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This study presents an application of the Ricardian approach to explore the impact of climate change 
on farmland values in Nepal. The Ricardian approach is estimated using a panel fixed effects model, 
and the outcome is compared against two separate models that account for spatial correlation: a spatial 
autoregressive (SAR) model; and a spatial error model (SEM). The findings suggest that Nepalese 
farmlands are sensitive to climate change, and this result was consistent in both the non-spatial and 
the spatial frameworks. The inclusion of the spatial effects, however, revealed the presence of positive 
spatial autocorrelation and produced conservative estimates of climate change impacts. The net effect 
of annual increases in average temperature was negative; while the net effect of higher annual average 
precipitation was a positive outcome on farmland values. In particular, we found that the marginal effect 
of every degree increase in average annual temperature was Rs.180 /hectare ($1.80) reduction in 
farmland values. Likewise, for rainfall, it was found that 1 mm increase in average annual rainfall would 
positively affect farmland value by Rs.225/hectare ($2.25). Finally, the study findings suggested that 
extreme weather events could also impact the agricultural productivity and the farmland values in 
Nepal.  
 
Key words: Climate change, ricardian approach, spatial panel data analysis, Nepalese agriculture, 
environmental valuation. 

 
 
INTRODUCTION 
 
Climate change is emerging as a significant threat facing 
the humanity in the 21st century. There is a consensus 
among researchers that variations in land and water 
regimes through changes in climate might pose a 
significant challenge to the natural and human systems 
(Intergovernmental Panel on Climate Change (IPCC), 
2007, 2014).  

Agriculture is one area that is highly sensitive to climate 
due to its reliance on weather patterns and climate cycles 

for productivity. Agriculture is also the principal use of 
land globally with approximately 1.2 to 1.5 billion hectares 
of lands under crops, while another 3.5 billion hectares 
are used for grazing (Howden et al., 2007).  

One country that is predominantly dependent on 
agriculture is Nepal. Nepal is a tiny developing country 
located in South Asia between India and China. The 
Nepalese agricultural sector contributes to more than 
one-third  to  the  gross  domestic   product   (GDP),   and  
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employs more than half of the total labor force (Acharya 
and Bhatta, 2013). This notable dependence on 
agriculture makes the Nepalese farming population highly 
vulnerable to the impacts of climate change.  

Past studies suggest that the average annual mean 
temperature in Nepal has increased at an annual rate of 
0.06°C between 1977 and 2000 (Malla, 2009). It has 
subsequently led to changes in the frequency of 
temperature extremes with more frequent warmer days 
and nights; and less frequent colder days and nights 
(Gum et al., 2009). Precipitation, on the other hand, has 
not displayed any definitive trends, but evidence indicates 
an increasing occurrence of intense rainfall events and 
rising flood days over the years (Gum et al., 2009).  Such 
instances of extreme weather events can result in 
desirable agricultural land being undesirable as crop 
yields are restricted. 

These changing climatic conditions have led to shifts in 
cropping patterns and the agricultural sector in Nepal is 
consequently being severely hurt. Regmi (2007) indicated 
that the eastern region of Nepal faced rain deficit in 
2005/06, and the crop production was reduced by 12.5% 
on a national basis. Likewise, while Nepal used to be rice 
exporter in the past, the fluctuating climate conditions has 
limited the rice yields, and as a result, Nepal has been a 
rice importer for the past few years.  

Nepal’s heavy dependence on rain-fed agriculture 
coupled with the potential distressing effect of climate 
change, and ultimately on the welfare of the population 
and the economy of the country itself, necessitates a 
thorough analysis on the economic impact of climate 
change on the agricultural sector. An exhaustive 
assessment of the economic impact would allow for new 
policy formulation on potential mitigation and adaptation 
strategies to combat the likely effects of climate change. 
In this paper, an application of the Ricardian approach is 
used to evaluate the economic impact of climate change 
on agricultural productivity in rural Nepal.  

The Ricardian approach is a model of climate-land 
value relationship, which was developed by Mendelsohn 
et al. (1994) to assess the impact of climate change on 
farmland values in the United States. The Ricardian 
Method is, in fact, named after the influential classical 
economist David Ricardo (1772 to 1823), who argued 
that in a perfectly competitive market, land values would 
reflect land profitability.  

In their paper, Mendelsohn et al. (1994) evaluated the 
efficacy of the traditional production function approach in 
estimating the impacts of climate change with a new 
method they developed, the ‘Ricardian Method’. The 
production function approach is based on crop simulation 
models where the climate change impacts are estimated 
by varying input variables, including the climate itself. 
Mendelsohn et al. (1994) suggested that the limitation of 
the production-function approach in failing to account for 
the numerous substitutions and adaptations that farmers 
make could lead  to  an  inherent  bias  that  results  in an  

 
 
 
 
overestimation of the damages from climate change.  

The fundamental idea of the Ricardian approach is that 
land values and agricultural practices are correlated with 
an environmental variable, climate. However, some 
assumptions underlie this framework. The Ricardian 
model assumes that farmers are rational utility 
maximizers, and relies on an existence of a competitive 
economy with perfectly functioning output and input 
markets. With these assumptions, the Ricardian 
framework asserts that if the optimal use of farmlands is 
agricultural production, then the observed market rent on 
a parcel of land should equal the annual net profits from 
the production of an agricultural commodity using that 
land (Mendelsohn et al., 1994). Thus, farmland values 
are the discounted value of current and future profit. 
Furthermore, we can observe the relationship between 
farm values to climate and other variables to infer the 
optimal use of land. Hence, depending on the positive 
and negative impact of climate variables, the long-run 
accumulation of net profit defines land value. 

Although the Ricardian method has since garnered 
widespread attention, there have been some notable 
criticisms as well because of the strong assumptions it 
makes (Cline, 1996; Darwin, 1999; Polsky, 2004; 
Deschenes and Greenstone, 2007). Darwin (1999) 
maintained irrigation to be an essential variable and 
omitting it would make the model of Mendelsohn et al. 
(1994) inconsistent with the Ricardian principle. Cline 
(1996) argued that the assumption of fixed relative prices 
in the Ricardian approach makes it a partial-equilibrium 
analysis. Besides, Cline (1996) also contended that the 
assumption of infinitely elastic supply of irrigation at 
current prices is misleading. Polsky (2004) argued that 
because Ricardian models are strongly aligned with 
perfect adaptations assumption, the negative impacts are 
biased to be small. Deschenes and Greenstone (2007) 
raised doubt on the validity of cross-sectional approaches 
to Ricardian study and proposed the use of a fixed-effect 
modeling to get more stable results from the Ricardian 
function.  

To incorporate the limitations in the ergodic assumption 
of spatially and temporally invariant climate sensitivities, 
Polsky (2004) modeled a modified regional scale 
Ricardian analysis by integrating spatial and temporal 
variations in climate. The author reasoned that ignoring 
spatial relationship (inter-farmer communications across 
county borders) to understand climate-land use 
relationship could not account for climatic effects in 
different locations or time. Following Polsky (2004) there 
have been few other studies that have explored the 
Ricardian approach by explicitly incorporating spatial 
correlation.  

Lippert et al. (2009) accounted for spatial auto-
correlation in their analysis of the Ricardian approach in 
German agriculture by using a spatial lag and a spatial 
error dependence model. Kumar (2011) studied the 
impact  of   climate   change   on   Indian   agriculture   by  



 
 
 
 

addressing the spatial features that could influence the 
climate sensitivity of agriculture. The paper argued that 
ignoring the spatial distribution could result in enlarged 
estimates of climate impacts in Ricardian studies. Their 
estimates of climate change impacts were more 
conservative after incorporating spatial correction models, 
and this finding was consistent in both the spatial lag and 
the spatial error model specification. Other researchers 
that have explicitly treated the spatial problem in the 
Ricardian study are Schlenker et al. (2005) and 
Chatzopoulos and Lippert (2016).  

