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Epididymal and testicular spermatozoa of azoospermic patients are frequently used for 
intracytoplasmic sperm injection (ICSI), so they must be screened for genetic abnormalities. The 
objective of our study was to investigate whole genome imbalances in immature germ cells found in 
ejaculates of six males with idiopathic azoospermia and normal karyotype. We used for the first time 
the most powerful tool for genetic screening - microarray-based technology of comparative genomic 
hybridization (array CGH) with microarrays, covering all autosomes and sex-chromosomes at a mean 
density of 1 BAC clone/0.5 Mb. Sub-microscopic copy number variations were found in sperm DNA of 
all analyzed patients. The most consistent were aberrations in Y-chromosome - they occurred in 5 out 
of 6 patients (83.3%). These Y micro-aberrations included both micro-deletions and micro-duplications. 
In addition to Y chromosomal micro-imbalances, we detected several other affected loci. These 
included 1�36 deletion together with 14q24 gain, 16q24 deletion, 9q34 gain and 3q29 deletion. By array 
CGH analysis we determined cryptic whole genome imbalances in sperm cells and defined the most 
precisely the size and the boundaries of aberrations.  
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INTRODUCTION 
 
In 30% of the cases of male infertility the causes remain 
unknown; the men subjected to a semen analysis face 
the diagnosis of azoospermia (Krausz and Forti, 2000). 
This generally refers to the inability of the sperm pro-
ducing part of the testicle (the seminiferous epithelium) to 
make adequate numbers of mature sperm. It may be an 
inability of the sperm to complete their development (a 
"maturation arrest"). The contributions of sperm to normal 
fertilization and embryogenesis are extensive. The 
transmission of a haploid chromosome complement is the 
most fundamental and essential contribution, since em-
bryonic aneuploidy is universally associated with  lethality  
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al., 2007). Since epididymal and testicular spermatozoa 
of azoospermic patients are frequently used for intra- or 
anomalies in the fetus (Boerke et al., 2007; Carrell et 
cytoplasmic sperm injection (ICSI), many studies have 
been carried out to evaluate their karyotype (Burrello et 
al., 2005). 

Sperm chromosome aneuploidy increases risk to off-
spring and affects infertility therapy outcomes (Gianaroli 
et al., 2005). Several studies reported the high rate of 
sperm aneuploidy in some recognizable clinical syn-
dromes, for which sperm chromosome aneuploidy testing 
may be advisable. It was observed that 1.5 - 7% sperm 
aneuploidy found in mosaic forms of Klinefelter’s Syn-
drome (Kruse et al., 1998 ; Lim et al., 1999); 2 - 25% in 
nonmosaic Klinefelter’s Syndrome (Rives et al., 2000; 
Estop et al., 1998); 7 - 36% in the cases with Robert-
sonian translocation (Ogur et al., 2006; Fryndman et al., 
2001); 19 - 77% in the carriers of reciprocal  translocation 



 
 
 
 
(Martin and Spriggs, 1995); 15 - 100% in cases with 
severe sperm morphology defects - multiflagellar, macro-
cephalic, tail agenesis (Devillard et al., 2002; Carrell et 
al., 2004); 15 - 60% in Round Head Only Syn-drome 
(Carrell et al., 2001; Carrell et al., 1999); 1 - 51% in 
nonobstructive azoospermia (Burrello et al., 2005); 1 - 
34% in unexplained recurrent pregnancy loss (Bernardini 
et al., 2004 ; Carrell et al., 2003); and 2 - 7% in repeated 
in vitro fertilization (IVF) failure (Petit et al., 2005). 

The analysis of sperm chromosome aneuploidy by 
fluorescent in situ hybridization (FISH) technology has 
greatly improved our understanding of sperm pathologies 
(Carrell, 2008). However, the fluorescence microscopy 
analysis of 5,000 - 10,000 sperm, requiring repeating 
analyses for limited number of up to 10 chromosomes, 
makes the sperm aneuploidy analysis by FISH limited, 
expensive and time-consuming. 

