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A key constraint to smallholder cassava production systems in Africa is the cassava whitefly pest 
species. These pests are a group of several cryptic species within Bemisia tabaci that cause direct 
damage to cassava and vector viruses that cause disease. We employ a farm-level stochastic 
production frontier (SPF) model to determine the impacts of the cassava whitefly pests on the 
productivity and technical efficiency (TE) of smallholder cassava farmers in Malawi, Tanzania, and 
Uganda. Primary data were collected from a sample of cassava farmers using a structured survey 
questionnaire. A total of 1200 farmers were selected from Malawi (400), Tanzania (350) and Uganda 
(450), and interviewed using a multi-stage sampling technique. Cassava output was significantly 
correlated with land area, the quantity of cuttings used to propagate the crop, and total labor used. We 
found that whitefly infestations as well as several socio-economic factors significantly affected the 
technical inefficiency of cassava farmers. Whitefly and disease infestations contributed to higher levels 
of technical inefficiency of cassava farmers. The mean TE score was significantly lower (50%) for 
cassava farms with whitefly infestation compared to those without any infestation (80%). These findings 
underscore the need for policies to ensure that cassava farmers have better access to improved inputs, 
especially clean planting materials, and the knowledge to integrate this technology into their farming 
system effectively.  
 
Key words: Cassava, productivity, smallholder, whitefly pest.   

 
 
INTRODUCTION 
 
Cassava is an important food security crop in many 
African farming systems and provides more  than  half  of 

the dietary calories for over 700 million people in Africa 
(Szyniszewska,  2020).   Africa   is   the    world's   largest  
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Figure 1. Cassava production in Malawi, Uganda, and Tanzania (1961–2020). 
Source: FAOSTAT (2022). 

 

 
 
cassava-producing region and accounts for nearly 55% of 
global cassava output (FAO, 2022).  Cassava is 
produced mainly by smallholder farmers whose average 
cultivated area is less than one hectare (Ha). Most of the 
production is used for household consumption or sold as 
a food crop to domestic markets. It is mainly grown under 
intercropping systems with other crops such as maize, 
legumes, and bananas. Cassava production in Malawi, 
Tanzania, and Uganda has increased over the years but 
is interspersed with periods of decline (Figure 1). 
Cassava's relevance as a food security crop relates to 
being tolerant of poor soils and seasonal droughts, its 
ability to survive in marginal lands with minimal inputs 
and the possibility of harvesting throughout the year 
(Reincke et al., 2018). Both roots and leaves can be 
consumed, and cassava roots are cheaper than grains 
such as maize and rice and so can be a vital reserve crop 
during periods of conflicts (Bennett, 2015).

 1
 

In terms of productivity, Uganda ranks highest in East 
Africa with an average of 13 metric tons per hectare 
(Mt/Ha), while in Tanzania and Malawi, the yields are 
much less than 6 Mt/Ha. However, cassava productivity 
in Africa is the lowest globally, with an average of 10 
Mt/Ha compared to 26 Mt/Ha in Asia (FAO, 2021). 
Fermont et al. (2009) estimated that cassava productivity 
in East Africa could reach 20 Mt/ha using existing 
technologies and best practices. Yield potential in a  well-

                                                            
1 Cassava also has some disadvantages. The tubers are very low in protein 

which can be a problem for proper nutrition of young children, and some 

varieties can contain high levels of cyanide (Parmar et al., 2017).  

controlled research setting with irrigation and fertilisation 
is 45 Mt/Ha or higher (Tian et al., 2009).  

In Uganda, cassava productivity ranges 40-50 Mt/Ha at 
the research level. If translated to farmer level, it would 
increase cassava production, improve food security, and 
incomes among cassava farmers. To reduce research-
farmer yield gaps which is currently over 50% 
(FAOSTAT, 2022), a better understanding of the factors 
contributing to low cassava yields is needed to help to 
design and prioritise interventions in the context of limited 
resources. Several factors such as pests and viral 
diseases, lack of access to improved seeds and inputs, 
soil fertility, weeds, poor crop management and high 
labour requirements contribute to the yield gap for 
cassava production systems in Africa (Fermont et al., 
2009; Kintché et al., 2017). Cassava production is 
currently constrained by two significant viral diseases, 
cassava mosaic disease (CMD) and cassava brown 
streak disease (CBSD), which have threatened cassava 
production systems across East and Central Africa over 
the past 15 to 20 years (Legg et al., 2006, 2011; Vurro et 
al., 2010; Patil et al., 2015; Chikoti et al., 2019).

 
The 

viruses that cause these diseases are vectored by at 
least three cryptic species in the whitefly Bemisia tabaci 
group (Mugerwa et al., 2018) and they can also be 
spread through the movement of infected cassava 
cuttings (Boykin et al., 2018; Macfadyen et al., 2018).  

This paper uses the common name "cassava whitefly" 
to refer to multiple species in the B. tabaci pest species 
complex. It has only recently become clear that this 
singular  species  and  genus  name   is   a   complex   of 
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morphologically identical but very different whitefly 
species (Mugerwa et al., 2018). In Uganda, there is a 
molecular evidence that the B. tabaci Sub-Saharan Africa 
1 (B. tabaci SSA1) species is common in cassava fields 
(Kalyebi et al., 2021; Macfadyen et al., 2021), but it is not 
the only species present in fields across Malawi, 
Tanzania and Uganda. We know that smallholder 
cassava production systems in East Africa are incredibly 
diverse in crop types grown over space and time (Kalyebi 
et al., 2021; Macfadyen et al., 2021).  

Farmers in these landscapes need to have the 
knowledge and resources to manage various pest 
challenges to maintain food security for their households 
and production at the country level.  

Yet there has been relatively little focussed research 
support to identify intervention options that can be 
integrated into these particular farming systems (Alene et 
al., 2013, 2018).

 
Many studies show that cassava is 

important for income and food security in many African 
countries (Alene et al., 2013, 2018; Avit, 2020; Fermont 
et al., 2010; Roothaert and Magado, 2011).  

Most research to date, however, has focused on 
developing new cassava varieties with resistance or 
tolerance to diseases, while there has been little work on 
the impacts of whitefly pests and associated diseases on 
smallholder production systems (Alene et al., 2013). 
Furthermore, research investment in understanding the 
scale of the problem associated with the cassava whitefly 
pests and the limitations on cassava productivity have 
been piecemeal (Macfadyen et al., 2018). Fermont et al. 
(2009) suggested that pests and diseases were relatively 
unimportant production constraints. However, there have 
been high cassava whitefly populations in East and 
Central Africa over time, causing yield losses of about 
40% per year (Macfadyen et al., 2018). In the 1990s, a 
devastating CMD pandemic occurred in the region, 
originating in Uganda and progressed through East and 
Central Africa (Legg and Fauquet, 2004).  

CMD continues to threaten cassava production in the 
Lake Victoria region, reducing yields by up to 80-90% 
(Vurro et al., 2010). Each year it is estimated that about 
30% of the cassava harvest in Africa is lost to CMD, 
equivalent to $1.25 billion worth of production (Legg et 
al., 2006). Meanwhile, CBSD was listed amongst the 
seven most dangerous plant diseases globally because 
of the food security impacts in Africa (Pennisi, 2010).  

The total economic losses to CBSD are estimated to be 
US$100 million annually (Pennisi, 2010).   However, few 
studies have examined the impacts of cassava whitefly 
pests and diseases on productivity of smallholder 
production systems (Alene et al., 2013).  

This study aims to fill this gap in the literature and 
provide a firm socio-economic basis against which to 
assess the impact of interventions to reduce the damage 
caused by whitefly and whitefly-vectored diseases. 
Furthermore, this study provides an up-to-date socio- 
economic   assessment   against  which  to  measure  the 

 
 
 
 
impacts of current and future investments in cassava 
research.  

Against this background, we conducted a 
comprehensive socio-economic study to determine the 
status of cassava productivity in Malawi, Tanzania, and 
Uganda with the following research questions: (1) What is 
the status of cassava production and productivity in the   
study areas in Malawi, Tanzania, and Uganda? These 
are key baseline data against which any improvements in 
cassava productivity can be measured. (2) What is the 
impact of the cassava whitefly and diseases on 
smallholder farmers’ productivity? A key objective of this 
paper was to document the impact of the cassava 
whitefly, as damage from direct feeding (and the 
production of sooty mould) can be as problematic as the 
viruses they vector. The data to show which of these is 
more impactful (cassava whitefly or the viruses they 
vector, or a combination of both) is not available. Farmers 
who use cassava varieties that are tolerant to diseases 
(so virus impacts are assumed to be low) still see losses 
from cassava whitefly feeding damage. Throughout our 
study, the data we collected includes impacts of both the 
cassava whitefly and disease, as this is what farmers 
observe. (3) What is the current adoption rate of 
improved cassava varieties in the study countries? These 
are also key baseline data required for future intervention 
evaluations in smallholder cassava production systems. 
There are significant changes throughout the three 
countries to the way cassava is grown (e.g. two seasonal 
plantings per year in Uganda versus one in Malawi, and 
the degree and type of intercropping changes) and its 
role in the farming system and farm household. 

