Complementary and alternative medicine for type 2 diabetes mellitus: Role of medicinal herbs

Duncan Mwangangi Matheka* and Faraj Omar Alkizim

Department of Medical Physiology, School of Medicine, University of Nairobi, P. O. Box 30197-00100 Nairobi, Kenya.

Accepted 7 August, 2012

Complementary and alternative medicine (CAM) with glucose-lowering effect is increasingly being sought by patients and healthcare professionals. Its use is estimated at 17 to 80% among diabetic patients. Not only is this rarely reported to healthcare providers, but also that some CAM therapies have no empirical evidence. A review of commonly used CAM is therefore essential for safe and effective control of blood glucose level. A PubMed search was done using the following key terms: “natural products” “herbal medicine” “vitamins” “minerals” “herbs” “botanicals” “complementary and alternative medicine” “extract” “food” “diet” combined with the terms “diabetes” “diabetes mellitus” or “anti-diabetic”. Some papers were found through tracking citations from other publications. Commonly used glucose-lowering herbs include *Ginseng species*, *Momordica charantia* (Karela), *Trigonella foenum graecum*, *Gymnema sylvestre*, *Allium cepa* (onion), *Allium sativum* (garlic), *Pterocarpus marsupium*, *Vaccinium myrtillus*, *Atriplex halimus* and *Aloe vera*. Other alternative therapies were chromium, vanadium, magnesium, vitamin E, acupuncture and hot-tub therapy. In conclusion, research and use of CAM therapy is on the increase worldwide. Stringent regulatory policies and guidelines on CAM use are required to ensure that safe and appropriate CAM use is guided by empirical evidence.

Key words: Complementary and alternative medicine, traditional, diabetes, glucose lowering, herbal medicine, regulatory policies.

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder characterized by increased blood glucose levels. This disease is characterized by either lack of insulin production or deficient activity in the presence of normal or even elevated levels of insulin. Type 2 DM, which accounts for over 90% of the cases, is associated with disordered carbohydrate and fat metabolism. Chronically, the disease causes micro-vascular (retinopathy, nephropathy and neuropathy) and macro-vascular (hypertension, dyslipidemia, myocardial infarction and stroke) complications (Lucy et al., 2002).

Diabetes poses great challenge to the world’s health care system. Its worldwide prevalence was estimated at 366 million in 2011. Of these, 183 million people were believed to be unaware of their condition. If no measures taken, the prevalence is projected to rise to 552 million people by 2030, representing around 10% of the global adult population (International Diabetes Federation, 2011a). In 2011, it was reported that one person died from diabetes related causes every seven seconds. Annual global health care spending on diabetes was up to US$465 billion in 2011 (International Diabetes Federation, 2011a).

In the management of type 2 DM, life style modification (exercise, weight control and nutrition) is crucial. A sedentary lifestyle was associated with the increased risk of impaired glucose tolerance and diabetes. Exercise and diet programs significantly reduce the risk for type 2 DM. A low-fat, vegetarian (vegan) diet has been reported to reverse the effects of DM. Oral glucose-lowering drugs and insulin injections are the conventional management modalities. They are however expensive and often associated with adverse effects, with the commonest...
being weight gain and hypoglycaemia (Sinha et al., 1996). Taking into consideration the aforementioned, the use of complementary and alternative medicine (CAM) has been on the increase.

Complementary and alternative medicine is defined as the practices, approaches, knowledge and beliefs that incorporate plant, animal and mineral-based medicines, spiritual therapies, manual techniques and exercise. UN National Institute of Health categorizes CAM into: alternative or whole medical systems, mind-body medicine, biologically based practices, manipulation and body-based therapies, and energy therapies. The prevalence of CAM use among people living with diabetes ranges from 17 to 80% (Chang et al., 2007). The frequency of CAM use is at 80% in Africa, 52 to 70% in Australia, 31% in Belgium, 40% in China, 49% in France, 60% in Japan, 46% in Switzerland, 24% in UK and 42% in USA (WHO Traditional Medicine Strategy, 2002). There is however a high rate of CAM use non-disclosure to physicians by patients (Khalaf and Whitford, 2010). This brings about the need for health care professionals to be aware of CAM use alongside conventional drugs.