Comparative genome hybridization (CGH) has been 
looked as a potential methodology to improve aneuploidy 
analysis of gametes due to the fact that it allows simulta-
neous evaluation of all chromosomes in one experiment, 
and has the resolution to look at the submicroscopic copy 
number variations (CNVs). CGH technology is being 
used now in clinical and research protocols, including 
single cell studies of oocytes and embryos (Fragouli et 
al., 2006; Sher et al., 2007).  

Modification of the technology to employ microarrays 
instead of metaphase chromosomes has facilitated the 
analysis of thousands discreet foci, greatly increasing the 
ability to identify small, submicroscopic imbalances and 
improving the accuracy of aneuploidy analysis (Carter, 
2007; Pinkel et al., 1998). Literature data have showed 
that more than half of the variability between human 
genomes is due to submicroscopic copy number varia-
tions of DNA, and that these CNVs are responsible for 
some complex diseases, even more than single nucleo-
tide polymorphisms (Freeman et al., 2006; McCarroll and 
Altshuler, 2007). There are currently more than 6,000 
known regions of CNV (Redon et al., 2006; Boerke et al., 
2007). 

Diagnosis of sperm chromosome aneuploidy may 
reduce risk to the offspring, and in some cases reduce 
the high financial and emotional expense of repeated IVF 
(in vitro fertilization) failure. The objective of our study 
was to investigate whole genome imbalances in 
immature germ cells found in ejaculates of six males with 
idiopathic azoospermia and normal karyotype.  

 
 

MATERIALS AND METHODS 
 

Patients 
 

This study included six patients with idiopathic azoospermia. They 
were selected on the basis of the presence of immature germ cells 
in ejaculates, investigated microscopically. Hormonal problems and 
varicocele were excluded as causes of sperm production failure. 
The study was approved by the local Ethics Committee of the Medi-
cal University of Sofia. All participants were asked for and  provided 

Ivanka et al.       043 
 
 
 
their informed consent.  
 
 
Cytogenetic analysis 

 
G-banded chromosomes were prepared from whole blood samples 
using standard laboratory protocols. All patients included in the 
study had a normal male karyotype. 

 
 

DNA extraction and evaluation 
 

DNA was extracted from sperm ejaculates of the patients by 
phenol-chloroform after twice washing in phosphate buffered saline 
(PBS) and centrifugation. Because of the very low DNA concen-
tration in the samples, DNAs were precipitated in sodium acetate 
and ethanol at -80°C for at least 2 h. DNA concentration was 
measured by Nanodrop, as well as the purity of DNA was esti-
mated. The ratio 260/280 for the last parameter was in the range of 
1.8 - 2.0 for each sample. As an additional quality control, DNA was 
checked on 1% agarose gel: DNA of high molecular weight (> 50 
kbp) indicated it suitable for use.  
 
 
Genomic arrays 
 
We have used genomic arrays CytoChip (BlueGnome, Cambridge, 
UK) consisting of Bacterial Artificial Chromosomes (BAC) clones, 
covering the entire genome at a median density of 1 clone/565 Kbp, 
a resolution optimised to detect pathogenic imbalances while mini-
mizing polymorphisms. In addition, it investigate sub-telomeres at a 
median 250 Kb resolution, reliably detect mosiacism and examine 
90 known genetic conditions at a median 100Kb resolution. This 
resulted in an average density of 1 clone/0.5 Mb.  
 