A separate limitation of numerous Ricardian studies 
that estimate climate change – land value relationships 
has been with the use of cross-section data for analysis. 
Since climate coefficients change over time, analyzing 
farms’ long-term changes using cross-section data may 
not give reliable estimates. A panel-data approach can be 
far superior for estimation of any hedonic models, 
including Ricardian analysis if panel data are available 
and the time varying and unvarying coefficients are 
correctly specified (Massetti and Mendelsohn, 2011). A 
panel data approach also removes year effects and can 
produce more reliable estimates of the climate coefficients 
(DeSalvo et al., 2014). Several authors (Massetti and 
Mendelsohn, 2011; Deschenes and Greenestone, 2011; 
Massetti et al., 2013), etc. have employed panel data 
methods to study Ricardian analysis and the trend is 
rising.  

Finally, another issue in many Ricardian studies stems 
from the use of only historical averages for temperature 
and precipitation to assess the impact of climate change 
on agriculture. However, plant physiology literature 
argues that it is not only the average weather patterns but 
also the extreme weather events that could have a 
severe effect on crop yields and agriculture in general 
(Rosenzweig et al., 2001; Anyamba et al., 2014). 

Through this study, we seek to address the research 
gaps that have been identified in Ricardian analyses, in 
particular, the concerns mentioned earlier. First, 
considering the limitations of cross-sectional data 
approaches in other Ricardian studies, this paper uses 
panel data approach to enhance estimates reliability. 
Second, our analysis includes additional climate variables 
other than seasonal averages that could potentially 
capture the extremities in climate. Finally, we address the 
importance of accounting for spatial features and our 
estimation strategy thereby incorporates spatial methods 
in the Ricardian approach. Many Ricardian studies ignore 
the problem of spatial correlation, but when observations 
are correlated across space, standard approach such as 
the Ordinary Least Squares (OLS) method can lead to 
biased and inefficient parameter estimates (LeSage and 
Pace, 2009). The primary contribution of this paper that 
separate it from previous Ricardian applications is that we 

include extreme climate variables, while also explicitly 
accounting for spatial correlation in a panel data setting 
to study climate change impacts on agricultural productivity 

in rural Nepal. 
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MATERIALS AND METHODS 
 
The non-climatic data used in this paper comes from the Nepal 
Living Standard Survey 2003/04 (NLSS-II1) and 2010/2011 (NLSS-
III) of the Central Bureau of Statistics (CBS), Nepal. The NLSS 
survey follows the Living Standards Measurement Survey (LSMS) 
methodology that has been developed and promoted by the World 
Bank.  

The methodology applied in the NLSS has been used in more 
than 50 developing countries by the World Bank with the goal to 
foster increased use of household data as a basis for policymaking. 
The NLSS survey includes a broad range of topics related to 
household and community welfare, but the important socio-
economic variables necessary for this paper were obtained from the 
rural community questionnaire of NLSS. As such, this paper 
focuses on the rural farming communities in Nepal. The rural 
community questionnaire of the NLSS was developed to interview 
leaders and knowledgeable persons representing the community of 
the enumeration areas2 (CBS, 2004).  

In this study, the primary sampling units3 (PSUs) are used as the 
unit of analysis, and not the individual households. The geocoded 
coordinates were made available only for PSUs, but not for the 
households, which constrained us to use PSU level analysis to 
explore the spatial relationship in our study. The total sample of the 
NLSS-II consists of 4,008 households representing 334 PSUs, from 
which 100 PSUs were common in NLSS-III as well (CBS,2004). 
The total sample of the NLSS-III was estimated at 7200 households 
in 600 PSUs (CBS,2010). Among them, the NLSS-III sample is 
composed of all households visited by the NLSS-II in 100 of its 
PSU, as mentioned earlier. The final sample selected from NLSS-II 
and NLSS-III was 155 PSUs for this study4. Figure 1 plots the PSU 
locations used in this study.   

In addition to the community welfare data from NLSS, this study 
used the ground station climate data for daily temperature and 
precipitation from 1981 to 2010, obtained from the Department of 
Hydrology and Meteorology, Nepal. The selection of weather 
stations nearest to each PSU was made in ArcGIS using multiple 
buffer width of 10 and 25 km radii5. Figure 2 shows the graph of the 
weather stations in Nepal, and Figure 3 presents the graph of buffer 
analysis undertaken to extract the weather stations nearest to each 
PSU. Similarly, Table 1 lists the definition of variables used in this 
study. 

                                                 
1 We excluded Nepal Living Standard Survey 1996/1997 (NLSS-I) from this 

study due to the lack of common identifiers of NLSS-I with NLSS-II and 
2 The data obtained from NLSS in this study are the self-reported data by a 
knowledgeable person in a community (PSU). 
3 The PSU identifier for the rural NLSS survey are either individual wards or 

sub-wards, or group of contiguous wards in the same village development 
committee (VDC). Wards are the smallest denomination of administrative units 

in Nepal and are equivalent to zip codes in the United States. Likewise, VDC is 

the lower subdivision of a district and is similar to municipalities. Each VDC is 
further subdivided into several wards.  
4 The analysis of the spatial econometric model is more reliable using a 

balanced panel data, which restricted us to 155 PSUs to create a balanced data. 
Of the 155 PSUs, 100 PSUs were common in NLSS II and III, while we 

included another 55 PSUs to increase the sample size. In order to obtain the 

additional 55 PSUs, we selected only those PSUs that were adjacent to each 
other in NLSS II and III. So, if there was a particular PSU in NLSS-II and its 

neighboring PSU was used in NLSS-III, we considered the two neighbors as 

the same PSU. In this way, we came up with the 55 additional PSUs. It should 
be noted that we also ran our final analysis with only the 100 original PSUs, 

and the results did not substantially change from the findings presented in this 

paper (with 155 PSUs).  
5 In order to minimize the distance between PSU and weather stations, we 

extracted those weather stations that were within 10 km radius from a particular 

PSU of interest. However, if there were no weather stations within that radius, 
we extracted the stations that were within 25 km radius.  
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Figure 1. Plot of PSU points (Note: The map shows the location of PSUs used 
for the study. 

 
 
 

 
 

Figure 2. Plot of weather stations in Nepal (Note: The map shows the location of 
rainfall and temperature stations in Nepal). 

 
 
 
Dependent variable 
 
We used the self-reported average farmland value in each PSU as  
the measure of net productivity. These values have been converted 
to a per hectare land value in our analysis. While Ricardian papers 
often use net revenue or net profits as a proxy for  land  values,  we 

used the actual farmland value in each PSU, since it was already 
available in the survey. 

A criticism of using net revenue is that it is strongly influenced by 
the year of analysis (DeSalvo et al., 2014). Land values could be 
more accurate and an appropriate measure to analyze climate 
impacts since they reflect the expectations of  net  revenues  across  
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Figure 1. Plot of PSU points.
Note: The map shows the location of PSUs used for the study.
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Figure 2. Plot of weather stations in Nepal. 

Note: The map shows the location of rainfall and temperatuture stations in Nepal.



Kunwar and Bohara          149 
 
 
 

 
 

Figure 3. Buffer -10 and 25 km radius (Note: The map shows a buffer of 10 and 25 km 
radius from each PSU. This method was used to extract the temperature and rainfall 
stations to each PSU). 