The commonly used therapies among diabetic patients are herbal medicines, nutritional supplements, diet modifications, spiritual healing and relaxation techniques. The factors influencing CAM use include age, duration of diabetes, degree of complications and self-monitoring of blood glucose. Scientific literature on the efficacy of CAM in the management of DM is relatively sparse and heterogeneous. Moreover, there have not been comprehensive reviews incorporating diet, vitamins and mineral supplements in addition to herbal medicine, for glucose control among patients with diabetes. Our aim was therefore to explore the commonly used CAM products so as to inform clinical practice, education and research. This review is unique since it also explores various philosophies and underlying factors behind CAM use.

MATERIALS AND METHODS

A Medline search was performed using the following terms: “natural products” “herbal medicine” “vitamins” “minerals” “herbs” “botanicals” “complementary and alternative medicine” “extract” “food” “diet” combined with the terms “diabetes” “diabetes mellitus” or “anti-diabetic”. Time filters were not applied during the search. Some papers were found through tracking citations from other publications. The plants identified were confirmed using http://www.ipni.org for spellings and family names. Botanical descriptions were checked using Medline and by referring to http://www.wikipedia.org. CAM therapies included were those supported by two or more publications and had insights on their mechanism of action. Expert judgement rather than a formal quality appraisal was used in determining the studies included. Publications without human trials and those in a language other than English were excluded. Some CAM therapies supported by limited trials but with proven glucose-lowering effect were included. Emphasis was made on herbs hence supplements from animal components (such as fish oil, among others) were not reviewed.

RESULTS

Of the 960 titles and abstracts retrieved, 72 (7.5%) were identified as potentially relevant to the review. These focused mainly on medicinal herbs (Table 1), vitamins, minerals, acupuncture and hot-tub therapy.

Herbal medicine

Momordica charantia

Momordica charantia (MC), also known as bitter melon, balsam pear or karela, is a plant commonly used in traditional medicine for its glucose-lowering effects (Shane, 2001; Chaturvedi et al., 2004; Sridhar et al., 2008). It is a climber of the family Cucurbitaceae, and is widely cultivated in Africa, Asia and South America both for food and for its medicinal use (Ooi et al., 2010). The parts used include the whole plant, fruit and seeds, which are bitter due to the presence of the chemical momordicin (Beloin et al., 2005). Preparations used include injectable extracts, juice extracts, and fried melon bits, among others (Wellhinda et al., 1986; Shane, 2001). The glucose-lowering effect of its unripe fruit juice has been demonstrated in both experimental animal models (Wellhinda et al., 1986) and human clinical trials (Srivastava et al., 1993). Active components of the fruit include charantin, vicine and insulin-like polypeptide (Lucy et al., 2002). Alcohol-extracted charantin from MC consists of mixed steroids and was reported to be more potent than tolbutamide (an oral glucose lowering drug) in an animal study (Sarkar et al., 1996). It has been shown to decrease blood glucose levels when injected subcutaneously into type 1 DM patients (Baldwa et al., 1977). Oral administration of bitter melon preparations also showed significant results when tried clinically in type 2 DM patients (Srivastava et al., 1993).

Several mechanisms of action have been postulated including: enhanced insulin secretion, insulin-like action, tissue glucose uptake, liver muscle glycogen synthesis, glucose oxidation, and decreased hepatic gluconeogenesis (Akhtar et al., 1981; Bailey and Day, 1989). Hepatic portal inflammation and testicular lesions in dogs were reported in excessive administration of cerasee (a component of the wild variety of MC) (Dixit et al., 1978). It is furthermore contraindicated in pregnancy and when other glucose-lowering agents are being used (Basch et al., 2003).

Ginseng species

Ginseng species include Chinese or Korean ginseng (Panax ginseng), Siberian ginseng (Eleutherococcus senticosus), American ginseng (Panax quiquefolius) and Japanese ginseng (Panax japonicas). The roots of the herb have extensively been used for their medicinal
Table 1. Common Glucose-Lowering Medicinal Herbs.