Few studies have examined the impacts of the cassava 
whitefly pests and diseases on the productivity of 
smallholder farmers (Alene et al., 2013). The impact of 
whitefly pests to smallholder production systems (that is, 
the trade-offs in the use of labour and inputs for cassava 
and other crops grown) is also not well understood. We 
address this issue by employing a farm-level stochastic 
production frontier (SPF) model, which incorporates 
"environmental factors" such as pests and diseases and 
socio-economic factors (Sherlund et al., 2002). Our paper 
offers two contributions relative to the existing literature. 
Firstly, it estimates the impacts of the cassava whitefly 
pests and diseases on the productivity of smallholder 
farmers. We illustrate these impacts by focusing on 
smallholder farmers' productivity and technical efficiency 
(TE). TE is a component of economic efficiency and 
reflects the ability of a farmer to maximize output from a 
given level of inputs (that is, output orientation). We 
recognize that there are gains in output that could be 
achieved in the short run by also improving allocative 
efficiency, but this was not the focus of the current study. 
Secondly, we provide preliminary estimates of the 
adoption of improved cassava varieties in Malawi, 
Tanzania, and Uganda. Our results can help design 
extension  strategies  and  evaluate  the  effectiveness  of 



 
 
 
 
potential interventions to control whitefly pests and 
diseases in East and Central Africa. The results will 
inform policymakers on how to increase efficiency by 
determining the extent of technical inefficiency prevailing 
in smallholder cassava systems and the potential sources 
of inefficiency to target interventions more appropriately. 
The results will also help ensure the long-term 
sustainability of scarce resources such as land and other 
inputs by identifying efficient use of resources committed 
to production of cassava in an optimal manner.  
 
 
METHODOLOGY 
 
This study is based on 2015/2016 cross-sectional data collected 
from a sample of smallholder cassava farmers in Malawi, Tanzania, 
and Uganda. A combination of methods was used to gather data for 
the study. These include household surveys, field observations, 
workshops, and literature reviews. The socio-economic data 
collected were analyzed using descriptive statistics such as means, 
standard deviation and frequency. The profitability of cassava 
production was determined using a gross margin (GM) analysis to 
gain insights into whether it influences the adoption of improved 
varieties. GM were calculated as the difference between the gross 
value of output and variable costs, using the prevailing input and 
output prices in the study countries. The impact of the cassava 
whitefly pests and diseases on the productivity of smallholder 
cassava farmers was analysed by using an SPF model. This 
section provides details of the methods and data used in the study. 

 
 
Stochastic production frontier model 

 
Given the influence of weather, pests, diseases, other exogenous 
factors and measurement errors on resource use efficiency in 
agriculture, a common approach for estimating TE involves the use 
of the stochastic production frontier (SPF) model. We employed the 
SPF model to examine the impacts of the cassava whitefly pests 
and diseases on productivity in smallholder production systems. 
SPF models have been widely used to study TE of farming systems 
in several African countries (Sherlund et al., 2002; Tchale and 
Sauer, 2007; Liu and Myers, 2009; Eze and Nwibo, 2014; Debebe 
et al., 2015; Ainembabazi et al., 2017; Baffoe-Bonnie and 
Kostandini, 2019; Missiame et al., 2021; Taffesse et al., 2021). 
However, with the exception of Sherlund et al. (2002), Baffoe-
Bonnie and Kostandini (2019), many of the studies cited above 
neglect the influence of environmental factors such as pest and 
disease infestation, which may result in biased estimates of the 
production frontier. This is important because most farming systems 
in Africa are rain fed and production decisions are influenced by 
environmental and ecological factors (Sherlund et al., 2002). We 
employed a model that incorporates environmental factors such as 
pests and diseases and socio-economic factors in both the 
production frontier and the inefficiency functions. We specified the 
SPF model for cross-sectional data as follows (Kumbhakar et al., 
2015): 

 

                              (1) 

 

                            (2) 

 
where:    represents cassava output of a single farm i,     is a 
vector (in logs) of input variables, β is a vector of parameters  to  be  
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estimated, the composed error term (εi) is the sum or difference of a 
normally distributed disturbance (vi), representing measurement 
and specification error, and a one-sided disturbance (ui), 
representing production inefficiency. The vi is assumed to be 
independently and identically distributed across observations as 

    (    
 ). Several different distributional assumptions have been 

proposed for the ui, the most common being a normal distribution 
truncated at zero (Aigner et al., 1977) and a half-normal distribution 
truncated at zero (Jondrow et al., 1982). Following Aigner et al. 
(1977), we assume that the inefficiency effects are independently 
distributed and    arises by truncation (at zero) of the normal 

distribution, with mean    and variance    (    
 (    

 )).  

Following Jondrow et al. (1982), the TE of an individual cassava 
farm was defined in terms of the observed output (yi) to the 
corresponding frontier output (  

 ). The   
  is the maximum output 

attainable given the existing production technology and assuming 
100% efficiency. 
 

         (3) 
 
Because ui ≥ 0, the ratio is bounded between 0 and 1, with ui = 1 
implying that the farmer is fully efficient technically. The value of 
   (   )       is the percentage of the maximum output that is 
produced by the individual cassava farm i (Battese and Coelli, 
1988). 

 
 
Translog stochastic frontier production function  
 
The functional form employed in the empirical analysis is the 
translog stochastic frontier production function. We specified a 
flexible, functional form to account for non-linearity and interactive 
substitution and complementarity effects among the production 
factors. An alternative specification for production frontier is the 
Cobb-Douglas function which is nested within the translog function 
(Taylor and Shonkwiller, 1986). We tested empirically for the correct 
functional form of the model. We assumed separability of country 
functions and estimated separate SPF models for each country to 
account for differences in resource availability, technology, weather, 
pest and disease pressures, and socio-economic conditions across 
the various cassava systems in the study countries (Sherlund et al., 
2002). The translog SPF model was specified as follows: 

 

                                                                                                        
                                                                                                      (4) 

 
where: i subscript denoting the i

th
 farm in each country. Three inputs 

were employed in the production frontier: land (acres) under 
cassava (x1), number of bags of cassava cuttings (x2), and total 
labor (x3, measured in person-days) obtained by summing family 
and hired labour. Battese and Coeli (1992) suggested that family 
and hired labor are both productive. We tested this assumption 
empirically and accepted it in this study.

  
Alene et al. (2006) also 

used total family labor, exchange labor and hired labor in person-
days. Thus, only total labor days were included in the final model.  
Other inputs such as fertiliser and chemicals were dropped from the 
analysis because there was low usage across the smallholder 
cassava production systems in the study countries. We recognise 
that farmers make decisions on these inputs, and thus there might 
be an endogeneity variable problem. While there have been 
renewed efforts in addressing endogeneity in stochastic production 
functions  (Amsler   et  al.,  2016;  Karakaplan,  2017),  this  topic  is  

𝑙𝑛 𝑖 = 𝑓( 𝑖 ;𝛽)+ 휀𝑖   

휀𝑖 =  𝑖   𝑖     

𝑇𝐸𝑖 =
 𝑖

 𝑖
 =
𝑓( 𝑖 ;𝛽).   ( 𝑖  𝑖)

𝑓( 𝑖 ;𝛽).   ( 𝑖)
=    (  𝑖)  

𝑙𝑛 𝑖 = 𝛽0 + 𝛽𝑗 𝑙𝑛 𝑖 +
1

2

3

𝑗=1

 

3

𝑗=1

 𝛽𝑗 ,𝑘 𝑙𝑛 𝑖𝑗 𝑙𝑛 𝑖𝑘 + 𝜏𝑖 +  𝑖   𝑖

3
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worthy of a separate investigation. We include district fixed effects 
dummy variables (𝜏 ) to account for the influence of agro-climatic 
factors (e.g., rainfall and temperature), and changes in the farming 
systems across the districts included in the study countries 
(Sherlund et al., 2002; Baffoe-Bonnie and Kostandini, 2019). Since 
these fixed effects dummy variables are common to all farms in a 
district, they capture region-specific unobserved heterogeneity 
across cassava production systems in the study countries. β0 is a 
constant while βi are coefficients to be estimated. We used robust 
standard errors clustered at the district level to account for  
heteroscedasticity in the model. 