 
 
 

many years (Mendelsohn et al., 2009).  
 
 
Explanatory variables 
 
Climate variables 
 
In order to construct the climatic variables, the daily temperature, 
and precipitation data for the time period 1981 to 2010 are used. 
Temperature and precipitation were classified into four seasons6: 
spring, summer, autumn and winter. We converted the daily 
average temperature and precipitation data into the four seasonal 
averages. In order to get the climatic data for 2002, the seasonal 
average from 1981 to 2002 was taken, and likewise, the seasonal 
average from 1989 to 2010 was used to capture the 2010 values. 
The 2002 and 2010 climate data, thus, capture the rolling average 
for the past 22 years. Using the constructed seasonal averages, the 
first set of climate variables used were the linear and quadratic 
measures of seasonal temperature and rainfall. The quadratic 
variables were introduced to capture the possible nonlinearities in 
the climate sensitivities. 

Along with the seasonal averages, we constructed variables to 
capture climatic deviations, and also climate extremes. The 
motivation for the inclusion of variables to capture climate 
extremities comes from the plant physiology literature that argue 
frequency and intensity of extreme weather events could also have 
a significant effect on crop yields and agriculture (Rosenzweig et 
al., 2001; Anyamba et al., 2014). To capture the climatic variation, 
we constructed the deviation of the seasonal temperature and 
precipitation for the year 2002 and 2010, from the rolling average of  
the past 29 years, for each of the four seasons7.  

                                                 
6 Spring season = March-May; Summer season = June-August; Autumn season 

= September-November; Winter season = December-February. 
7 For example, the standard deviation for summer temperature in the year 2002 
was constructed as follows: 

The other set of climatic variables were employed to capture the 
extremities in climate, namely, the warm spell duration index 
(WSDI) for temperature, and simple precipitation intensity index 
(SDII) for rainfall8. These indices are two of twenty-seven indices 
that have been recommended to assess extreme weather events 
by the World Meteorological Commission for Climatology/ World 
Climate Research Program (CCI/CLIVAR) expert team on climate 
change detection, monitoring and indices through the CLIMDEX 
project (www.climdex.org). WSDI represents the annual count of 
days in each year that is part of a warm spell. More specifically, it 
represents the annual count of days with at least six consecutive 
days in which the daily maximum temperature exceeds the 90th 
percentile of daily maximum temperature for a 5-day running 
window (Bronaugh, 2015). SDII, on the other hand, represents the 
sum of precipitation in wet days during the day divided by the 
number of wet days in the year (Bronaugh, 2015).  
 
 
Non-climatic variables9 
 
The set of control variables used in this paper are access to 
irrigation facilities, access to a market center, access to a road 
network, access to electricity; and the presence of farmers group, 
all within the context of the PSUs. Access to irrigation captures  

                                                                                       
 

                        

  √                       –                              
8 WSDI and SDII indices were derived using the “climdex.pcic” package 

available in R. 
9 While several Ricardian studies use soil type as another set of the control 
variable, it has been excluded in this paper due to the nature of the econometric 

model specification. This paper employed fixed effects model for both the non-

spatial and spatial-analyses and as a result, time invariant factors like soil type 
have been ruled out from the analyses since these estimates are washed away.  
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Table 1. Variable description.  
 

Variable Definition 

Land value Average market value of farmlands in the PSU (self-reported) (Rs/Ha) 

  

Spring temperature, summer temperature, 
autumn temperature, winter temperature 

Climate-normal annual mean temperature for 29 year preceding each Census 
year for spring, summer, autumn and winter season (

0
C) 

  

Spring temperature sq., summer temperature 
sq., autumn temperature sq., Winter 
temperature sq. 

Square of the climate-normal annual mean temperature for 29 year preceding 
each Census year for spring, summer, autumn and winter season (°C) 

  

Spring rainfall, summer rainfall, autumn 
rainfall, winter rainfall 

Climate-normal annual mean precipitation for 29 year preceding each census 
year for spring, summer, autumn and winter season (mm/year) 

  

Spring rainfall sq., summer rainfall sq., 
autumn rainfall sq., Winter rainfall sq. 

Square of the climate-normal annual mean precipitation for 29 year preceding 
each census year for spring, summer, autumn and winter season (mm/year) 

  

Spring temp. dev, Summer temp. dev, 
Autumn temp. dev, Winter temp. dev 

Deviation of temperature during the spring, summer, autumn and winter season 
of a Census year from the historical 29 year averages in each of those seasons 

  

Spring rain. dev, summer rain. dev, autumn 
rain. dev, winter rain. dev 

Deviation of precipitation during the spring, summer, autumn and winter season 
of a Census year from the historical 29 year averages in each of those seasons 

  

WSDI 
Warm spell duration index. It represents the annual count of days with at least 
six consecutive days in which the daily maximum temperature exceeds the 90

th
 

percentile of daily maximum temperature for a 5-day running window 

  

SDII 
Simple precipitation intensity index. It represents the sum of precipitation in wet 
days during the day divided by the number of wet days in the year 

  

Population Total population of a PSU 

Road Access to paved roads in a PSU (yes = 1, no = 0) 

Irrigation facilities Access to irrigation facilities in a PSU (yes=1, no=0) 

Electricity Access to electricity in a PSU (yes=1, no=0) 

Market center Existence of a market center in a PSU (yes=1, no=0) 

Farmer’s group Existence of an active user group (farmer’s group) in a PSU (yes=1, no=0) 

 
 
 
whether the PSU has irrigation facilities available. Access to market 
center means if the PSU has a market center in that community. 
Access to road and electricity follow similar explanation as for the 
case of irrigation and market center. Lastly, farmers group captures 
the existence of user group in a community (Table 2).   

 
 
Conceptual framework  
 
In a Ricardian model, farm performance (land value or net revenue) 
is regressed on a set of agro-climatic and socio-economic variables 
to assess the impact of climate change on farm performance. 
Mendelsohn et al. (1994) argued that the traditional approach to 
measuring the impacts of climate change on agriculture, the 
production function approach, was a crop specific analysis and it 
could overestimate the impacts. To overcome this limitation, the 
Ricardian approach was developed, and it assumes the following  
specification (Mendelsohn et al., 1994): 

     
                                                                                                       (1) 
 
Where, farmland value (𝑉 ) reflects the present value land (L);    is 
the net revenue per hectare;    and    are the market price and 
output of the crop i respectively;       is a function of purchased 
inputs (excluding land); R is a vector of input prices; F is a vector of 
climatic variables; Z is a vector of socioeconomic variables; t is the 
time, and   is the discount rate.  

The Ricardian model assumes that a farmer will maximize his 
land value (or net revenue) by choosing inputs subject to climate  
(F) and socio-economic variables (Z). This model relies on a 
quadratic formulation of climatic variables and is presented as: 
 

                                         (2)  

 
𝑉𝐿 =    𝐿 

−  𝜕 
∞

0

=   
[ 𝑖 𝑖 −   𝑖  𝑖 , 𝑅, 𝐹, 𝑍 ]

𝐿𝑖
 

∞

0

 −  𝜕  
(1) 

 

 𝑉 =  𝛽0 + 𝛽1𝐹 + 𝛽2𝐹
2 + 𝛽3𝑍 +   (1) 
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Table 2. Outlines the descriptive statistics of the dependent and independent variables 
used in this study. 
 

Variable N Mean St. Dev. 