<table>
<thead>
<tr>
<th>Botanical name (Common name)</th>
<th>Parts used</th>
<th>Reported pharmacological profile</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abelmoschus moschatus Medik (Malvaceae)</td>
<td>Whole plant</td>
<td>Contains Myricelin which enhances insulin sensitivity through increasing post-receptor transduction in muscle cells</td>
<td>(Liu et al., 2007)</td>
</tr>
<tr>
<td>Acacia arabica</td>
<td>Seeds</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Wadood et al., 1989)</td>
</tr>
<tr>
<td>Achyranthes aspera (Prickly Chaff Flower)</td>
<td>Whole plant</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Akhtar and Iqbal, 1991)</td>
</tr>
<tr>
<td>Aconitis panicum (Guanacán)</td>
<td>Bark</td>
<td>Lowsers blood glucose by unclear mechanisms</td>
<td>(Andrade-Cetto and Helmut, 2004)</td>
</tr>
<tr>
<td>Aegle marmelos (bael tree)</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Arumugama et al., 2008)</td>
</tr>
<tr>
<td>Agrimonia eupatoria (agrony)</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Gray and Flatt, 1998b)</td>
</tr>
<tr>
<td>Ajuga iva (Herb Ivy)</td>
<td>Whole plant</td>
<td>Enhances glucose uptake into cells</td>
<td>(Hilaly and Lyoussi, 2002)</td>
</tr>
<tr>
<td>Allium cepa (Onion) and Allium Sativum (Garlic)</td>
<td>Bulb</td>
<td>Lowers glucose by inhibiting insulin breakdown, resulting in increased levels of plasma insulin</td>
<td>(Sheela and Augusti, 1992; Lucy et al., 2002)</td>
</tr>
<tr>
<td>Aloe barbadensis</td>
<td>Whole plant</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Ajabnoor, 1990)</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>Whole plant</td>
<td>Contains glucomannan, a hydro-soluble fibre which has a glucose-lowering effect</td>
<td>(Shane et al., 2001)</td>
</tr>
<tr>
<td>Andrographis paniculata ("king of bitters")</td>
<td>Leaves</td>
<td>It enhances the uptake of glucose into cells through its effects on glucose transporter 4 gene expression</td>
<td>(Reyes et al., 2006)</td>
</tr>
<tr>
<td>Annona squamosa</td>
<td>Whole plant</td>
<td>Enhances peripheral glucose metabolism</td>
<td>(Panda and Kar, 2007)</td>
</tr>
<tr>
<td>Artemisia herba-alba (Wormwood)</td>
<td>Leaves and bark</td>
<td>Lowers blood glucose</td>
<td>(Khazraji and Shamaony, 1993; Kamal et al., 2007)</td>
</tr>
<tr>
<td>Artemisia dracunculus (dragon herb)</td>
<td>Whole plant</td>
<td>Lowers blood glucose</td>
<td>(Ribnicky et al., 2009)</td>
</tr>
<tr>
<td>Artemisia paffra (Davana)</td>
<td>All aerial parts</td>
<td>Enhances the uptake of glucose into cells</td>
<td>(Mansi et al., 2007)</td>
</tr>
<tr>
<td>Artocarpus heterophyllus (Jack fruit)</td>
<td>Leaves and bark</td>
<td>Contains phenols and flavanoids which regenerate insulin producing β cells</td>
<td>(Priya et al., 2012)</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>Leaves</td>
<td>Enhances peripheral glucose metabolism</td>
<td>(Fuentes et al., 2004)</td>
</tr>
<tr>
<td>Bauhinia candidans</td>
<td>Leaves</td>
<td>Increases sensitivity of cells to the residual insulin present in diabetics</td>
<td>(Pepato et al., 2002)</td>
</tr>
<tr>
<td>Bauhinia forficata (cow’s hoof)</td>
<td>Leaves</td>
<td>Lowers blood glucose by unclear mechanisms</td>
<td>(Yoshikawa et al., 1996)</td>
</tr>
<tr>
<td>Beta vulgaris (Beet root)</td>
<td>Root</td>
<td>Regenerates insulin producing β cells</td>
<td>(Puri et al., 1998)</td>
</tr>
<tr>
<td>Biophytum sensitivum</td>
<td>Leaves</td>
<td>Increases peripheral glucose utilization</td>
<td>(Russell et al., 2008)</td>
</tr>
<tr>
<td>Bixa orellana</td>
<td>Seeds</td>
<td>Increases peripheral glucose utilization</td>
<td>(Satheesh et al., 2004)</td>
</tr>
<tr>
<td>Brassica juncea (mustard greens)</td>
<td>Whole plant</td>
<td>Inhibits hepatic gluconeogenesis and inhibition of renal glucose reabsorption</td>
<td>(Khan et al., 1995)</td>
</tr>
<tr>
<td>Brassica nigra (black mustard)</td>
<td>Seeds</td>
<td>Lowers blood glucose by unclear mechanisms</td>
<td>(Anand et al., 2007)</td>
</tr>
<tr>
<td>Bumbling sartorum</td>
<td>Roots and bark</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Naik et al., 1991)</td>
</tr>
<tr>
<td>Caesalpinia bonducella (Gray Nicker)</td>
<td>Seeds</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Sharma et al., 1997)</td>
</tr>
<tr>
<td>Cajanus cajan (pigeon pea)</td>
<td>Leaves and stem</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Ezike et al., 2010)</td>
</tr>
<tr>
<td>Camellia sinensis (tea flower)</td>
<td>Leaves</td>
<td>Contains epigallocatechin gallate which enhances insulin activity</td>
<td>(Gomes et al., 1995)</td>
</tr>
<tr>
<td>Carum carvi (Caraway)</td>
<td>Fruits</td>
<td>Inhibits hepatic gluconeogenesis, increases peripheral glucose utilization and inhibits renal glucose reabsorption</td>
<td>(Brucein et al., 1995; Eddouks et al., 2004)</td>
</tr>
<tr>
<td>Casearia esculenta (Wild cowrie fruit)</td>
<td>Root</td>
<td>Inhibits enzymes of gluconeogenesis (glucose-6-phosphatase and fructose-1,6-biphosphate) to reduce glucose synthesis, and enhances the activity of hexokinase in the liver to increase glycolysis</td>
<td>(Prakasam et al., 2002)</td>
</tr>
<tr>
<td>Cassia auriculata (Tanner’s Cassia)</td>
<td>Flower</td>
<td>Increases peripheral glycolysis</td>
<td>(Latha et al., 2003; Abesundara et al., 2004)</td>
</tr>
<tr>
<td>Catharanthus roseus (Madagascar periwinkle)</td>
<td>Leaves</td>
<td>Enhances uptake of glucose into cells</td>
<td>(Singh et al., 2001)</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Part Used</td>
<td>Effect</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chamaemelum nobile</td>