To assess the factors influencing inefficiency, we defined 
technical inefficiency as a function of farm-specific factors. The 
technical inefficiency function, comprising the vector of variables Z, 
was incorporated into the SPF model, assuming that they may 
indirectly influence efficiency. We assume that the mean of the 
truncated normal is data-dependent and a linear combination of our 
Z variables, as given in Equation 5. We followed the earlier studies 
which recommended jointly estimating both Equations 4 and 5 in a 
single-stage maximum likelihood estimation procedure (Battese and 
Coelli, 1995; Belotti et al., 2013; Koirala et al., 2016). We 
implemented the estimation procedure in Belotti et al. (2013) using 
the statistical software Stata version 16.The model was specified 
as: 
 

    
                                                                                                       (5) 
Where the Z's are socio-economic variables including: 
 
(i) Z1 is the gender of the household head (a dummy variable with 
the value of 1 if yes and zero if otherwise),  
(ii) Z2 is the education level of the farmer in years,  
(iii) Z3 is farming experience in years,  
(iv) Z4 is household size,  
(v) Z5 is farm size in acres,  
(vi) Z6 is land tenure measured using categorical variables. We 
divided tenure into four categories: freehold, leasehold, customary 
and other forms such as squatters,  
(vii) Z7 is membership in a farmers' group (a dummy variable, with 
the value of 1 if yes and zero if otherwise),  
(viii) Z8 is access to credit (a dummy variable, with the value of 1 if 
yes and zero if otherwise),  
(ix) Z9 is access to extension services (dummy variable, with the 
value of 1 if yes and zero if otherwise),  
(x) Z10 is a dummy variable for intercropping systems to test their 
effects on the output of cassava farmers.  
(xi)     is a dummy variable for improved cassava varieties which is 
included to test whether or not they directly affect productivity 
(Sherlund et al., 2002), 
(xii) Z12 is the distance (km) to the nearest market, 
(xiii) Z13 is the distance (km) to the district headquarters, 
(xiv)     is the plot altitude (meters above sea level), 
(xv)     represents the cassava whitefly pest and disease 
infestation. We used farmer estimated yield losses as our proxy 
measure of productivity impacts (Sherlund et al., 2002), 
(xvi) δ0–δ16 are parameters to be estimated. 
 
Since the dependent variable is technical inefficiency as opposed to 
TE, we expect the parameters δ1 δ11 to have negative signs while 
δ12   δ15 to have positive signs. Several hypotheses were tested 
using a generalised likelihood ratio test. The first null hypothesis 

tested whether technical inefficiency effects are absent (  
   ) 

and was specified as ,  where  and  its  

 
 
 
 
value ranged between 0 and 1 (Kumbhakar et al., 2015). This test 
was conducted against the full SPF model. The second null 
hypothesis was whether the correct functional form of the SPF 
model in Equation (4) was a Cobb-Douglas function. The third null 
hypothesis was whether the explanatory variables influence the 
inefficiency function in Equation 5. Given the assumption that the 
inefficiency effects are distributed as a truncated normal, the null 
hypothesis was that the matrix of parameters is zero (   𝛿  𝛿  
  𝛿    ).  

Finally, we followed other studies and evaluated the elasticity of 
output with respect to the k

th
 input variable (εk) at the mean values 

of the data points as follows (Hong et al., 2019): 
 

         (6) 
 
where:  ̅ are the means of input variables used in the production 
frontier. The elasticity (휀 ) measures the responsiveness of output 
to a 1% change in the kth input. Returns to scale (RTS) measure 
the sum of all production elasticities for all the inputs or the 
proportionate change in output if all the inputs were changed 
simultaneously by 1% (Coelli et al., 2005). The various forms of 
RTS are increasing (εp > 1), constant (εp = 1), and decreasing (εp < 
1). By restricting the sum of output elasticities of all inputs to be 
equal to 1, we can test the assumption of constant returns to scale.  

 
 
Study areas 
 

The study was conducted in Malawi, Tanzania, and Uganda, and it 
focused on areas with high cassava whitefly populations and 
districts most affected by disease (CMD and CBSD) outbreaks. We 
targeted areas with similar biophysical and socio-economic 
characteristics to identify a clear causal influence and effects on 
households. The study involved the design and development of 
survey tools, training of enumerators, workshops and pre-testing of 
survey tools and questionnaires in the study countries. In Uganda, 
the study specifically targeted the major cassava-producing districts 
in the north (Apac), central (Nakasongola and Kiryandongo), and 
eastern regions (Serere, Tororo, and Kamuli). Apac district is 
located within the northeastern savanna grassland agro-ecological 
zone while Kamuli, Serere and Tororo are situated within the Kyoga 
plains agro-ecological zone. Both zones are characterized by 
lowland rainfed conditions with annual rains averaging 1215-1328 
mm (usually two seasons per year) and temperature ranges of 15-
32.5°C. Altitude ranges from 914-1800 m.a.s.l. Nakasongola and 
Kiryandongo on the other hand are situated within the pastoral 
rangeland agro-ecological zone and receive relatively less average 
annual rainfall of about 915-1021 mm which also comes in two 
seasons per year with temperature ranges of 12.5-30°C and an 
altitude range of 129-1524 m.a.s.l. In Tanzania, the survey covered 
the districts of Geita, Musoma rural, Rorya, and Ukerewe. These 
districts are around Lake Victoria, experiencing bimodal rainfall with 
annual of 1,200 mm during long rains and 415 mm on short rains, 
with annual mean tpreture range of 28 to 15.8°C. The topography is 
generally undulating with the soils varying from the red friable clays 
north of Geita town to the more dominant brown, the yellow red 
loamy sands and sands in Ukerewe island. In Malawi, the study 
targeted the main growing areas in the northern belt along the 
lakeshore (Karonga, Nkhata Bay, and Nkhotakota) and the central 
belt (Lilongwe). Malawi is classified into three agro-ecological zones 
based on soil factors, altitude, the amount, duration, and variability 
of rainfall, and temperature regimes: the Lower Shire valley; the 
lakeshore plains and Upper Shire valley; and the mid-altitude 
plateau, with the highlands sometimes counted as a fourth. There 
are two distinct seasons: a wet, warm season from October to April, 
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Figure 2. Number of sample households (per 3 km × 3 km grid) in Malawi, Tanzania, 
and UgandaData  
sources: Farmer surveys, 2015/2016. 

 

 
 

and a dry, cool season from May to September. Figure 2 shows the 
distribution of sample households across selected cassava 
production regions. 
 

 
Sampling procedure and data collection 
 
We obtained data and information from primary and secondary 
sources. The primary data were collected from a sample of 1,200 
cassava farmers across Malawi, Tanzania, and Uganda. A multi-
stage sampling procedure was used to select respondents. In the 
first stage of the sampling procedure, six districts in each country 
were  purposively   selected   based   on  their  cassava  production 

statistics in past years. Each district was assigned an equal number 
of sample households. The second stage was the random selection 
of 4–6 villages within the selected districts and finally, the random 
selection of 50 cassava households per village. This gave a total of 
1200 households: 450 in Uganda, 400 in Malawi, and 350 in 
Tanzania. The sampling strategy ensured an unbiased and 
representative sample of the population of cassava farmers in the 
study areas. We generated the sampling frame from which farmers 
were selected randomly from a list of farmers obtained from the 
district agricultural officers in each country. Figure 2 shows the 
distribution of households across districts in each country. It was 
desirable to have a sample representative of all cassava farmers in 
the country for generalisation.  We used sampling weights specified  
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as the inverse of the probability of inclusion of the observations to fit 
the regressions (Cameron and Trivedi, 2010). 

Data were collected using a pre-tested structured questionnaire 
completed during face-to-face interviews by trained enumerators 
and extension staff with individual farmers.

2
 Respondents were 

interviewed by appointment, made through the district extension 
workers and contact farmers. Pre-testing was conducted on 20 
farmers in each country to assess the suitability of the 
questionnaire. Data collected included socio-economic 
characteristics of respondents such as age, gender, education 
levels, household income, and quantities of inputs used in cassava 
production, such as cassava acreage, output, labor, prices, 
cassava variety, and impacts of whitefly pests and diseases. The 
respondents were provided with additional information, including 
color pictures of the cassava whitefly pests and diseases with 
associated symptoms to minimise potential bias from farmers self-
assessment. Field observations supplemented information obtained 
from interviews. The final surveys were conducted during October 
7-31, 2015 in Uganda and Malawi and August 15-21, 2016 in 
Tanzania. The survey questionnaire took on the average, 2–3 hours 
to be completed by a respondent. It was reviewed and approved by 
the CSIRO Ethics Committee before its release in 2015 and 2016. 