Land value 310 35,290.740 143.103.500 

Spring temperature 310 22.719 4.243 

Summer temperature 310 28.586 4.190 

Autumn temperature 310 19.235 3.543 

Winter temperature 310 14.115 3.232 

Spring temp. dev 310 1.150 0.994 

Summer temp. dev 310 0.630 0.780 

Autumn Temp. dev 310 0.808 0.859 

Winter Temp. dev 310 0.881 0.950 

Spring rainfall 310 40.626 26.231 

Summer rainfall 310 252.309 100.455 

Autumn rainfall 310 71.807 46.747 

Winter rainfall 310 14.827 6.973 

Spring rain. dev 310 2.322 2.621 

Summer rain. dev 310 3.735 7.967 

Autumn rain. dev 310 1.122 0.723 

Winter rain. dev 310 0.441 0.446 

WSDI 310 40.423 63.001 

SDII 310 19.862 6.828 

Population 310 1,064.410 1,095.483 

Road 310 0.416 0.494 

Irrigation facilities 310 0.790 0.408 

Electricity 310 0.610 0.489 

Market center 310 0.694 0.462 

Farmer’s group 310 0.097 0.296 
 

Sources: Climate data obtained from Department of Hydrology and Meteorology (DHM, 
Government of Nepal). PSU sociodemographic data obtained from the Central Bureau of 
Statistics (CBS), Nepal. 

 
 
 

Where,   is an error term. The linear and a quadratic term for 
temperature and precipitation accounts for the nonlinear shape of 
the net revenue of the climate response function.   

In the study analysis, we regressed the farmland value per 
hectare in the rural communities of Nepal as a dependent variable 
against climate and socio-economic variables. The independent 
climatic variables included the linear and quadratic temperature and 
precipitation for the four seasons: winter (the average for 
December, January, and February), spring (March, April, and May), 
summer (June, July, and August) and autumn (September, 
October, and November). In addition to the seasonal averages, the 
study analysis included seasonal temperature and precipitation 
deviation from the historical 22 years’ seasonal average.   

Finally, we incorporated WSDI to measure the temperature 
extreme, and simple precipitation intensity index (SDII) to measure 
the rainfall extreme. The independent non-climatic variables include 
the existence of paved road in the PSU, population of the PSU, 
whether the PSU had irrigation facilities available, having electricity 
in the PSU, and the existence of market center and farmers group 
in the PSU.  
 
 

Analytical framework 
 

Panel fixed effects (Non-spatial model) 
 

The   analytical   framework   was   carried   out  using    a    forward  

specification analysis. First, a panel fixed effects10 model was run, 
and the results were compared with a spatial lag and a spatial error 
model. The general specification of the non-spatial fixed effects 
model is given by: 
 

           
                                                                                                      (3) 
 
The subscripts i and t in equation (3) denote PSU and time, 
respectively. The dependent variable Y is the farmland value per 
hectare, and   represents the PSU fixed effects. It is assumed that 
the PSU fixed effects absorb all the unobserved PSU specific time-
invariant factors such as soil and water quality that could influence 
the crop yields and land values.   represents the time fixed effects, 
and it is presumed to control for time differences in the dependent 
variable which are common across PSU. The variable X is a vector 
of  climate  normals11;  while  N   captures   the   vector   of   climate  

                                                 
10 The Hausman test rejected the null hypothesis of random effects (Chi-square 
= 49.19; p-value = 0.011). Thus, our model specification takes the fixed effects 

form. 
11 Climate normal:     = {spring temperature, summer temperature, autumn 
temperature, winter temperature, spring precipitation, summer precipitation, 
autumn precipitation, winter precipitation}  

𝑌𝑖 =   𝑖 +   +  𝛽𝑋𝑖 
′ + 𝜃𝑋2

𝑖 
′

+ 𝛿𝑁’𝑖 + 𝜂𝑍𝑖 
′ +  𝑖  
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deviations and extremes12. Finally, Z is a vector of PSU 

sociodemographic variables13; and   is an idiosyncratic error term 
that is assumed to be independent and identically distributed over 
PSUs and time, with mean zero and variance   

 . The fixed effects 
model concentrates on differences within PSU’s. Thus, it explains to 
what extent farmland values deviate from average PSU farmland 
value. 

While the parameter estimates from equation (3) could provide 
evidence on the impact of climate change on farmland values in 
Nepal, the estimates could be biased if land values are spatially 
correlated.  In fact, Tobler (1979) first law of geography states that 
‘near things’ are more related than ‘distant things’. This suggests 
that farmland values could be spatially auto-correlated if there is a 
dependency between farmland prices. In a developing country like 
Nepal where farmers may not have sufficient information about their 
land characteristics, it is likely that land values could depend on 
interactions across PSUs with other land owners. Patton and 
McErlean (2003) argue interaction among landlords in order to base 
their starting price may give rise to spatial relationships.  

This provides a motivation to reassess our problem by 
incorporating the spatial framework. Additionally, spatial modeling 
might also reduce omitted variable bias and account for spatial 
heterogeneity from a data-driven perspective. Omitted variable can 
arise because unobservable factors (for example, location 
amenities, PSU prestige, water accessibility for irrigation, etc.) could 
influence the dependent variable (farmland values), and this can be 
accounted by incorporating a spatial error model (LeSage and 
Pace, 2009). On the other hand, a spatial autoregressive (lag) 
model would be crucial if we believe that herd behavior exists in 
farmland markets, that is, the selling price of farmlands at any 
particular location acts as a signal that guides the selling price of 
nearby lands.  
 
 
Spatial models 
 
Taking into account the potential nature of the spatial relationship in 
farmland markets, the study analytical framework next incorporated 
spatial correlation in the Ricardian model. A general specification of 
the related family of the spatial model takes the following form14: 
 
 

 
                                                                                                       (4) 
 
Equation (4) presents the specification of the panel spatial model, 
and it is similar to the non-spatial fixed effects model detailed in 

equation (3). The interpretation of parameters (    𝛽 𝜃 𝛿 𝜂) and 
the variables captured by X, N and Z vectors are same as in 
equation (3). The additional terms in the spatial model that 
differentiate it from the non-spatial one are the spatially lagged  

                                                 
12 Weather deviation and extremes:     = {spring temperature deviation, 

summer temperature deviation, autumn temperature deviation, winter 
temperature deviation, spring precipitation deviation, summer precipitation 

deviation, autumn precipitation deviation, winter precipitation deviation, 

WSDI, SDII} 
13 PSU sociodemographic variables:     = {access to irrigation facilities, access 
to electricity, access to market center, population of the PSU, access to paved 

road, existence of farmer’s group} 
14 Interested readers should refer to Elhorst, (2014) for greater detail on spatial 
panel data model. 

 
 
 
 
dependent variable, and the spatial autoregressive process in the 

error term. The spatial lag coefficient is captured by    , while     
captures the spatial error coefficient. The spatial autoregressive 
(lag) model (SAR) posits that the dependent variable (farmland 
value) is influenced by the dependent variables in the adjacent units 
and on a set of observed local characteristics. The spatial error 
model (SEM), on the other hand, states that the dependent variable 
(farmland value) depends on a set of observable characteristics 
with errors that are correlated across space (Elhorst, 2014). 