 
Array-CGH probe labeling, hybridization, image capture and 
data analysis 
 
Test DNA from patients (400 ng) and reference male DNA from do-
nor with successful reproduction (400 ng) was labeled by random-
priming, using BlueGnome Fluorescent Labelling System. The 
labeled products were purified by AutoSeqTM G50 columns, and 
incorporation of dyes was evaluated by Nanodrop as the incorpo-
ration in range 6 - 15 pmol/ µl and DNA yield in 180 - 325 ng/µl 
were considered suitable for further analysis. A mix of Cyanine-5 
(Cy5) and Cyanine-3 (Cy3) labeled probes and a mix of COT-1 and 
Herring sperm DNA were ethanol precipitated at -80°C for at least 30 
min. Hybridization processing was done dissolving precipitated probes 
in hybridization buffer. Arrays were washed in standard saline citrate 
(SSC) solutions with decreasing concentrations and scanned by a 
GenPix 4100A. The images were analyzed by BlueFuse for Microarrays 
3.5 software (BlueGnome, Cambridge, UK). In data processing, base 2 
logarithm (log2) ratios of Cy3 and Cy5 intensities are generated for all 
hybridized clones. Normal copy numbers are considered in ratio 
between -0.3 and +0.3, values above +0.3 were evaluated as 
gain/amplification (duplications) and these ones under -0.3 - as losses 
(deletions). Genomic profiles were represented with logarithmic ratios in 
Y-axis and along the 23 chromosomes in X-axis. Individual 
chromosomal profiles are represented with clone positions in Y axis and 
logarithmic ratios in X axis. 
 
 
RESULTS 
 
We analyzed genomic imbalances affecting whole 
genome in sperm samples from  6  males  with  idiopathic 
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Table 1. The genomic imbalances, detected in sperms of patients with idiopathic 
azoospermia. 
 

Patient Aberration Cytoband Start (Mbp) End (Mbp) 
Patient 1 deletion 1�36 11,042,681 28,767,513 
 gain 14q24 70,391,490 75,743,300 
  gain Yq11.22 19,853,207 20,143,847 
Patient 2 deletion Yq11.2 10,169,888 26,711,820 
Patient 3 deletion 3q29 194,509,639 198,899,968 
Patient 4 deletion 16q24 86,493,284 88,559,026 
  deletion Yq11.222 19,212,392 19,716,451 
Patient 5 gain 9q34 135,583,152 139,125,153 
  gain Yq11.22 18,563,749 20,143,847 
Patient 6 deletion 3q29 196,951,712 198,899,968 
  gain Yp11.2 9,246,143 9,957,613 

 
 
 
azoospermia by array-CGH with CytoChip, covering all 
autosomes and sex-chromosomes at a mean density of 1 
BAC clone/0.5 Mega base pair (Mbp). More than 85% of 
genomic clones were successfully hybridized in each 
case. Standard deviation in log2 ratios of Cy3 and Cy5 
intensities (test -T and normal - N DNA, respectively) 
ranged between 0.05 and 0,115, depending on the 
quality of DNA.  

We used two approaches to identify BACs that showed 
significant loss or gain in the analyzed samples: a) obser-
vation of loss (log 2 T:N ratio < -0.3) and gain (log 2 T:N 
ratio > +0.3) after correction with standard deviation; and 
b) detection of at least one additional adjacent clone with 
the same aberration in the same probe. Doing this, we 
eliminated the clones, which were changed due to the 
procedure errors. The single aberrant clones were 
excluded from analysis. 

We detected copy number variations (microdeletions 
and microduplications) in spermal cells of all analyzed 
patients, as the number of alterations ranged between 1 
and 3 per sample (Table 1). There were between 2 and 
16 affected clones in the aberrations, reflecting on the 
size of altered regions between 0.5 and 17 Mbp. 