 
 
RESULTS AND DISCUSSION 
 
Descriptive statistics of the survey sample 
 
Table 1 presents the descriptive statistics of the sample. 
In terms of farming systems characteristics, the average 
farm size was significantly higher (P < 0.05) in Uganda 
(9.84 acres) and Tanzania (4.26 acres) than in Malawi 
(2.70 acres). On average, cassava occupied 2 acres (or 
51%) of the total farm size in the study countries, but the 
proportion of land under cassava was much lower in 
Uganda (22%). Cassava output was also higher in 
Uganda than in Tanzania and Malawi, and a greater 
proportion was sold at markets (54%). On average, 
improved cassava varieties are profitable across the 
study countries. The average cassava farmer in this 
sample used approximately 6 bags of planting material 
per acre and employed about 112 person-days of family 
labor per acre, and 47 person-days of hired labor per 
acre from outside the household (Table 1). These figures 
indicate that labor remains a key constraint for 
smallholder cassava production systems in the three 
study countries.

3
 Daniels et al. (2011) found labor to be a 

costly input in their study of the cassava value chain in 
Niger. Another study by Fermont et al. (2010) reported 
labor to be a costly input in their study of cassava 
production   in   Kenya  and  Uganda.  Improved  cassava  

                                                            
2 The survey was conducted by the CSIRO in collaboration with the respective 

countries National Agricultural Research Institutions. These included the 

National Root Crops and Resources Research Institute in Uganda, Mikocheni 

Agricultural Research Institute and Agricultural Research Institute Ukiriguru in 

Tanzania, and the Department of Agricultural Research Services in Malawi. 
3 A caveat is noted here. A reviewer observed that since family labor may be 

residents on the farm and since they are unpaid, they may not be performing 

any significant economic function on the farm. However, most smallholder 

farmers depend on family labor for their farm operations (Alene et al., 2006). 

The implication is that family labor is likely to be overestimated in the study. 

We thank the reviewer for pointing out this limitation. 

 
 
 
 

varieties were widely adopted by farmers in Uganda 
(70%) and Malawi (51%), compared to Tanzania (11%). 
More than one-third of the sample practised legume 
intercropping system. However, there was little usage of 
chemical fertiliser and pesticides (Table 1). Nweke (1996) 
reported that less than 10% of cassava farmers used 
inorganic fertilisers in Africa. In general, non-labour inputs 
are undersupplied to cassava farmers. The reasons for 
the undersupply include uncoordinated distribution 
networks for inputs, limited private sector involvement in 
fertiliser supply, and high distribution costs to remote 
farmers (Daniels et al., 2011). High input costs are also a 
major barrier for smallholder farmers. Furthermore, little 
information is currently available regarding cassava’s 
yield response to fertiliser in East Africa (Fermont et al., 
2008). However, a study by Biratu et al. (2018) reported 
that cassava productivity can be improved through the 
integrated use of NPK and manure in Zambia. In Brazil, a 
study also showed that cassava varieties are responsive 
to fertilisation (Jala et al., 2019).  

Most survey respondents (75%) were aware of whitefly 
pests and diseases before this survey. The respondents 
reported a high incidence (>80%) of cassava whitefly and 
diseases in their cassava fields consistent with other 
studies (Chipeta et al., 2016). These impacts were 
asymmetrically distributed, with higher mean impacts 
reported in Uganda and Tanzania compared to Malawi 
(Table 1). We recognise that farmers' self-assessment of 
the impacts may be biased, and the severity of pests and 
disease symptoms in plants is not always correlated with 
the degree of yield loss (Hillocks et al., 2016). However, 
our results match field surveys reported by other studies 
and highlight the magnitude of the whitefly problem. For 
example, Legg and Fauquet (2004) estimated that 
cassava whiteflies caused 30-40% cassava yield losses. 
In Tanzania, a similar field trial conducted by Hillocks et 
al. (2001) showed that CBSD could decrease root weight 
in the most sensitive cultivars by 70%. In Uganda, a 
recent trial protected cassava plots of clean cuttings from 
whitefly infestation using insecticides. The root and stem 
yield losses of greater than 60% were recorded in the 
unprotected control plots. This loss was primarily due to 
the direct impacts of the whitefly (as disease pressure 
was low) (Omongo et al., 2022). Therefore, as estimated 
by farmers (Table 1), our survey results fall near the 
range of experimental and published estimates. The 
patterns in several socio-economic factors were 
consistent across the three countries (Table 1). 

Male cassava farmers headed more than 65% of the 
sample households. This statistic is consistent with 
national figures in the study countries. For instance, only 
three in ten households in Malawi were headed by 
women in 2015/2016 (National Statistical Office (NSO), 
2017). Furthermore, we argue that the proportion of 
female cassava farmers was low in this study because 
the land ownership systems in these countries favor men 
and household decision-making on land use is dominated 
by men  (Kassie  et  al., 2013, 2015). The average age of 
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Table 1. Descriptive statistics of the sample. 
 

Variable 
Malawi 

(n=400) 

Tanzania 

(n=350) 

Uganda 

(n=450) 

Pooled  

(n=1200) 

Farm characteristics       

Cassava yield (kg/acre) 2,929 (1,907) 6,290 (1,268) 9,381 (3,057) 6,200 (4,194) 

Farm size (acres) 2.69 (1.97) 4.26 (3.54)* 9.84 (20.10)*** 5.60 (8.54) 

Cassava acreage (acres) 1.44 (2.19) 2.46 (1.83) 2.21 (3.30) 2.04 (2.44) 

Share of land under cassava (%) 53 58 22 44 

Proportion of cassava sold (%) 9.14 (16.76) 34.86 (20.18) 53.88 (38.46) 32.63 (25.13) 

Net income ($/acre) 70.40 149.42 84.80 101.54 

Benefit/cost ratio (BCR) 3.00 7.4 5.00 4.50 

Cassava cuttings (bags/acre) 5.88 (1.49) 6.57 (6.33) 6.15 (2.10) 6.20 (3.31) 

Family labor (person-days/acre) 106.32 (113.20) 116.9075 (111.0875) 70.95 (96.29) 112.25 (168.96) 

Hired labor (person-days/acre) 12.73 (26.29) 15.96 (33.31) 34.03 (78.73) 47.19 (53.20) 

Total labor (person-days/acre) 119.48 (113.00) 126.34 (113.84) 104.79 (128.85) 116.87 (118.56) 

Improved cassava variety (1/0)  0.51 (0.50) 0.11 (0.31) 0.70 (0.57) 0.44 (0.43) 

Intercropping system (1/0)  0.36 (0.47) 0.71 (0.45) 0.30 (0.46) 0.46 (0.46) 

Inorganic fertiliser (%) 3.0 0.0 0.0 1.0 

Pesticide use (%) 2.0 2.0 1.0 1.7 
     

Pest and disease variables      

Whitefly infestation (1/0)  0.62 (0.48) 0.98 (0.14) 0.64 (0.48) 0.75 (0.37) 

CMD incidence (1/0)  0.67 (0.47) 0.95 (0.22) 0.78 (0.42) 0.80 (0.37) 

CBSD incidence (1/0)  0.57 (0.49) 0.98 (0.13) 0.84 (0.37) 0.80 (0.33) 

CMD impacts on yield (%) 17.28 (12.68) 43.55 (23.23) 38.42 (23.73) 33.08 (19.88) 

CBSD impacts on yield (%) 18.39 (13.56) 54.03 (22.72) 49.43 (30.25) 40.62 (22.18) 

Altitude (m)  654.48 (260.42) 1221.61 (104.88) 1073.60 (100.13) 983.23 (155.14) 
     

Socio-economic characteristics      

Age of HHH (yrs.) 47.41 (15.16) 51.07 (13.49) 46.06 (14.65) 48.18 (14.43) 

Age of spouse (yrs.) 38.29 (13.37) 42.17 (11.64) 38.28 (13.52) 39.58 (12.84) 

Farming experience (yrs.) 19.35 (13.18) 27.73 (14.04) 18.13 (12.54) 21.74 (13.25) 

Male household head (%) 65 80 76 73.67 

Education of HHH (yrs) 5.88 (3.38) 8.72 (5.94) 8.13 (4.13) 7.58 (4.48) 

Education of spouse (yrs.) 5.15 (3.25) 8.72 (5.95) 5.97 (3.69) 6.61 (4.30) 

Household size (number) 6.32 (2.65) 7.52 (3.75) 8.56 (3.91) 7.47 (3.44) 

Adult females (number)  1.83 (1.11) 1.99 (1.23) 2.16 (1.66) 1.99 (1.33) 

Adult males (number) 1.59 (1.12) 2.07 (1.28) 2.21 (1.85) 1.96 (1.42) 

Children<15 yrs (number) 2.92 (1.69) 4.40 (2.47) 4.24 (2.37) 3.85 (2.18) 
     

Institutional characteristics      

Access to credit (%) 16 22 33 23.67 

Member of organization (%) 34 43 47 41.33 

Access to extension services (%) 45 31 28 34.67 

Extension visits (number)  5.39 (3.03) 3.48 (4.24) 2.62 (2.03) 3.83 (3.10) 

Distance to market (km) 4.86 (25.39) 4.56 (12.19) 4.66 (5.73) 4.69 (4.44) 

Walking time to market (hours) 1.85 (6.62) - 1.47 (3.13) 1.68 (5.29) 
     

Land tenure      

Freehold (dummy)  0.09 (0.29) 0.38 (0.49) 0.28 (0.45) 0.25 (0.41) 

Leasehold (dummy) 0.01 (0.10) 0.01 (0.09) 0.04 (0.19) 0.02 (0.13) 

Customary (dummy) 0.87 (0.34) 0.59 (0.49) 0.62 (0.49) 0.59 (0.43) 

Others (dummy)  0.03 (0.17) 0.03 (0.16) 0.06 (0.23) 0.04 (0.20) 

Livestock ownership (%) 85 90 97 90.67 
 

Significance levels: * p<0.05; ** p<0.01; *** p<0.001. HHH= Household Head; CMD is Cassava Mosaic Disease; CBSD is Cassava Brown 
Streak Disease. 
Source: Field surveys, 2015/16. Figures in brackets are standard deviations. 
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Table 2. Hypotheses tests for the stochastic frontier and technical inefficiency function. 
 