One of the crucial inputs that spatial models require is the weight 
matrix W, which summarizes the spatial relations between n spatial 
units. In particular, the spatial matrix assigns nonzero elements for 
each observation (row) whose locations (columns) belong to its 
neighborhood (Anselin and Bera, 1998). A row-standardized weight 
matrix, where the row of the spatial weight matrix sums to unity, is 
used in our spatial model. The wy term in equation (4) represents 
the weighted average of the surrounding observations in the 
dependent variable; while the wu term represents the weighted 
average of the surrounding error term. The spatial weight matrix, W, 
used in this paper is a 5-nearest neighbor weight matrix for the 

PSUs in our sample. The parameters     and     measures the 
extent of the spatial autocorrelation. Furthermore, setting the value 
of   = 0 leads to the SAR model that exhibits relationship only in the 
dependent variable. Similarly, setting   = 0 leads to the SEM, 
resulting in spatial dependence in only the error term. In the case of 
the spatial models, the parameters to be estimated are the 
regression coefficients 𝛽 𝜃 𝛿 𝑎   𝜂; along with the spatial lag 
coefficient    , and the spatial error coefficient, (  . 
 
 

Marginal impacts 
 
The standard interpretation of estimated parameters as partial 
derivative is no longer valid in the case of the SAR model. 
Intuitively, the lag model implies that the farm land values of region i 
is also influenced by the land values from neighboring regions. The 
marginal effects in the SAR model take the following form (LeSage 
and Pace, 2009): 
 

                                                                (5) 
 
Where,     𝑊     −   𝑊   𝛽 . In equation (5), the subscript i 

and j represents location i and j respectively, while 𝛽  is the 
coefficient on the rth explanatory variable.     𝑊  is a n X n matrix 
with the diagonal elements containing the direct impacts and the 
off-diagonal elements representing the indirect impacts. In the SAR 
model, the spatial connectivity relationships mean that a change in 
a single explanatory variable in region i has a ‘direct impact’ on 

region i as well as an ‘indirect impact’ on other regions, j i (LeSage 
and Fischer, 2008).   

The upper quantity in equation (5) captures the impact of a 
change in an explanatory variable (for example, temperature) at 
location i on the dependent variable at location i, known as the 
average direct impact (ADI). For example, the average direct effect 
shows the impact of climate change on PSU i on the farmland 
values of PSU i. The lower quantity, on the other hand, captures the 
effect of a change in the explanatory variable at location j on the 
dependent variable at location i, with j i and is known as the 
average indirect effect (AII). For example, the average indirect 
effect, also known as the neighboring effect, measures the impact 
of an increase in climate at PSU i on the farmland value of 
neighboring PSUs, averaged over all neighboring PSUs. The 
average direct effect can be interpreted as the own derivative, while 
the average indirect effect captures the cross derivative. Lastly,  the  
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average total effect (ATI) is the sum of average direct and indirect 
effect, and it measures the total cumulative impact. In this paper, 
the average total effects estimate how changes in climate affect 
total farmland values, taking into account both own-PSU and 
spillover effects.  
 
 
Marginal climate impacts 
 
Since the study climate variables contain linear and quadratic 
coefficients in raw form, we evaluated the marginal climate impacts 
(MCI) for rainfall and temperature to ease interpretation. Recalling 
equation (3), the MCI15 of average annual changes in climate 
(temperature or precipitation) on the mean farmland value per 
hectare can be expressed as: 
 

                   (6) 
  
In this study, the MCI represents the change in Rs./ha of farmland 
value per 0C or mm/year, evaluated at the mean annual climate for 
farmlands in Nepal.  

 
 
RESULTS 
 
The data summary (Table 2) shows that most of the 
variables have low standard deviation, indicating data 
homogeneity. The regression results

16
 from the non-

spatial fixed effects model (Table 3, Column 1) suggested 
that the spring and summer temperature; and the spring, 
autumn and winter rainfall impacted the farmland values. 
Likewise, the spring temperature deviation and the winter 
rainfall deviation, as well as the extreme indices in WSDI 
and SDII also affected the farmland values. The non-
climatic variables that were found to be significant were 
irrigation facilities, population and the existence of market 
center in the PSU, all of which had a positive impact on 
the farmland values. The significance of these variables 
was almost identical in the spatial lag and the spatial 
error model as well (Table 3, Column 2 and 3).  

While the significance of most variables were 
comparable in all three models, the magnitudes of the 
estimated climate coefficients were smaller in spatial 
models than the non-spatial fixed effect model. 
Furthermore, the spatial correlation parameter (   in the 
spatial error model and the spatial autoregressive 
parameter (   in the spatial lag model were both 
significant, suggesting the presence of spatial correlation. 
The positive coefficient on the spatial lag parameter     
indicates that farmland values are positively affected by 
land values in the neighboring PSU’s. This finding 
substantiates the need  to  incorporate  spatial  effects  in  

                                                 
15 It is also called marginal value or Ricardian climate sensitivities (Polsky, 

2004). 
16  We tested for the presence of multicollinearity, and the variance inflation 
factor of independent variables were less than 10, thus mitigating the concern 

for collinearity (Meyers, 2000). Additionally, the presence of multicollinearity 

would lead to unstable regression coefficients and large standard errors (Cohen 
et al., 2013), neither of which occurred in our analysis.  
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our modeling, and ignoring these effects to explore the 
impact of climate change on farmland values can lead to 
biased estimates

17
. In order to choose the best spatial 

model, we relied on the lowest AIC and the BIC values 
(Table 3). While the estimates of the AIC and the BIC 
values largely favored the spatial models over the non-
spatial one, the SAR model was only slightly preferred 
over the SEM model based on the goodness of fit 
estimates (Table 3). 

We also found evidence that extremities in weather 
could affect farmland values too. This was revealed by 
the fact that areas with more warmer days throughout the 
year had higher farmland values; while areas with more 
intense precipitation had lower farmland values. 
Additionally, the climate change impact estimates 
displayed non-linear relationship with farmland values in 
certain seasons, and this result is consistent with the 
Ricardian hypothesis proposed by Mendelsohn et al. 
(1994).  

Finally, we looked at the marginal effect of average 
annual temperature and rainfall changes in farmland 
values.  The net effect of increasing annual temperature 
was negative; while the net effect of higher annual 
precipitation was a positive outcome on farmland values 
(Table 4). In particular, we found that the marginal effect 
of every degree increase in average annual temperature 
was Rs.180 /hectare ($1.80) reduction in farmland 
values. In contrast, every mm increase in annual average 
rainfall led to an increase in farmland values by 
Rs.225/hectare ($2.25) (US$1 = Nepali Rs.100 
conversion rate of 22 April, 2015 used throughout). 
 
 
DISCUSSION 
 
The findings from both, the non-spatial and the spatial 
models, suggested that climate does seem to have an 
impact on the value of farms in Nepal. For instance, the 
non-spatial fixed effect model showed evidence that the 
average temperature during the spring and summer 
season; and the average rainfall during the spring, winter 
and the autumn season affected the farmland values.  

Additionally, the presence of a nonlinear relationship 
between climate and land values, although present only 
in certain seasons, is consistent with the findings from 
other Ricardian studies (Mendelsohn et al., 1994; 
Deressa et al., 2005; Seo and Mendelsohn, 2008). The 
effect of temperature on farmland value was more 
pronounced than that of rainfall, and this suggests higher 
sensitivities of crop growth to temperature changes 
(Lobell and Burke, 2008). Regarding precipitation, the 
result indicated that although higher rainfall is conducive 
for crop development, excess rainfall could hurt the 
crops, and, thereby the farmland values.  

                                                 
17 We also tested for the presence of spatial correlation and lag simultaneously 

using the mixed spatial model, but the spatial effects were not significant in the 
joint model.  
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Table 3. Spatial and Non-spatial regression result. 
 