The most consistent were aberrations in Y-chromo-
some. They occurred in 5 out of 6 patients (83.3%). 
These Y microaberrations included both microdeletions 
and microduplications (Figure 1 and 2). Y microdeletions 
were found in 2 patients, and Y microduplications – in 3 
patients. The size of Y microdeletion in the first patient 
expanded region 10,169,888 – 26,711,820 Mbp (16 Mbp 
deletion in Yq11.2) and involved many of the loci of Y-
linked non-obstructive spermatogenic failure, whereas in 
the second patient the micro-deletion included 3 clones in 
19,212,392 - 19,716,451 Mbp interval on Yq11.222 
(Figure 3 and 4). The last deletion of 0.5 Mbp completely 
covered a known locus of Y-linked non-obstructive sper-
matogenic failure. Microduplications on Y-chromosome in  
one patient involved 19,853,207 - 20,143,847 Mbp 
interval  (Yq11.22),  in  the  second  patient  18,563,749 – 

20,143,847 Mbp (Yq11.22), and in the third patient - 
9,246,143 - 9,957,613 Mbp (Yp11.2). The last duplication 
is considered as complex variation (polymorphism), 
occurring in 16 - 17% of general population. 

In addition to Y chromosomal microimbalances, we 
detected several other affected loci (Table 1). These 
included: 

 
- 1�36 deletion (17.7 Mbp) together with 14q24 gain (5 
Mbp),  
- 16q24 deletion (2 Mbp),  
- 9q34 gain (3.5 Mbp),  
- 3q29 deletion (4 Mbp in one patient and 2 Mbp in 
another one). The last deletion of 3q29, which has been 
observed in two patients, comprised several common 
clones and is considered to be polymorphism with 
frequeency of 64% in the general population according to 
the BlueGnome database.  
 
 
DISCUSSION 
 
Here we report for the first time the results from whole 
genome array CGH analysis of spermatozoa in infertile 
men with idiopathic azoospermia. 

The most powerful tool for genetic screening is the 
microarray-based technology of comparative genomic 
hybridization (array CGH). The capability of array CGH to 
detect simultaneously DNA copy number changes at 
multiple loci over the whole genome and to provide high-
resolution mapping of variation in copy number has been 
used in our study. Sub-microscopic copy number varia-
tions were found in spermatozoa DNA of all analyzed 
patients. They included the regions from p and q arm of 
chromosome Y and sub-telomeric regions of 
chromosomes 1, 3, 9 and 14. 

Other sperm karyotyping studies have demonstrated 
that human spermatozoa contain higher baseline numeri-
cal and structural chromosome aberrations  compared  to  
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Figure 1. Genomic profile across all chromosomes in patient 2, showing large Yq11.2 deletion. Y-axis - log2 ratios of test to normal DNA; X-axis – the 
clones along the autosomes 1-22 and X-chromosome. 
 
 
 

 
 
Figure 2. Genomic profile across all chromosomes in patient 6, showing Yp11.2 duplication and 3q29 deletion. Y-axis - log2 ratios of test to normal DNA; X-
axis – the clones along the autosomes 1 - 22 and X-chromosome. 
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Figure 3. Genomic profile of patient 2 for chromosome Y, showing large Yq11.2 deletion. Y-axis - the clones along the chromosome Y; X-axis – log2 
ratios of test to normal DNA. 

 
 
 

 
 
Figure 4. Genomic profile of patient 4 for chromosome Y, showing small Yq11.222 deletion. Y-axis - the clones along the chromosome Y; X-axis – log2 
ratios of test to normal DNA. 



 
 
 
 
somatic cells, as well as a higher incidence of chromo-
some aberrations after in vitro and in vivo exposure to 
different mutagens (Genescà et al., 1990; Kamiguchi and 
Tateno, 2002). They used an inter-specific in vitro 
fertilization system between human sperm and golden 
hamster oocytes in order to study sperm-derived 
chromosomes. 