Null hypothesis 
Likelihood 

ratio stat 

Critical value  

(5%) 
Decision 

Malawi     

1. No stochastic frontier (γ = 0) 587.00 5.138 Reject 

2. Cobb-Douglas frontier (𝛽  𝛽    𝛽   ) 31.47 12.592 Reject 

3. No technical inefficiency functn. (δ1 = δ2 =…= δ15 = 0) 7.05 3.84 Reject 

    

Tanzania     

1. No stochastic frontier (γ = 0) 430.41 5.138 Reject 

2. Cobb-Douglas frontier (𝛽  𝛽    𝛽   ) 35.70 12.592 Reject 

3. No technical inefficiency functn. (δ1= δ2 =…= δ15 = 0) 7.44 3.84 Reject 

    

Uganda     

1. No stochastic frontier (γ = 0) 418.89 5.138 Reject 

2. Cobb-Douglas frontier (𝛽  𝛽    𝛽   )  39.63 12.592 Reject 

3. No technical inefficiency functn. (δ1= δ2 =…= δ15 = 0) 7.57 3.84 Reject 

    

Pooled     

1. No stochastic frontier (γ = 0) 275.13 5.138 Reject 

2. Cobb-Douglas frontier (𝛽  𝛽    𝛽   )  21.03 12.592 Reject 

3. No technical inefficiency functn. (δ1= δ2 =…= δ15 = 0) 8.077 3.84 Reject 
 

The critical values for the test statistics are from a mixed chi-squared distribution and were drawn from Table 1 of Kodde 
and Palm (1986). 
Source: Farmer surveys, 2015/2016  

 
 
 
cassava farmers in the sample was about 48 years. The 
average educational attainment of cassava farmers was 
approximately 8 years across the three countries. 
Similarly, the average household size was seven persons 
across the sample. It should be noted that larger 
household sizes have advantages in providing labor for 
cassava production. Overall, these statistics suggest that 
the sample was representative of the general profile of 
farmers in the study countries. For example, comparison 
with national statistics for Malawi (NSO, 2017), Tanzania 
(National Bureau of Statistics (NBS), 2018) and Uganda 
(Uganda Bureau of Statistics (UBOS), 2017) indicates 
that the sample age, education, and household size were 
not significantly different to that of the general population.  
In terms of institutional factors, there was variation across 
the study countries, but most cassava farmers lacked 
access to credit, and only 41% were members of a 
farmers' group. A related issue here is market access, 
which can affect transaction costs for cassava farmers in 
accessing information, planting materials, technologies, 
and support institutions. The average "walking distance" 
to the nearest market (a proxy for market access) was 
about 5 km and the average "walking time" to the nearest 
market 1.8 h. The implication is that cassava farmers are 
missing access to enable them to exploit gains that may 
come with such support services. 

Stochastic production frontier models 
 
The hypotheses about the SPF model were tested using 
generalized likelihood ratio tests, as summarized in Table 
2. The tests were used to confirm the correct functional 
form of the model. The model was initially specified as a 
translog production frontier in all cases. The hypothesis 
that the correct functional form of the model is Cobb-
Douglas was imposed by testing the squared and cross-
product terms from the translog production function 

(    𝛽     ). The results showed that at the 5% level of 

significance, (1) the SPF model is appropriate (H0: γ = 0 
is rejected); (2) the Cobb-Douglas functional form is 
rejected for all the models and (3) the technical 
inefficiency function depended on the vector of 
explanatory variables (H0: δ1 = δ2 =…= δ15 = 0 is 
rejected). To examine the effects of omitting 
environmental factors, we estimated the production 
frontier with and without the environmental variables 
(Sherlund et al., 2002). Tables 3 and 4 reports parameter 
estimates of the translog SPF models without and with 
environmental factors, respectively. The SPF models 
were all statistically significant and appropriate, based on 
the Wald chi-square statistics (P < 0.05). The variance 
ratios (gamma, γ) is significantly different from zero 
across all  the  models, suggesting that  the  variations  in 
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Table 3. Stochastic production frontier estimates for cassava farms in Malawi, Tanzania, and Uganda (without 
environmental factors). 
 

Variable Malawi Tanzania Uganda Pooled 

ln (Land)  0.21 (0.16)** 0.25 (1.21)* 0.75 (1.15)*** 0.82 (1.03)** 

ln (Cuttings)  0.34 (0.28)* 0.80 (0.96)* 0.54 (0.51)* 0.59 (0.27)* 

ln (Total labor)  0.93 (0.28)*** 0.10 (0.29)* 0.90 (0.52)* 0.11 (0.54)* 

ln (Land)
2
 -0.01 (0.74) -0.14 (0.34)* -0.45 (0.23)* -0.44 (0.09)*** 

ln (Cuttings)
2
 0.03 (0.04)* 0.10 (0.14)* 0.03 (0.02)* 0.01 (0.01)* 

ln (Total labor)
2
 -0.12 (0.04)** -0.10 (0.03)** -0.04 (0.03)* -0.04 (0.03) 

ln (Land) x ln (Cuttings) -0.34 (0.13)** -0.18 (0.44)* -0.22 (0.14)* -0.09 (0.08)* 

ln (Land) x ln (Total labor) -0.30 (0.28)* 0.10 (0.18)* -0.34 (0.13)** 0.05 (0.20)* 

ln (Cuttings) x ln (Total labor)  0.02 (0.10)* 0.40 (0.21)* 0.040 (0.08)* 0.08 (0.05)* 

Constant 5.37 (1.01)*** 7.36 (1.69)*** 1.10 (2.07) 6.77 (1.90)*** 
     

Diagnostic statistics     

Sigma-u (σ_u) 0.39 (0.07)*** 0.62 (0.10)*** 1.66 (0.14)*** 0.84 (0.07)*** 

Sigma_v (σ_v) 7.72 (2.42)*** 35.61 (3.01)*** 57.94 (8.35)*** 6.38 (1.33)*** 

Gamma (γ) 0.05 (0.03)*** 0.02 (0.03)*** 0.03 (0.02)** 0.13 (0.05)*** 

Log-likelihood -676.12 -245.73 -639.44 -1404.16 

Wald chi
2
  460.74 941.02 137.40 208.45 

AIC 1384.23 525.46 1312.88 2836.32 

BIC 1446.94 578.47 1375.21 2899.23 

Obs. 400 350 450 1200 
 

Legend: * p<0.05; ** p<0.01; *** p<0.001. 
Source: Farmer surveys, 2015/2016  

 

 
 

cassava output are not a result of randomness and 
unobserved heterogeneities, but due to farmers’ 
inefficiencies in resource use. The gamma (γ) values 
suggest that approximately 20-73% of the sample 
variation in inefficiency was explained by the set of 
exogenous factors in the full specification model (Table 
4).  

Since the initial focus here is model comparison, we 
limit the presentation of estimates in Table 4 to the key 
variables of interest. For model selection, we used the 
Akaike Information Criteria (AIC) and Bayesian  
Information Criteria (BIC) statistics.

4
 The statistical 

superiority of the full model specification is apparent 
based on the AIC/BIC statistics.  We found differences in 
AIC/BIC metrics across the models with and without 
environmental factors to be definitive in all cases.  We 
found that the full specification performs better across all 
models considered (Tables 3 to 4) with large AIC/BIC 
differences. The full specification model clearly 
demonstrates  a   better  overall  fit.  This  suggests  likely 

                                                            
4 Burnham and Anderson (2004) provide a rule of thumb for interpreting the 

difference between the minimum AIC value (AICmin) and any alternative model 

i (AICi) defined as Δi = AICi - AICmin. The best model has Δi=0, and all other 

models have Δi>0. The larger the Δi for any model, the less plausible it is. 