Variable 

Non-spatial model Spatial models 

(1) (2) (3) 

Fixed effects Spatial error Spatial lag 

Climate Normals 

Spring temperature 
-4.705.098

***
 -3.770.218

*
 -3.956.385

*
 

(1.499.624) (2.138.728) (2.145.844) 

    

Spring temperature sq. 
101.512

***
 83.418

*
 82.806

*
 

(28.603) (45.813) (45.999) 

    

Summer temperature 
5.991.240

**
 4.397.611

*
 5.540.327

**
 

(2.465.669) (2.653.571) (2.731.009) 

    

Summer temperature sq. 
-104.679

*
 -74.317 -95.566

*
 

(58.102) (53.995) (55.429) 

    

Autumn temperature 
-2.353.482

*
 -1.305.782 -1.641.706 

(1.328.044) (1.845.721) (1.852.688) 

    

Autumn temperature sq. 
45.178 19.373 28.268 

(36.104) (48.755) (49.354) 

    

Winter temperature 
1.806.967 1.312.581 1.085.378 

(1.656.178) (1.649.897) (1.653.009) 

    

Winter temperature sq. 
-68.647 -60.404 -46.325 

(53.326) (55.602) (55.485) 

    

Spring rainfall 
34.195

**
 31.688

*
 34.674

*
 

(16.741) (17.358) (17.907) 

    

Spring rainfall sq. 
-0.161

**
 -0.152 -0.169 

(0.081) (0.110) (0.114) 

    

Summer rainfall 
10.342 16.377 15.076 

(8.554) (10.488) (10.507) 

    

Summer rainfall sq. 
-0.011 -0.017 -0.017 

(0.008) (0.016) (0.016) 

    

Autumn rainfall 
55.846

***
 49.805

***
 51.647

***
 

(19.832) (-13.656) (13.674) 

    

Autumn rainfall sq. 
-0.393

***
 -0.337

***
 -0.354

***
 

(0.130) (0.055) (0.054) 

    

Winter rainfall 
279.972

***
 275.596

***
 264.975

***
 

(77.915) (64.144) (65.576) 

    

Winter rainfall sq. 
-5.282

***
 -5.065

***
 -5.185

***
 

(1.417) (1.373) (1.421) 
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Table 3. Contd. 
 

Deviation from climate normals 

Spring temp. dev 
104.573

**
 58.676 68.320 

(52.130) (62.889) (64.283) 

    

Summer temp. dev 
98.275 57.341 84.828 

(90.009) (72.634) (72.766) 

    

Autumn temp. dev 
-113.153 -150.053

**
 -141.447

**
 

(92.014) (69.786) (71.460) 

    

Winter temp. dev 
8.259 36.376 23.136 

(67.114) (71.332) (71.545) 

    

Spring rain dev 
-17.951 -12.812 -12.410 

(16.312) (20.012) (20.101) 

    

Summer rain dev 
4.772 5.824 6.346 

(4.563) (6.904) (6.887) 

    

Autumn rain dev 
-86.028 -81.182 -79.463 

(107.969) (65.157) (64.607) 

    

Winter rain dev 
252.092

*
 274.139

**
 255.970

**
 

(135.636) (118.769) (119.601) 

    

Climate extremes 

WSDI 
3.372

***
 3.324

**
 3.699

**
 

(1.286) (1.558) (1.535) 

    

SDII 
-27.106

**
 -29.827

*
 -27.633

*
 

(11.518) (16.475) (16.439) 

    

Controls 

Irrigation facilities 
253.018

***
 212.951

*
 250.600

**
 

(78.588) (116.922) (119.621) 

    

Electricity 
138.826 131.655 122.340 

(87.675) (117.869) (118.015) 

    

Road 
46.480 -45.574 -0.484 

(100.604) (99.349) (99.096) 

    

Population 
0.140

**
 0.165

***
 0.145

***
 

(0.069) (0.044) (0.044) 
    

Farmer’s group 
94.422 160.621 94.629 

(69.942) (143.045) (137.966) 
    

Market center 
222.409

***
 232.431

**
 234.405

**
 

(80.611) (91.972) (92.028) 
    

Rho 
- 0.357

***
 - 

- (0.072) - 
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Table 3. Contd. 
 

lambda 
- - 0.351

***
 

- - (0.065) 

    

Log Likelihood -3.048.864 -2.777.865 -2.776.498 

AIC 6.161.728 5.621.730 5.618.996 

BIC 6281.299 5.745.037 5.742.303 

Observations 310 310 310 

Number of PSU 155 155 155 

PSU FE YES YES YES 

Year FE YES YES YES 
 
***  

p<0.01,
 **

 p<.5, 
*
 p<0.1. Dependent variable is the farmland value per hectare (Rs./Ha). The values in the parenthesis are the 

standard errors. Column 1 lists the output of the non-spatial fixed effects model. Column 2 and 3 are the output of the spatial fixed 
effects model. Column 2 is the spatial error model (SEM), while column 3 is the spatial lag model (SAR). 

 
 
 

In essence, the significant quadratic variables imply 
that climate and farmland values have a nonlinear 
relationship, and it is consistent with the hypothesis of 
Ricardian approach (Mendelsohn et al., 1994).  The 
positive coefficient in the quadratic terms for temperature 
(rainfall) suggests a minimally productive level of 
temperature (rainfall) and either more or less temperature 
(rainfall) would increase land values. The negative 
quadratic coefficients for temperature (rainfall) indicate 
that there is an optimal level of climate variable from 
which the value function decreases in both directions 
(Mendelsohn et al., 1994). 

The findings from Table 3 shows that the significance 
of the variables for both the non-spatial (Column 1) and 
spatial models (Column 2 and 3) was almost alike. While 
the sign and significance of most coefficients in the three 
models were comparable, the magnitudes of the climate 
normal variables in the non-spatial model were larger in 
absolute value compared to the spatial models. This 
finding is consistent with other papers that have 
examined spatial and non-spatial modeling in the context 
of Ricardian framework (Kumar, 2011; Baylis et al., 
2011).  

The linear and the quadratic temperature variable for 
the spring season was significant across all models, while 
for the summer, the variables were significant in the non-
spatial (column 1) and the SAR model (column 3). Winter 
temperature did not have any effect on farmland values 
across all three models, while the linear term for the 
autumn temperature was significant only in the non-
spatial model. Looking at column (3)

18
, the turning point 

for spring temperature occurred at 23.88°C. This 
indicates that average spring temperature above 23.88

o
C 

is associated with higher crop yields, which results in 
higher farmland values as well.  

Similarly, the turning point for summer temperature in 
column  (3)  is  28.98°C,  indicating  that farmland  values 

                                                 
18 The turning point from column (1) and (2) were similar to column (3). We 
used column (3) for the interpretation since that is the final model used.  

decline when average summer temperature exceeds 
29°C. This result makes sense when we consider the 
major agricultural outputs of Nepal. The major crops 
grown in Nepal are paddy, wheat, and maize (Malla, 
2009); and the optimal temperature range estimated in 
this paper is consistent with literature that have explored 
these crop’s life cycle. Karn (2014) found that the critical 
temperature threshold for rice yield in Nepal to be 29.9°C, 
and temperature beyond that would lead to a decline in 
rice yields. Bhatt et al. (2014) found that the critical 
maximum threshold for maize production to be 27°C in 
Eastern Nepal. Bannayan et al. (2004) also suggest the 
optimum temperature for maize growth, in general, 
should be between 22 to 25°C. These findings could 
potentially explain the results found in this paper for the 
decline in farmland values at temperatures below 
23.88°C and beyond 28.98°C. Since the suitable 
temperature for both maize and rice in Nepal lies 
between about 22 to 30°C, it seems plausible that 
farmland values increase in that temperature range.   