Recently, the method of fluorescent in situ hybridization 
(FISH) has been used in infertile men for analysis of the 
rates of sperm aneuploidy using incomplete set of human 
chromosomes. The data suggest the presence of a corre-
lation between poor semen parameters and aneuploidy of 
chromosomes 13, 18, 21, X and Y in spermatozoa, as the 
risk of a chromosomal aneuploidy in spermatozoa seems 
to be inversely correlated to sperm concentration and 
total progressive motility (Vegetti et al., 2000; Nagvenkar 
et al., 2005). Disomy rates for chromo-somes 1, 4, 8, 12, 
18, X and Y were ascertained for spermatozoa of infertile 
patients by means of triple and double FISH experiments 
(Bernardini et al., 2005). Statistical significance for higher 
sperm disomy rates was noted for all chromosomes in 
patients with poor semen quality compared with normal, 
especially for disomy 1. 

Our results from array CGH testing for sperm 
aneuploidy indicated between 1 and 3 copy number 
aberrations per sample in azoospermic men. The most 
frequent aberrations detected in our study were these 
ones of Y-chromosome. The progress in molecular 
biology of the Y chromosome in the past years and the 
intense effort of many laboratories connected to andro-
logy have definitively clarified that Yq microdeletions 
represent the most frequent genetic cause of severe 
spermatogenic impairment (Ferlin et al., 2006; Foresta et 
al., 2005). However, most studies examined Y-micro-
deletions by polymerase chain reaction, analyzing only 
azoospermia factor regions (AZF), which are responsible 
for spermatogenesis. The frequency of different types of 
Y-microdeletions as constitutional aberrations varied 
between 10 and 58% of patients with severe oligozoo-
spermia and azoospermia in different studies 
(Viswambharan et al., 2007; Kent-First et al., 1999). This 
type of analysis could not determine exactly the size and 
the boundaries of deletion on Y-chromosome. By array 
CGH we defined most precisely these parameters. We 
detected Y-microdeletions in sperm of 2 of our 6 patients. 
The size was 0.5 Mb in one patient and 16 Mb in another, 
as the larger deletion corresponded to the poorer quality 
of semen (very low volume of 0.6ml in the last patient). 
We detected also Y-microduplications, evolving p and q 
arm of Y-chromosome, in three of the patients. The size 
was 0.3 and 1.5 Mb for Yq and 0.5 Mb for Yp. The last 
aberration is considered as polymorphism according to 
data base of BlueFuse software (BlueGnome, Cam-bridge, 
UK). Yq microduplications have not been reported pre-
viously and could be associated with spermatogenic 
failure in the patients. 

In addition to Y chromosomal microimbalances, we 
detected several other affected loci. These included 1�36  

Ivanka et al.       047 
 
 
 
deletion together with 14q24 gain, 16q24 deletion, 9q34 
gain, and 3q29 deletion. Cryptic aberrations involving the 
subtelomeric regions of chromosomes are thought to be 
responsible for idiopathic mental retardation and multiple 
congenital anomalies, although the exact incidence of 
these aberrations is still unclear (Caliskan et al., 2005). 
These aberrations could be polymorphisms, like 3q29 
deletion, which was observed in two of our patients. Re-
arrangements of 1p36 resulting in deletion are observed 
in 1 in 5,000 live births (Shaffer and Lupski, 2000) and all 
subjects have mental retardation of varying degrees, 
delayed language skills, impairment of growth, facial 
dysmorphism and commonly heart failure. Small distal 
deletion of chromosome 16 was detected in a child with 
bilateral coloboma of iris, short stature, moderate deve-
lopmental delay, and a few minor craniofacial anomalies 
(Werner et al., 1997). Gain of 14q24 has not been 
reported in recognizable syndromes so far. 

In conclusion, array CGH analysis of spermatozoa of 
men with azoospermia could be used as a powerful 
method for high resolution detection of genomic imba-
lances across whole genome. The data from our analysis 
indicated that Y microimbalances are the most frequent 
aberrations, confirming the role of genes located on Y for 
normal spermatogenesis and sperm maturation. Addi-
tionally, sub-telomeric deletions, associated with known 
syndromes, as well as copy number polymorphisms was 
detected in our patients. The study should be extended to 
a larger cohort of patients with clinical follow up. 
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