<td>Areal part</td>
<td>Inhibits gluconeogenesis and glycogenolysis</td>
<td>(Eddouks et al., 2005)</td>
</tr>
<tr>
<td>Citrullus colocynthis</td>
<td>Roots</td>
<td>Stimulates residual pancreatic mechanism, increases peripheral uptake and utilization of glucose</td>
<td>(Agarwal et al., 2012)</td>
</tr>
<tr>
<td>Cinnamomum tamala</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Bishf and Sisodia, 2011)</td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>Whole plant</td>
<td>Inhibits enzyme of gluconeogenesis-glucose-6-phosphatase</td>
<td>(Pushpargaj et al., 2007)</td>
</tr>
<tr>
<td>Clausena anisata</td>
<td>Root</td>
<td>Lowers blood glucose</td>
<td>(Ojewole, 2002)</td>
</tr>
<tr>
<td>Clerodendrum species</td>
<td>Roots and leaves</td>
<td>Lowers blood glucose</td>
<td>(Shrivastava and Patel, 2007)</td>
</tr>
<tr>
<td>Coccinia indica</td>
<td>Leaves</td>
<td>Inhibits gluconeogenesis and enhances glycolysis</td>
<td>(Shibib et al., 1993; Kamble et al., 1994)</td>
</tr>
<tr>
<td>Coriandrum sativum</td>
<td>Seeds</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Eidi et al., 2009)</td>
</tr>
<tr>
<td>Cuminum cyminum</td>
<td>Seeds</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Jagtap and Patli, 2010)</td>
</tr>
<tr>
<td>Cuminum nigrum</td>
<td>Seeds</td>
<td>Contains flavanoids which have insulin-like activity</td>
<td>(Ahmad et al., 2000)</td>
</tr>
<tr>
<td>Eclipta alba</td>
<td>Leaves</td>
<td>Inhibits the enzymes of gluconeogenesis (glucose-6-phosphatase and fructose-1,6-biphosphate) to reduce glucose synthesis, and enhances the activity of hexokinase in the liver to increase glucose breakdown</td>
<td>(Ananthi et al., 2003)</td>
</tr>
<tr>
<td>Emblica officinalis</td>
<td>Fruits</td>
<td>Increases glucose uptake and utilization, and enhances insulin secretion by pancreatic β cells</td>
<td>(Nampoothiri et al., 2010)</td>
</tr>
<tr>
<td>Enicostemma littorale</td>
<td>Leaves</td>
<td>Inhibits glucose-6-phosphatase required for gluconeogenesis</td>
<td>(Maroo et al., 2002; Srinivasan et al., 2005)</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>Bark and leaves</td>
<td>Increases peripheral glucose utilization, and increases insulin secretion by pancreatic β cells</td>
<td>(Gray and Flatt, 1998a)</td>
</tr>
<tr>
<td>Eugenia jambolana</td>
<td>Seeds</td>
<td>Enhances glucose tolerance</td>
<td>(Ravi et al., 2004)</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>Leaves</td>
<td>Enhances uptake and utilization of glucose into cells</td>
<td>(Campillo et al., 1991)</td>
</tr>
<tr>
<td>Ficus bengalensis</td>
<td>Bark</td>
<td>Inhibits insulin breakdown</td>
<td>(Kumar et al., 1989)</td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>Seeds</td>
<td>Inhibits renal reabsorption of glucose</td>
<td>(Eddouks and Maghrani, 2004)</td>
</tr>
<tr>
<td>Garcinia kola</td>
<td>Seeds</td>
<td>Inhibits glucose-6-phosphatase required for gluconeogenesis</td>
<td>(Iwu et al., 1990)</td>
</tr>
<tr>
<td>Ginkgo biloba</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells in type 2 diabetes</td>
<td>(Kudolo, 2001)</td>
</tr>
<tr>
<td>Ginseng species</td>
<td>Roots</td>
<td>Decreases gut carbohydrate absorption, increases glucose uptake by cells, increases glycogen synthesis and storage, and increases insulin secretion by pancreatic β cells</td>
<td>(Kimura et al., 1981; Ohnishi et al., 1996; Gillis et al., 1997; Roy et al., 1998; Yuan et al., 1998)</td>
</tr>
<tr>
<td>Gongronema latifolium</td>
<td>Leaves</td>
<td>Enhances hepatic hexokinase and inhibits glucokinase</td>
<td>(Ugochukwu and Babady, 2003)</td>
</tr>
<tr>
<td>Gymnema sylvestre</td>
<td>Leaves</td>
<td>Increases glucose uptake and utilization, and increases insulin secretion by pancreatic β cells</td>
<td>(Persaud et al., 1999; Shane et al., 2001)</td>
</tr>
<tr>
<td>Helicteres isora</td>
<td>Fruit</td>
<td>Insulin sensitizing properties</td>
<td>(Chakrabarti et al., 2002)</td>
</tr>
<tr>
<td>Hibiscus rosa sinensis</td>
<td>Whole Plant</td>
<td>Increases insulin secretion by pancreatic β cells, and increases tissue glucose uptake</td>
<td>(Sachdeva et al., 2001)</td>
</tr>
<tr>
<td>Irula racemosa</td>
<td>Roots</td>
<td>β adrenergic blocker</td>
<td>(Tripathi et al., 1988)</td>
</tr>
<tr>
<td>Lagerstroemia speciosa</td>
<td>Leaves</td>
<td>Lowers blood glucose</td>
<td>(Judy et al., 2003)</td>
</tr>
<tr>
<td>Lantana camara</td>
<td>Leaves</td>
<td>Lowers blood glucose through unclear mechanisms</td>
<td>(Kazmi et al., 2012)</td>
</tr>
<tr>
<td>Lepidium sativum</td>
<td>Whole plant</td>
<td>Inhibits renal glucose reabsorption</td>
<td>(Eddouks and Maghrani, 2008)</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Leaves</td>
<td>Contains 3β-taraxerol, which enhances insulin induced glucose uptake through translocation of the glucose transporter, GLUT 4</td>
<td>(Sangeetha et al., 2010)</td>
</tr>
<tr>
<td>Morus indica</td>
<td>Leaves</td>
<td>Increases tissue glucose uptake and utilization</td>
<td>(Andallu et al., 2002)</td>
</tr>
<tr>
<td>Momordica charantia</td>
<td>Fruit, seeds</td>
<td>Lowers blood glucose through several mechanisms</td>
<td>(Chen et al., 1995)</td>
</tr>
<tr>
<td>Murraya koenigi</td>
<td>Leaves</td>
<td>Increases glycogenesis, and decreases glycogenolysis and gluconeogenesis</td>
<td>(Khan et al., 1995)</td>
</tr>
<tr>
<td>Musa sapientum</td>
<td>Fruits</td>
<td>Increases insulin secretion by pancreatic β cells and enhances peripheral glucose utilization</td>
<td>(Ojewole and Adewunmi, 2003)</td>
</tr>
</tbody>
</table>
Table 1. Contd.