Burnham and Anderson propose that (1) if Δi<=2, there is substantial support 

for model i; (2) if 4<=Δi<=7, then there is less support; and (3) if Δi>10, then 

there is no support. Concerning the BIC, Raftery (1995) argues that a BIC 

difference of 10 clearly indicates a less preferred model.   

omitted variable bias in the estimates without 
environmental factors (Sherlund et al., 2002). Thus, going 
forward we focus on the full specification model in Table 
4.The results of the full SPF model estimation indicate 
that cassava output is significantly correlated with land 
area, the number of cuttings used, and total labor used 
(Table 4). The output elasticities are positive and 
statistically significant which is consistent with the 
production regularity condition of monotonicity (Sauer et 
al., 2006; Moreira and Bravo-Ureta, 2010). This implies 
that a 1% increase in the quantity of one input, ceteris 
paribus, will increase output by the magnitude of the 
output elasticity. For example, the elasticity of output to 
cassava stem cuttings is 0.50 in the pooled model, and is 
the second largest contributor to cassava output. Thus, a 
1% increase in the current level of cuttings increases 
cassava output by 0.50%. Land is the largest contributor 
to cassava output in the pooled model, with an elasticity 
of 0.67.  

This implies that a 1% increase in the current level of 
land employed by farmers results in an increase of about 
0.67% in cassava output. These findings are consistent 
with existing studies of cassava production systems in 
Africa, which show that land, cuttings, and labor are 
important determinants of cassava output (Eze and 
Nwibo, 2014; Dogba et al., 2021; Missiame et al., 2021; 
Tafesse et al., 2021). Tafesse et al. (2021) found that 
land size,  urea fertiliser application and cassava planting 
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Table 4. Stochastic production frontier estimates for cassava farms in Malawi, Tanzania, and Uganda (with environmental 
factors). 
 

Variable Malawi Tanzania Uganda Pooled 

ln (Land)  0.64 (0.08)** 0.56 (0.02)*** 0.47 (0.55)*** 0.67 (0.16)** 

ln (Cuttings)  0.18 (0.47)* 0.07 (0.06)** 0.52 (0.69)* 0.50 (0.23)* 

ln (Total labor)  0.19 (0.98)* 0.15 (0.02)** 0.29 (0.57)* 0.10 (0.41)* 

ln (Land)
2
 -0.16 (0.22) -0.03 (0.01)* -0.28 (0.77)** -0.17 (0.45)* 

ln (Cuttings)
2
 0.08 (0.02)** 0.05 (0.01)* 0.02 (0.03)* 0.10 (0.02)* 

ln (Total labor)
2
 -0.23 (0.21) -0.21(0.01)* -0.02 (0.03) -0.02 (0.03)* 

ln (Land) x ln (Cuttings) -0.82 (0.71)** -0.64 (0.01)** -0.46 (0.20)* -0.10 (0.08)* 

ln (Land) x ln (Total labor) -0.28 (0.66)* 0.04 (0.01)*** -0.39 (0.16)* -0.01 (0.16)* 

ln (Cuttings) x ln (Total labor)  0.33 (0.10)** 0.39 (0.01)*** 0.24 (0.12)* 0.05 (0.04)* 

Constant  8.42 (2.13)* 14.79 (3.48)*** 10.79 (2.43)* 5.08 (1.38)** 
     

Districts   - -  

Lilongwe -0.93 (0.24)*** - - - 

Nkhata Bay -0.21 (0.20)*** - - - 

Nkhotakota -1.16 (0.25)*** - - - 

Butiama - -1.99 (0.43)*** - - 

Musoma - -1.22 (0.25)*** - - 

Rorya - -0.82 (0.28)** - - 

Ukerewe - -1.30 (0.27)*** - - 

Apac - - 1.31 (0.55)* - 

Kamuli - - 2.79 (0.85)*** - 

Kiryandongo - - 0.04 (0.19) - 

Nakasongola - - 1.75 (0.64)** - 

Serere - - 0.84 (0.49) - 
     

Diagnostic statistics     

Sigma-u (σ_u) 0.55 (0.26)** 0.20 (0.27)*** 0.39 (0.68)** 0.66 (0.13)*** 

Sigma_v (σ_v) 0.76 (0.12) *** 0.39 (0.01)*** 1.44 (0.10)*** 2.87 (0.37)*** 

Gamma (γ) 0.73 (0.34) *** 0.52 (0.27)*** 0.27 (0.71)** 0.23 (0.20)*** 

Log-likelihood -120.04 -249.24 -258.33 -533.06 

Wald chi
2
  587.00 430.41 300.38 298.32 

AIC 222.67 183.08 618.66 1130.12 

BIC 309.22 298.98 770.47 1247.00 

Obs. 400 350 450 1200 
 

Variable definitions are given in the text. standard errors in parentheses. Significance levels: * p<0.05; ** p<0.01; *** p<0.001. Country 
fixed effects included in the pooled model. 
Source: Farmer surveys(2015/2016). 

 
 
 

material all had a positive and significant effect on 
cassava production in Southern Ethiopia. The finding on 
land, labor and cuttings are also consistent with those of 
Eze and Nwibo (2014) from Nigeria. Land and labor 
appear to be substitute inputs, as indicated by their 
statistically significant negative second-order effect in the 
pooled model. By contrast, the quantity of cuttings and 
labor are complementary inputs, as indicated by their 
statistically significant positive second-order effects 
across the study countries. 

The second-order terms (interaction terms) represent 
the second-order derivatives of the translog production 
function.  A   positive   coefficient   suggests   incremental 

changes in the marginal physical product (MPP) with 
every 1% increase in factor levels and vice versa, ceteris 
paribus. The squared term of land and labor were 
negative and statistically significant (p < 0.01) in the 
pooled model (Table 4). The negative coefficients of land 
and labour suggest that the MPP will fall with every 
additional unit they employ, thereby having negative 
effects on total cassava output. This suggests that 
cassava farmers are overusing land and labour. The 
squared term of cuttings was positive and statistically 
significant (p < 0.01) in the pooled model. The implication 
is that the current level of cuttings employed by cassava 
farmers  is   sub-optimal.  In  production  theory,  cassava  



 
 
 
 

farmers would be said to be operating in stage I, where 
the MPP of cuttings is still rising. Therefore, it is 
recommended for cassava farmers to increase the units 
of cuttings they employ, ceteris paribus.  

We included a set of dummy variables for each district 
in the model for each country. The districts with the 
largest number of observations were selected to be the 
omitted reference group for consistency. The coefficients 
of the district dummy variables were significant indicating 
substantial differences in cassava output amongst the 
districts included in the study (Table 4). In Malawi, 
cassava farmers in Lilongwe, Nkhata Bay and Nkhotakota 
produced significantly less output than those in Karonga 
district. Similarly, in Tanzania, cassava farmers in 
Butiama, Musoma, Rorya and Ukerewe districts had 
significantly less output than those in the Geita district. In 
Uganda, cassava output was significantly higher among 
farmers located in the districts of Apac, Kamuli and 
Nakasongola than in Tororo district. This result is 
consistent with national statistics which shows that these 
districts dominate production, contributing about two 
thirds of total cassava production in Uganda (UBOS, 
2021). These results may be explained by the differences 
in agro-climatic factors such as rainfall and temperatures 
and cassava production systems in those districts. 

In Table 5, we report the elasticity of production with 
respect to input variables. The estimated values of output 
elasticities for all inputs are positive, suggesting that the 
estimated translog production frontier model is a well-
behaved production technology.  

Additionally, all elasticity estimates were statistically 
significantly different from zero (p < 0.05). We found that 
total labor and land have the highest output elasticity 
across the three countries. The sum of production 
elasticities with respect to input variables was 1.9, 1.1, 
and 1.1 for Malawi, Tanzania, and Uganda, respectively. 
This result implies that cassava farms are operating in 
the increasing RTS region of the production frontier, 
suggesting they are in the "irrational" production stage. In 
this stage, cassava farmers tend to be inefficient in using 
resources. 
 
 
Technical efficiency estimates 
 
To compare the efficiency level across the three 
countries, we computed the distribution of TE scores of 
cassava farms (Figure 3). Table 6 shows summary 
statistics for TE by country. The mean TE of cassava 
farms was highest in Uganda (0.77), followed by Malawi 
(0.58) and Tanzania (0.53). This finding implies 
significant room for improvement and that efficiency 
levels could be increased through better use of available 
technologies and the same level of inputs. We examined 
the effects of omitting environmental variables on the 
estimates of TE. We found a large increase in the 
estimated    mean    and    median    TE    under   the   full  
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specification model (Table 6). This shows that the 
omission of environmental factors leads to a substantial 
downward bias in estimates of TE. This finding is in 
agreement with those of Sherlund et al. (2002) and 
Baffoe-Bonnie and Kostandini (2019) who demonstrated 
that accounting for environmental factors has a significant 
impact on farmers TE scores. 