The other significant climatic variables across all three 
models were the winter rainfall deviation, WSDI, and 
SDII. In particular, higher rainfall deviation during the 
winter season; and areas with higher annual warmer 
spells, both had a positive impact on farmland values. On 
the other hand, areas with more intense and excessive 
rainfall, in general, were associated with lower farmland 
values. Although the winter temperature was not 
significant in any of the models, we believe that is due to 
the growth requirement of winter crops in Nepal. The 
main winter crops in Nepal are wheat and barley, which 
have been found to be highly sensitive to winter rainfall, 
moreso than temperature (Krishnamurthy et al., 2013). In 
fact, Krishnamurthy et al. (2013) state that the winter 
crops in Nepal are extremely sensitive to small changes 
in rainfall patterns while the impact of temperature on 
these crops is low.   

The coefficients on the linear and the quadratic 
precipitation variables suggest that autumn and winter 
average rainfall affect farmland values  and  this  result  is  
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Table 4. Annual marginal impact of climate change on Nepalese 
agriculture. 
 

Variable Mean land value 95% confidence interval 

Temperature (°C) 
-180.692 -187.257 -174.127 

(3.349) - - 

    

Precipitation (mm) 
-225.850 192.060 259.641 

(17.24) - - 
 

Notes: Annual marginal at the average Nepalese climate measured as a 
change in average land value per hectare. These values are calculated from 
the ATI values of the SAR model using equation (6). Standard errors are 
derived using the delta method. 

 
 
 
consistent across all three models. Similarly, higher 
spring precipitation had a significant and positive 
consequence on farmland values across all three models. 
This result also seems plausible when we consider the 
harvesting period of the major crops in Nepal. The 
harvesting period in Nepal for rice starts from mid-
October to December, while wheat is harvested in winter 
period. Thus, the positive coefficients in the autumn and 
winter rainfall imply the presence of suitable environment 
for these crops during harvest time, which is positively 
reflected on the land values. Likewise, the negative 
coefficients on the quadratic terms for winter and autumn 
precipitation imply that excessive rainfall during these 
seasons could potentially damage the harvest, thereby 
negatively affecting the land values.  

The other findings were that PSU’s with access to 
irrigation, market center, and with higher population have 
a positive impact on farmland values. These results also 
seem reasonable since PSUs with irrigation facilities 
would not need to rely on rain-fed agriculture for crop 
growth and thus, these areas have higher land values. 
Similarly, presence of market center provides 
opportunities to easily purchase different agricultural 
products to improve yield; and higher population implies 
location with better amenities that could be driving 
population growth, both of which would result in higher 
farmland values as suggested by the results in this paper. 
In fact, the positive impact of irrigation facilities and 
market center on Nepalese farmland valuation has also 
been confirmed by Joshi et al. (2017). 

The findings from the spatial analysis revealed the 
need to incorporate spatial models to enhance estimation 
reliability. With regards to the choice between the two 
spatial models, we looked at the model performance 
parameters, the AIC, and the BIC values, which 
suggested SAR as a slightly better model. While the SAR 
model was preferred from an econometric perspective, 
this lag model seems probable from an intuitive viewpoint 
as well. It is reasonable to assume that since farmers 
may not know the inherent value of their land due to 
insufficient information about land characteristics, 
especially in developing countries like Nepal, land prices 

could thereby depend on landowner interactions across 
communities.  

Similarly, one can also argue that farmlands 
surrounded by expensive lands could potentially be worth 
more than those surrounded by inexpensive lands. 
Additionally, agricultural land markets are highly localized 
with many buyers being farmers looking to add fields 
near to their existing operation (Baylis et al., 2011), which 
further strengthens the argument for the use of the lag 
model. Anselin et al. (2008) state that for an equilibrium 
outcome of a spatial or social interaction process where 
the value of a dependent variable for one agent is jointly 
determined with that of neighboring agents, a SAR is 
considered to be ideal.  

We then looked at the marginal impacts of the SAR 
model (Appendix Table 1)

19
. The direct effect showed 

that for every degree increase in the spring temperature 
beyond the threshold value of 23.88°C, farmland values 
increased by Rs.85/hectare ($0.85). However, beyond 
28.98°C temperature in the summer season, every 
degree increase in temperature reduced farmland values 
by Rs.98/hectare ($0.98). The average indirect impact for 
the spring and summer temperature were also significant, 
indicating that the temperature at a particular PSU also 
affects the land values of neighboring PSUs (as defined 
by the W matrix). The indirect effect implied that for every 
degree increase in spring temperature beyond 23.88°C at 
a particular PSU, the land values in the neighboring 
PSUs increased by Rs.42/hectare ($0.42).  

Likewise, beyond 28.98
0 

C in the summer, farmland 
values in the neighboring PSUs declined by 
Rs.49/hectare ($0.49). The significance of the indirect 
effect does not seem implausible since climate is not 
vastly dissimilar in a small spatial scale. Therefore, if 
spring temperature affects the land values at a particular 
PSU, it is likely to affect the neighboring PSUs as well. 
Finally, the average total impact of an increase in the 
spring temperature beyond 23.88°C suggested that for 
every degree increase, the total farmland value increased  

                                                 
19Appendix Table 2 in the appendix shows the simulated z scores for the 
Marginal Impacts from the spatial lag model listed in Appendix Table 1. 
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by Rs.127/hectare ($1.27), when taking into account the 
own-PSU effect and the spillover effect of a change in 
spring temperature. The impact of summer temperature 
on farmland values can be interpreted in a similar 
fashion. Taking into account the findings from changes in 
temperature, the overall net marginal effect of a degree 
increase in average annual temperature was a reduction 
in farmland values by Rs.180/hectare ($1.80) (Table 4).  

Regarding rainfall, the findings suggested that the 
average direct impact of a mm increase in rainfall during 
the spring season increased farmland values by 
Rs.35/hectare ($0.35). Precipitation during autumn and 
winter season also had an impact on the farmland values. 
Similar to the case of spring temperature, the average 
indirect impact indicates that precipitation during these 
seasons was not only affecting farmland values at that 
PSU, but also the land values in the neighboring PSUs. 
The average direct impact of an increase in precipitation 
during autumn and winter season was Rs.52/hectare 
($0.52) and Rs.271/hectare ($2.71) respectively. 
However, excessive rainfall destroys crops, and it is 
reflected in the lower land value captured by the negative 
quadratic terms. Finally, the overall net marginal impact 
of a mm increase in the annual mean rainfall was an 
increase in farmland value by Rs.225/hectare ($2.25) 
(Table 4).  

SDII and WSDI, the two variables that capture the 
extremities in climate were also both significant. Higher 
SDII suggests the occurrence of stronger precipitation, 
and this has an adverse impact on farmland values. On 
the other hand, higher WSDI, which indicates greater 
number of warmer days, positively affects the farmland 
values. Heavy rainfall can cause a disruption in crop 
cycle balance and lead to lower yield which could 
negatively affect farmland values, as suggested by our 
findings.  

The positive effect of WSDI also makes sense since 
paddy, one of the major crops in Nepal, requires an 
extended period of the warm growing season. Similarly, 
maize is another staple crop of Nepal which also requires 
warm days to grow properly, and thus higher WSDI can, 
in fact, lead to higher farmland values. The results for the 
average total impacts suggested that intense precipitation 
lowered farmland values by Rs.42.5/hectare ($0.425); 
while higher days of warm spell increased land value by 
Rs.5.70/hectare ($0.057).  In terms of the non-climatic 
variables, PSUs with access to irrigation and market 
center had land values that were higher by 
Rs.386/hectare ($3.86) and Rs.361/hectare ($3.61) 
respectively, compared to the ones that did not have 
those amenities.  
 