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigella sativa (Black cumin)</td>
<td>Seeds</td>
<td>Inhibits hepatic gluconeogenesis</td>
<td>(Al-Awadi et al., 1991)</td>
</tr>
<tr>
<td>Ocimum sanctum (holy basil)</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Chattopadhyay et al., 1993)</td>
</tr>
<tr>
<td>Origanum vulgare (Zaatar)</td>
<td>Leaves</td>
<td>Inhibits hepatic gluconeogenesis and/or stimulation of glucose utilization by peripheral tissues</td>
<td>(Eddouks et al., 2003; Lemhadri et al., 2004)</td>
</tr>
<tr>
<td>Opuntia streptacantha (paddle cactus)</td>
<td>Leaves</td>
<td>It contains soluble fibres and pectin which reduce intestinal glucose absorption, also enhanced insulin sensitivity and secretion</td>
<td>(Frati et al., 1990; Shapiro et al., 2002)</td>
</tr>
<tr>
<td>Panax ginseng</td>
<td>Roots</td>
<td>Increases peripheral glucose uptake and utilization</td>
<td>(Lim et al., 2009)</td>
</tr>
<tr>
<td>Psidium guajava (Guava)</td>
<td>Bark</td>
<td>Lowers blood glucose</td>
<td>(Rai et al., 2010)</td>
</tr>
<tr>
<td>Pterocarpus marsupium (Kino Tree)</td>
<td>Bark</td>
<td>Regenerates pancreatic β-cells thereby preventing diabetes induction</td>
<td>(Chakravarthy et al., 1982)</td>
</tr>
<tr>
<td>Retama raetam (Weeping broom)</td>
<td>Whole plant</td>
<td>Inhibits renal glucose reabsorption</td>
<td>(Maghrani et al., 2005)</td>
</tr>
<tr>
<td>Salacia reticulate (Marking Nut Tree)</td>
<td>Whole plant</td>
<td>Prevents the breakdown of starch to glucose by inhibiting alpha-glucosidase activity</td>
<td>(Jayawardena et al., 2005)</td>
</tr>
<tr>
<td>Sambucus nigra (Elder berry)</td>
<td>Flower</td>
<td>Increases insulin secretion by pancreatic β cells, and peripheral glucose utilization</td>
<td>(Gray et al., 2000)</td>
</tr>
<tr>
<td>Scoparia dulcis (Licorice weed)</td>
<td>Leaves</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Pari and Venkateswaran, 2002)</td>
</tr>
<tr>
<td>Silibum marianum (Milk thistle)</td>
<td>Seeds</td>
<td>Reduces insulin resistance</td>
<td>(Husein et al., 2006)</td>
</tr>
<tr>
<td>Spergularia purpurea</td>
<td>Whole plant</td>
<td>Inhibits gluconeogenesis</td>
<td>(Eddouks et al., 2003)</td>
</tr>
<tr>
<td>Suada fruticosa (Akali seepweed)</td>
<td>Whole plant</td>
<td>Increases peripheral glucose uptake and utilization</td>
<td>(Benwahboud et al., 2001)</td>
</tr>
<tr>
<td>Swertia chirayita (Bitter Stick)</td>
<td>Whole plant</td>
<td>Increases insulin secretion by pancreatic β cells</td>
<td>(Saxena et al., 1991; Saxena et al., 1993)</td>
</tr>
<tr>
<td>Syzygium cumini (Black plum)</td>
<td>Seed</td>
<td>Inhibit breakdown of starch to glucose</td>
<td>(Pandey et al., 2002)</td>
</tr>
<tr>
<td>Syzgium cumini (black berry, Jamun)</td>
<td>Leaves</td>
<td>Lowers blood glucose</td>
<td>(Schoenfelder et al., 2010)</td>
</tr>
<tr>
<td>Tamarindus indica</td>
<td>Seeds</td>
<td>Inhibits insulinase activity</td>
<td>(Mail et al., 2005)</td>
</tr>
<tr>
<td>Telfaria occidentalis</td>
<td>Leaves and seeds</td>
<td>Lowers blood glucose</td>
<td>(Aderibigbe et al., 1999a)</td>
</tr>
<tr>
<td>Trigonella foenum graecum</td>
<td>Leaves and seeds</td>
<td>Enhances peripheral glucose metabolism; inhibits enzymes of gluconeogenesis (glucose-6-phosphatase and fructose-1, 6-biphosphatase)</td>
<td>(Gupta et al., 1999)</td>
</tr>
<tr>
<td>Vinca rosea (Periwinkle)</td>
<td>Whole plant</td>
<td>Prevents the breakdown of starch to glucose</td>
<td>(Ghosh et al., 2001)</td>
</tr>
<tr>
<td>Withania somnifera (Winter cherry)</td>
<td>Leaves</td>
<td>Regenerates pancreatic β-cells thereby preventing diabetes induction</td>
<td>(Andallu et al., 2000)</td>
</tr>
<tr>
<td>Zingiber officinale (Ginger)</td>
<td>Roots</td>
<td>Lowers blood glucose</td>
<td>(Akhani et al., 2004; Jafri et al., 2011)</td>
</tr>
</tbody>
</table>