 Our results indicate that accounting for environmental 
factors reduces inefficiencies that otherwise may be 
attributed to the characteristics of smallholder farmers. 
We argue that it may be more cost-effective to improve 
efficiency than to introduce new technologies if farmers 
are not optimizing the use of existing ones. The finding is 
consistent with other studies of cassava production 
systems. A survey byBravo-Ureta and Evenson (1994) 
estimated an average economic efficiency of 52% for 
smallholder cassava farmers in Paraguay, showing 
considerable room for productivity gains through better 
use of available resources and the given technology. We 
constructed confidence intervals around the mean scores 
using the approach of Horrace and Schmidt (1996), 
which showed significant variation in TE scores among 
cassava farms that may arise from their characteristics 
and existing technologies (Table 6).  

To further explore the impacts of the cassava whitefly 
pests and diseases, we disaggregated the mean TE 
scores by infestation status of the cassava farms. Figure 
4 is a plot of mean TE by the cassava whitefly, CMD and 
CBSD infestation status. This plot shows that the mean 
TE score was significantly lower (0.50) for cassava farms 
with whitefly (0.58), CMD (0.55) and CBSD (0.52) 
infestation than those without infestation (0.80 on 
average). The difference is especially large for 
CBSD/CMD in Malawi and Malawi (Figure 4). In other 
words, the TE scores were worse when cassava whitefly 
pests and diseases came into the smallholder cassava 
production systems. These results underscore the need 
for policies to ensure that cassava farmers have better 
access to improved inputs, especially clean planting 
materials. 
 
 
Determinants of technical inefficiency 
 
We return to the estimated technical inefficiency function 
in Table 7, where a negative sign indicates a decrease in 
technical inefficiency or an increase in TE. Focusing on 
the primary variable of interest, the coefficients of the 
cassava whitefly pest and disease infestation were 
positive and statistically significant in explaining farmers' 
inefficiency across all three countries. 

This indicates that the whitefly and disease infestations 
contributed to higher levels of technical inefficiency of 
cassava farmers. This finding contradicts Fermont et al. 
(2009), who suggested that pests and diseases were 
relatively unimportant as production constraints for 
cassava farmers  in  Uganda.  On the contrary, the use of  
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Table 5. Output elasticities for cassava production in the study countries. 
 

 Malawi Tanzania Uganda 

Land  0.70 (0.22)*** 0.46 (0.18)** 0.26 (0.32)*** 

Cuttings  0.80 (0.32)** 0.15 (0.20)* 0.38 (0.36) * 

Total labour  0.46 (0.93)* 0.51 (1.07)** 0.48 (0.62)** 

Returns to scale (RTS) 1.96 1.12 1.12 
 

Notes: Figures in brackets are standard errors. 
Source: Farmer surveys (2015/2016). 

 
 
 

 
 

Figure 3. Distribution of TE scores of smallholder cassava farmers. 
Source: Farmer surveys (2015/2016). 

 
 
 

Table 6. Technical efficiency summary statistics. 
 

Country/variables   

Malawi  Tanzania  Uganda  

Without 
env. factors 

With env. 
factors 

Without env. 
factors 

With env. 
factors 

Without 
env. factors 

With env. 
factors 

Mean  0.36 0.58 0.50 0.53 0.39 0.77 

95% CI  0.01-0.99 0.01-0.99 0.01-0.99 0.01-0.91 0.01-0.89 0.01-0.98 

Median  0.37 0.59 0.57 0.58 0.42 0.92 

Minimum  0.01 0.03 0.01 0.01 0.01 0.01 

Maximum  0.91 0.99 0.90 0.91 0.73 0.98 
 

Source: Farmer surveys (2015/2016). 
 

 
 

improved cassava varieties had a positive and significant 
influence on cassava output TE across the three 
countries.

5
 This result is consistent with those of  Debede 

                                                            
5 The most widely adopted varieties in Uganda were NASE 14 (31%), followed 

by NASE 3 (13%), NASE 13 (13%) and TME (10%) because of their high 

productivity. Similarly, in Malawi, the most commonly planted improved 

cassava varieties were Manyokola (24%), Gomani (23%), Sauti (17%) and 

et al. (2015) and Girma et al. (2017) in Ethiopia. The 
results suggest that farmers tended to be more efficient in 
monocropping fields than intercropping systems in 
Malawi and Tanzania. Intercropping also had a negative 
influence on TE in  Uganda  but  the  coefficient  was  not  

                                                                                                         
Beatrice (11%). In Tanzania, Mkombozi was the most common improved 

cassava variety used by farmers. 
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Figure 4. Distribution of technical (TE) in Malawi, Tanzania, and Uganda based on 
infestation status. A value of zero indicates that current technologies are not used effectively 
and a value of one indicates full use and efficiency of the available technology. 
Source: Farmer surveys (2015/2016). 

 
 
 
statistically significant at the 5% level.  Studies suggest 
that intercropping systems can both negatively and 
positively affect technical inefficiency (Alene et al., 2006; 
Hong et al., 2019). Intercropping systems generally have 
higher land-use efficiencies than mono-cropping systems 
(Alene et al., 2006). However, this may be achieved at 
the expense of the other inputs, such as labor (Huang et 
al., 2015). Alene et al. (2006) estimated the mean TE of 
maize–coffee intercropping systems in Ethiopia to be 
91%. They showed that farmers make efficient use of 
land and other resources through innovative cropping 
systems. A similar study by Dlamini et al. (2012) showed 
that integrating maize with other species increased the 
TE of farmers in Swaziland. Hong et al. (2019) reported 
that intercropping contributed to a higher TE in 
smallholder farming in China. However, Tchale and 
Sauer (2007) found a significant negative impact on TE 
when maize-based smallholder farmers in Malawi 
practised intercropping. Therefore, the results may be 
crop and location specific.  Plot altitude was not 
significant across the study countries.   

Education, farming experience, household size, 
membership of associations, credit, farm size, land 
ownership, extension, and distance to markets also 
significantly affected the TE of cassava farmers. Farming 
experience had a statistically significant and negative 
effect on inefficiency. This indicates that cassava farmers 
with many years of production are more efficient than 
those with fewer years of farming experience. This result 
is consistent with a priori expectations and showed that 
farmers use their experience to utilize their scarce 
resources efficiently. As expected, education  years   also 

had a negative and significant (p < 0.05) effect on 
inefficiency in all the countries. This indicates that 
farmers with more formal education were more efficient in 
cassava production than those with fewer years. This 
finding agrees with those of Kumbhakar et al. (1991) of 
US dairy farms, which showed that education increased 
labor and land productivity. A study by Huang and 
Kalirajan (1997) also reported that average household 
education level was positively correlated with TE levels 
for both maize and rice production in China. Similarly, 
household size had a significant negative effect on 
inefficiency in most study countries. This implies that 
household size led to increased efficiency through its 
positive correlation with the availability of family labor 
(Mignouna et al., 2012). 

As anticipated, farm size had a statistically significant 
effect on inefficiency. To examine possible non-linearities 
of the impact of farm size on TE, we included the square 
of the farm size as an additional explanatory variable in 
the model. The coefficient of farm size had a significant 
positive effect on inefficiency, while the squared farm size 
had a significant negative impact (Table 7). This finding 
suggests a non-linear relationship between farm size and 
TE, consistent with Hong et al. (2019) study. An 
extensive literature on this issue has produced mixed 
reports on the relationship between efficiency and farm 
size. Several studies have indicated that small farm sizes 
have a positive effect on farm-level efficiency because of 
their simplicity of management and lower costs than 
larger farms. Ahmad and Bravo-Ureta (1995) reported a 
negative correlation between herd size and TE in a study 
of  US  dairy  farms.  Parikh  et  al. (1995)  found that cost 
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Table 7. Sources of technical inefficiency of cassava farmers in the study countries. 
  