 
Conclusion  
 
Changes in climate and the resulting changes in land use 
pattern are likely to have a significant  impact  on  sectors  

 
 
 
 
like agriculture, forestry, water and food security (Field, 
2012). While the severity of climate change impacts on 
agriculture could be massive, with the right mitigation and 
adaptation strategies, the negative consequences can be 
alleviated. This paper used an application of the 
Ricardian approach to analyze the impact of climate 
change on farmland values in Nepal. Taking into account 
the limitation of traditional Ricardian approach in failing to 
explicitly incorporate the spatial nature of land values, 
this paper employed a spatial fixed effect model to 
estimate climate change impacts in the context of Nepal. 
The results revealed significant evidence of spatial 
correlation and the effects of climate change were found 
to be more conservative in spatial models relative to the 
non-spatial model.  

The general findings implied that Nepalese farmlands 
are sensitive to climate change. The average 
temperature during the spring and summer season; and 
average rainfall in the spring, autumn and winter season 
were found to affect crop yields and thereby, the value of 
farms. The net effect of annual increases in temperature 
was negative; while the net impact of higher annual 
precipitation was a positive outcome on farmland values. 
In particular, we found that the marginal effect of every 
degree increase in annual temperature was 
Rs.180/hectare ($1.80) reduction in farmland values. 
Likewise, for rainfall, it was found that 1mm increase in 
average annual rainfall would positively affect farmland 
value by Rs.225/hectare ($2.25). Additionally, the 
extreme weather indices suggested PSUs with a greater 
number of warmer days (WSDI) faced positive effect on 
farmland values; while PSUs with excessive precipitation 
(SDII) had lower farmland values. 

From a modeling perspective, we found evidence of 
significant positive spatial correlation, and the 
aforementioned results are the outcome of a spatial 
correction model. The implication of our findings from an 
econometric perspective suggests the need to depart 
from non-spatial analysis to studies that account for 
spatial analysis in order to obtain more reliable estimates 
of climate change impacts on farmland value.  

The results from this study also provide an interesting 
perspective from the policymaking point of view. 
Agricultural production is one of the major means of 
livelihood for most people in Nepal and as such, policies 
should be directed towards helping people combat the 
impacts of climate change. One solution could be to 
provide farmers support in the form of loans, access to 
seeds, and technical advice on crop management and 
water harvesting so they can better adapt to the changing 
climatic conditions. The poor farming population are most 
vulnerable to climate change, particularly because they 
rely heavily on rain-fed agriculture. As such, policies 
should be directed towards providing irrigation systems at 
minimal costs to these populations. Furthermore, 
policymakers should also provide education and 
awareness to farmers on the dangers  of  climate  change  



 
 
 
 
as well as on the importance of employing irrigation as a 
way to increase their crop yields and sustain their 
livelihood. 
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APPENDIX 
 

Appendix Table 1. Marginal impacts – spatial lag model. 
 

Variables Direct Indirect Total 

Climate Normals 

Spring temperature -4,059.016
*
 -2,038.298

*
 -6,097.314

*
 

Spring temperature sq. 84.954
*
 42.661

*
 127.616

*
 

Summer temperature 5,684.092
*
 2,854.309

*
 8,338,302

**
 

Summer temperature sq. -98.004
*
 -49.283

*
 -147.288

*
 

Autumn temperature -1,684.281 -845.776 -2,530.057 

Autumn temperature sq. 29.038 14.520 43,559 

Winter temperature 1,113.534 559.178 1,672.712 

Winter temperature sq. -47.527 -23.866 -71.393 

Spring rainfall 35.573
*
 17.863 53.437

*
 

Spring rainfall sq. -0.174 -0.087 -0.261 

Summer rainfall 15.467
*
 7.767 23.234 

Summer rainfall sq. -0.017 -0.008 -0.026 

Autumn rainfall 52.987
***

 26.608
**
 79.595

***
 

Autumn rainfall sq. -0.364
***

 -0.182
***

 -0.547
***

 

Winter rainfall 271.849
***

 136.513
**
 408.362

***
 

Winter rainfall sq. -5.320
***

 -2.671
**
 -7.991

***
 

Deviation from Climate Normals 

Spring temperature dev 70.092 35.198 105.290 

Summer temperature dev 87.028 43.702 130.731 

Autumn temperature dev -145.116
*
 -72.872 -217.988

*
 

Winter temperature dev 23.736 11.919 35.656 

Spring rain dev -12.732 -6.393 -19.125 

Summer rain dev 6.511 3.269 9.780 

Autumn rain dev -81.524 -40.938 -122.463 

Winter rain dev 262.610
**
 131.873

*
 394.483

**
 

Climate Extremes    

SDII -28.350
*
 -14.236 -42.586

*
 

WSDI 3.795
**
 1.906

**
 5.701

**
 

Controls 

Irrigation facilities 257.101
**
 129.107

*
 386.209

**
 

Electricity 125.513 63.028 188.542 

Road -0.497 -0.249 -0.747 

Population 0.148
***

 0.074
**
 0.223

***
 

Farmer’s group 97.084 48.752 145.836 

Market center 240.485
** 120.763

* 361.249
** 

 

***  
p<0.01,

 **
 p<.5, 

*
 p<0.1. This table shows the output of the marginal effects from the SAR model. The 

first column lists the average direct impact (ADI); the second lists the average indirect impact (AII); while 
the last column is the average total impact (ATI). 
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Appendix Table 2. Marginal impacts (Simulated z-value) – spatial lag model 
 

Variables Direct Indirect Total 

Spring temperature -1.906 -1.688 -1.881 

Spring temperature sq. 1.872 1.657 1.845 

Summer temperature 2.106 1.776 2.052 

Summer temperature sq. -1.791 -1.760 -1.754 

Autumn temperature -0.929 -0.863 -0.916 

Autumn temperature sq. 0.603 0.562 0.594 

Winter temperature 0.721 0.702 0.721 

Winter temperature sq. -0.902 -0.868 -0.901 

Spring rainfall 1.679 1.471 1.638 

Spring rainfall sq. -1.528 -1.340 -1.486 

Summer rainfall 1.696 1.498 1.662 

Summer rainfall sq. -1.292 -1.184 -1.275 

Autumn rainfall 3.257 2.589 3.182 

Autumn rainfall sq. -5.702 -3.302 -5.157 

Winter rainfall 4.108 2.652 3.741 

Winter rainfall sq. -3.741 -2.549 -3.463 

Spring temperature dev 1.056 0.993 1.050 

Summer temperature dev 1.098 1.015 1.086 

Autumn temperature dev -2.011 -1.707 -1.962 

Winter temperature dev 0.318 0.305 0.316 

Spring rain dev -0.641 -0.610 -0.635 

Summer rain dev 0.926 0.845 0.910 

Autumn rain dev -1.233 -1.159 -1.228 

Winter rain dev 2.179 1.839 2.124 

SDII -1.595 -1.408 -1.564 

WSDI 2.393 1.926 2.304 

Irrigation facilities 2.075 1.755 2.022 

Electricity 0.959 0.902 0.951 

Road 0.032 0.026 0.030 

Population 3.255 2.442 3.119 

Farmer’s group 0.676 0.645 0.672 

Market center 2.743 2.133 2.631 

 
 
 
 