effect. Constituents of all ginseng species include ginsenosides, polysaccharides, peptides, polyacetylenic alcohol and fatty acids (Lee, 1992). Most pharmacological actions of ginseng are attributable to ginsenosides, a family of steroids named steroidal saponins (Attele et al., 1999; Huang, 1999). They have glucose-lowering, improved psycho-physiological performance and immune stimulant effects. Animal studies have reported significant glucose-lowering effects in both Asian ginseng (Liu and Xiao, 1992; Ohnishi et al., 1996) and American ginseng (Oshima et al., 1987). This effect is attributable to ginsenoside Rb-2 and more specifically to panaxans I, J, K and L in type 1 DM models (Konno et al., 1985; Yokozawa et al., 1985). The reported mechanisms of action include slowed digestion of food hence, the decreased rate of carbohydrate absorption into the portal hepatic circulation (Yuan et al., 1998); increased glucose transport and uptake by cells, mediated by nitric oxide (NO) (Ohnishi et al., 1996; Gillis, 1997; Roy et al., 1998); increased glycogen storage and NO-mediated insulin secretion (Lucy et al., 2002). It has been shown that NO stimulates glucose-dependent secretion of insulin in islet cells.

Reported side effects include nervousness, immune-stimulant effects and excitation, which diminish with continued use or dosage reduction. Ginseng may exert an oestrogen-like effect in postmenopausal women, resulting in diffuse mammary nodularity and vaginal bleeding (Hammond and Whitworth, 1997). Ginseng may
also inhibit the effects of warfarin (Janetzky and Morreale, 1997) and interact with the monoamine oxidase (MAO) inhibitor, phenelzine (Jones and Runikis, 1987). Massive overdose can bring about ginseng abuse syndrome, characterized by hypertension, insomnia, hypertonia and oedema (Punnonen and Lukola, 1984). It is contraindicated when using hypoglycaemic drugs, corticosteroids, oral contraceptives, anticoagulant drugs, digoxin, diuretics, MAO inhibitors and tricyclic depressants.