Variable Malawi Tanzania Uganda Pooled 

Improved cassava variety -1.31 (1.05)* -0.50 (0.02) -0.40 (0.48)* -1.08 (0.82)* 

Intercropping systems  0.87 (1.19)* 1.68 (1.09)* 0.22 (0.37) 0.74 (0.35) 

Whitefly impacts 0.59 (0.51)* 1.98 (0.98)* 0.32 (0.21)* 1.86 (0.66)** 

Male farm head -0.41 (0.06) -1.01 (0.95)* -0.10 (0.46)* -0.25 (0.87) 

Farming experience  -0.50 (0.11) * -1.17 (0.65)* -0.41 (0.25)* -0.94 (0.57)* 

Education years  -0.50 (0.92)** -1.22 (0.59)* 0.49 (0.44)* -0.75 (0.89)* 

Household size -0.32 (0.15)* -0.32 (0.94)* 0.36 (0.35)* -1.49 (0.94)* 

Farm size 0.77 (0.27) 0.12 (0.42) 0.10 (0.11) 1.81 (1.74) 

Farm size
2
 -2.55 (0.06) * -0.10 (0.09)* -0.16 (0.42)* -0.51 (0.44)* 

     

Land tenure      

Freehold ownership  -3.41 (3.14)* -2.56 (1.19)* -0.73 (1.17)* -1.60 (1.29)* 

Leasehold ownership -2.34 (2.93)* - -2.65 (1.74)* -4.57 (2.65)* 

Customary ownership -0.87 (1.01)* -2.65 (1.51)* -3.35 (1.51)* -4.19 (1.31)* 

Member of organisation -0.83 (1.13)* -0.04 (0.05)* -0.80 (0.37)* -1.10 (0.78)* 

Extension visits  -0.87 (0.98) -2.01 (1.26)* -0.27 (0.46) -0.77 (0.91)* 

Credit  -2.07 (0.89)* -0.07(-0.25)* -0.33 (0.39) * -0.32 (0.84)* 

Altitude 0.10 (0.18) -0.17 (0.28) 0.59 (0.64) -1.04 (0.88) 

Distance to market 1.01 (0.42)* 0.46 (0.47)** 0.33 (0.22)* 0.30 (0.54)* 

Distance to District HQ 0.44 (0.26)* 1.20 (0.67)* 0.12 (0.26) * 0.53 (0.51)* 

Obs. 400 350 450 1200 
 

Standard errors in parentheses.Significance levels: * p<0.05; ** p<0.01; *** p<0.001. Country fixed effects used in the pooled 
regressions.  
Source: Farmer surveys (2015/2016). 

 
 
 
inefficiency increased with farm size. Debebe et al. 
(2015) found that the landholding size has a negative and 
significant effect on the efficiency of maize production in 
Ethiopia. However, other authors have reported the 
opposite result showing a positive and statistically 
significant relationship between farm size and TE. This 
may be the case because larger farms are more likely to 
employ modern agricultural technologies and be more 
efficient due to the advantages of economies of scale and 
scope (Debebe et al., 2015). Kumbhakar et al. (1991) 
showed that larger farms are generally more efficient. 
Alvarez and Arias (2004) found a positive relationship 
between TE and the size of dairy farms in Spain. Huang 
and Kalirajan (1997) showed that the size of household 
arable land was positively related to TE in maize, rice, 
and wheat production in China.  

Regarding gender, male farmers in Uganda and 
Tanzania had a significant (p< 0.05) and negative effect 
on inefficiency. This suggests that the average household 
tended to have a lower inefficiency effect if it had a male 
head and vice versa. We found similar results in Malawi, 
although the variable was not statistically significant. Our 
findings agree with those of Liu and Myer (2009) which 
found that maize producing households in Kenya had a 
lower efficiency level if it had a female head. They 
observed that the effects of gender could be related to 

the land ownership patterns in these countries, which 
tend to favor men, and that female heads may be 
subjected to various forms of social discrimination 
associated with access to extension services, education, 
and access to good quality planting material. However, 
Kareem et al. (2017) showed that female cassava 
farmers contributed more to cassava production 
efficiency (0.59) than male farmers (0.54) in Ogun state 
in Nigeria. Okoye et al. (2016) reported a similar finding 
that female farmers were more technically efficient than 
male farmers among smallholder farmers in Madagascar. 
Missiame et al. (2021) showed that female-managed 
cassava farms in Ghana were technically more efficient 
than male managed farms, with average TE of 0.92 and 
0.23, respectively. Their findings depicted a relatively 
more efficient use of resources by female farmers 
compared to male farmers. There is evidence that when 
individual characteristics and access to inputs are 
controlled, female managed farms are equally efficient as 
male managed farms (Seymour, 2017; Missiame et al., 
2021).  The difference was attributed to factors such as 
access to inputs and resource endowments.   

Land tenure was found to have a significant effect on 
inefficiency. The results show that, compared to the 
squatters and other ownership forms, the coefficients on 
freehold,  leasehold    and    customary    ownership   was  



 
 
 
 
negative and statistically significant. This implies that 
these forms of land tenure reduced technical inefficiency 
compared with squatters and other forms. This finding 
agrees with those of Ahmed et al. (2002) for Ethiopia, 
Koirala et al. (2016) for the Philippines and Ma et al. 
(2017) for China, which showed that tenure security 
contributes to higher TE. Secure tenure can induce more 
investment (such as soil conservation) and increase TE 
in the long run (Place and Hazell, 1993; Deininger and 
Jin, 2006; Deininger et al., 2008). Place and Hazell 
(1993) showed that land tenure is important to investment 
and productivity in Rwanda. Studies on Uganda and 
Ethiopia found that tenure security has a positive impact 
on productivity (Deininger and Jin, 2006; Deininger et al., 
2008). 

Similarly, membership of a farmers' organisation and 
having access to credit and extension services had 
significant negative effects on inefficiency. Membership of 
farmers’ organisations allows farmers to interact and 
exchange information on new technologies, innovations, 
and management practices with other farmers. Thus, 
becoming a member of a farmers' organisation could help 
increase TE of cassava farmers.  

The coefficient of extension access was negative, 
which implies that access to agricultural extension 
services leads to a reduction in the farmers’ technical 
inefficiency. This finding is intuitive since agricultural 
extension agents are the primary sources of information 
on new and improved agricultural technologies for 
farmers in the three study countries. Extension agents 
provide training and guidance to cassava farmers on the 
best farm management practices. Therefore, farmers who 
have access to extension tend to be more efficient in their 
resource use.  

This finding aligns with that of Missiame et al. (2021), 
who found that access to extension services improves 
the technical efficiency of smallholder cassava farmers in 
Ghana. Lastly, the coefficients of distance to market and 
district headquarters were positive and significant across 
the three countries. This indicates that the average 
household tended to have larger inefficiency levels if 
located farther from markets. This result may be 
attributed to the fact that farmers in close proximity to 
markets have the advantage of easy and timely access to 
production inputs. Conversely, farmers located further 
from markets may incur additional costs in acquiring such 
inputs which may deter those farmers from making the 
investments, thereby affecting their efficiency. This 
finding is consistent with that of Missiame et al. (2021) 
who found that proximity to market areas significantly 
improved the TE of smallholder cassava farmers in 
Ghana.   
 
 
CONCLUSIONS AND POLICY IMPLICATIONS 
 
This study applied a SPF model to  examine  the  impacts  
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of cassava whitefly pests on smallholder farmers' 
productivity and TE in areas of high infestation in Malawi, 
Tanzania and Uganda. We showed that cassava output 
was significantly correlated with land area and quantity of 
cuttings and labor used. We showed that whitefly 
infestations and socio-economic factors such as farming 
experience, education, household size, farm size, land 
tenure, membership of associations, extension, credit, 
and distance to markets were significant in explaining the 
technical inefficiency of cassava farmers. Whitefly and 
disease infestations contributed to higher levels of 
technical inefficiency of cassava farmers. These findings 
underscore the need for policies to ensure that cassava 
farmers have better access to improved inputs, especially 
clean planting materials, and the knowledge to integrate 
this technology into their farming system. To increase the 
productivity of cassava farmers, the following 
recommendations are made: 
 
(i) Since cassava output was significantly correlated with 
cuttings, the issue is how to provide farmers better 
access to improved cuttings. One strategy is by making 
"clean, disease-free" and resistant varieties available 
across the major cassava-producing districts to distribute 
to smallholder farmers at affordable prices. It is 
recommended that the government should provide input 
subsidies so that farmers can use improved inputs to 
increase their productivity and provide a better return on 
the labour used for cassava production. The government 
should expand the current efforts by local and 
international non-governmental organisations (NGOs) to 
develop sustainable, market-oriented cassava seed 
systems for smallholder farmers in Uganda and Tanzania.  
(ii) Since the number of years spent in education 
positively influenced farmers' TE, we recommend policies 
that encourage cassava farmers to acquire more 
education primarily related to biotic threats such as 
whitefly pests and diseases in smallholder cassava 
production systems. Therefore, it is recommended to 
increase extension contacts in the major cassava-
producing districts and include information on whitefly 
and disease management strategies.  
(iii) There is a need for governments to address the issue 
of high labor use in smallholder cassava production 
systems. The average labor use of 142–185 person-days 
per acre shows that cassava farmers depend heavily on 
human labor to carry out most farming activities. Labor 
reducing technologies are needed, with additional training 
required to help increase labor productivity. Boosting 
cassava production by prioritizing female farmers to 
improve their production efficiency is recommended. 
(iv) The productivity of cassava farmers can be increased 
by implementing better access to credit and infrastructure. 
More farmers should be encouraged to become members 
of farmers' groups. Institutional factors such as providing 
more access to extension services may increase the 
adoption of improved cassava varieties.  
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(v) Finally, since this was a "baseline" study, it is 
recommended that it be repeated in five years to collect 
panel data that can be used to determine productivity 
change over time. 
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