
transition in Modified  EWMA control chart statistic has 
the following mean and variance: 
 
E(Sn|Sn-1) = E [�Yn + (Yn-Yn-1)] = � µ, and 
V(Sn|Sn-1) = V[� Yn + (Yn-Yn-1)] 

= �2V(Yn) + V(Yn-Yn-1) + 2cov{ Yn, (Yn-Yn-1)} 

= �2
�

2 + 2(1- ρ ) �2 + 2 ) -2(1 ρ 1ρ  �2 
= �2 �2 

 
where variance, is a small value for nearly 1 values ρ .  
 
Then the in control transition probabilities are 
approximated as: 
 
P i j = Pr(going to Sj | in Si ) 
   
 Pr [( λ �)-1{(Sj-	)-(1- �)Si} < Yn � ( λ �)-1{(Sj+	)-(1- 
�)Si}], 
 
 i, j = -m, -m+1, …, m. 
 
(m =12 imply t = 25), where � represents the standard 
normal distribution function.  
 
 
Appendix 3: Algorithm and R program for ARL 
computation of modified EWMA 
 
Step-1: Choose the parameter constant �, target mean �, 
standard deviation �, Limit L. 
 
Step -2: Compute UCL=�0 +L � 
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Step-3: Choose number of sub-intervals (states), t = 2 m 
+ 1. 
Step-4: Compute width w = (UCL - LCL)/t, shift 	 = w/2. 
Step-5: Compute the values of Si i = -m, -m+1, …, m for 
each sub-interval. 
Step-6: Compute the transition probability matrix (t. p. 
m.). Compute R, 
 R = �[( λ �)-1 { (Sj + 	 ) – ( 1- �) Si – �µ }] - �[( λ �)-1 { (Sj 
- 	 ) – ( 1- �) Si – �µ }] 
Step-7: Adjust the t. p.m. such that row sums are unity.  
Step-8: Compute u = [I - R]-1 1 
Step-9: Compute q = R’* I 
Step-10: ARL = q’ * u, OR ARL = q'[I - R]-1 1 