Trigonella foenum graecum (Fenugreek)

Fenugreek is a legume that grows in India, North Africa and Mediterranean regions. Its seeds are rich in alkaloid trigonelline, nicotinic acid and coumarin. Animal and human studies have reported that the legume lowers blood glucose and lipid levels, as well as increases HDL cholesterol levels (Ribes et al., 1984; Madar et al., 1988). Its seeds are rich in proteins, saponins and fibre. The high fibre content is a potential mechanism of the beneficial effect in DM patients (Madar et al., 1988). Purported mechanisms of action include delayed gastric emptying, slowed carbohydrate absorption and inhibition of glucose transport by the fibre content, as well as increased erythrocyte insulin receptors and modulation of peripheral glucose utilization. Urine may have a maple syrup smell after fenugreek consumption (Bartley et al., 1981). No other side effects have been reported, though, it is contraindicated in pregnancy, and when using glucose-lowering drugs, anticoagulants and MAO inhibitors.

Gymnema sylvestre (Gurmar)

This is a woody climber native to the tropical forests of central and southern India. It lowers glucose by increasing glucose uptake and utilization, and enhancing the production of endogenous insulin through cell permeability, increase in β-cell number and stimulation of β-cell function (Persaud et al., 1999; Shane, 2001). Side effects include reduction or loss of taste sensation of sweetness and bitterness if the plant is directly exposed to the tongue (Mozersky, 1999).

Allium cepa (Onion) and Allium Sativum (Garlic)

Allium cepa and *Allium sativum* are members of the lily family, having blood glucose lowering, anti-oxidant, antihypertensive and antihyperlipidemic effects (Sharma et al., 1977; Sheela and Augusti, 1992). Volatile oils in raw onion and garlic have been reported to lower fasting blood glucose level in both animal and human trials (Jain et al., 1973). The active compounds are believed to be sulphur-containing compounds: allyl propyl disulfide (APDS) in onions and diallyl disulfide (allian) in garlic. These active compounds lower glucose levels by competing with insulin (a disulfide) for insulin-inactivating sites in the liver, resulting in increased levels of plasma insulin (Sheela and Augusti, 1992; Lucy et al., 2002).

Aloe vera

Aloe vera is a well-known species of aloe, a desert plant resembling cactus. The dried sap of *Aloe vera* is a traditional remedy used in DM management in the Arabian Peninsula. Aloe gel obtained from the inner portion of the leaves contains glucomannan, a hydro-soluble fibre which has a glucose-lowering effect (Shane, 2001). This has been investigated in both animal models and type 2 DM patients. Oral administration of the juice has also been reported to reduce fasting blood glucose and triglyceride levels in type 2 DM patients with or without combination of conventional anti-diabetic agents (Yongchaiyudha et al., 1996; Vogler and Ernst, 1999). No adverse effects have been reported.

Pterocarpus marsupium and epicatechin-containing plants

Pterocarpus marsupium has been used for DM management in India. The flavonoid, epicatechin, extracted from the bark of the plant has been shown to prevent β-cell damage in rats. In addition, both epicatechin and a crude alcohol extract of *Pterocarpus marsupium* have been shown to regenerate functional pancreatic β-cells in diabetic animals (Chakravarthy et al., 1982). They therefore have the potential to prevent induction and development of DM. On the other hand, epicatechin and catechin consist of glycosides and esters. They are flavan-3-ols, a group of flavanols with glucose-lowering properties (Subramanian et al., 1981). *Camellia sinensis* (green tea polyphenols) and *Acacia catechu* (Burma cutch) are also good sources of flavan-3-ols.

Vaccinium myrtillus (Bilberry)

Bilberry (European blue berry) is a shrubby plant that grows in Europe. Its leaves were widely used in DM management before the availability of insulin (Bailey et al., 1989). Oral administration of bilberry leaf tea reduced blood glucose levels in normal and diabetic dogs, even when glucose was concurrently injected intravenously. Bilberry also has a beneficial role in preventing microvascular complications of DM, particularly, retinopathy (Caselli, 1985). The leaves are also useful against vascular complications, whereby anthocyanosides are
the most important constituents (Mills and Bone, 2000).

Atriplex halimus (Salt bush)

This plant is native to Israel, where much of the clinical data has been collected. Human trials have been used to report its glucose-lowering effect in type 2 DM (NYU Langone Medical Center). Sand rats develop type 2 DM when deprived of this plant (Collier et al., 1997).

Coccinia indica (Ivy gourd)

This creeping plant, used to treat “sugar urine”, grows widely in India. Human and animal trials have widely been used to report its glucose-lowering effects (Kuppurajan et al., 1986; Kamble et al., 1998). Its mechanism of action is unknown, though insulin-like properties have been postulated (Kamble et al., 1998). No adverse effects have been demonstrated.

Ocimum sanctum (holy basil)

This plant is commonly used in Ayurveda. Related species include *Ocimum album* and *Ocimum basilicum*. Its glucose-lowering effects have been demonstrated in animal model studies (Chattopadhyay, 1993). Its mechanism of action is unknown, though enhanced β-cell function and insulin secretion have been postulated. Although no adverse effects have been reported, further studies are warranted.

Ficus carica (fig leaf)

This plant is used in Spain and South Western Europe. Animal studies have shown its glucose-lowering effect. The mechanism of action is unknown, but some studies suggest facilitation of peripheral glucose uptake. No effect has been noted in c-peptide, thus, indicating non-insulin mediated effect. No adverse effects have been reported (Lucy et al., 2002).

Bauhinia forficata and Myrcia uniflora

Bauhinia forficata (Pata de vaca), indigenous to rainforests and tropical areas of South America, has been used in traditional management of DM. It has been referred to as “vegetable insulin” in Brazil. *Myrcia uniflora*, a South American herb, has also demonstrated glucose-lowering effect. No adverse effects have been reported. The glucose-lowering roles of both herbs warrant further study (Russo et al., 1990).

Opuntia streptacantha (nopal)

Opuntia streptacantha (nopal) is found in the Western hemisphere, including the south-western US, and is commonly used for its glucose-lowering effect in Mexico. It has a high-soluble fibre and pectin content, which may affect intestinal glucose uptake, partially, accounting for its glucose-lowering actions (Shapiro and Gong, 2002). Trials have reported improvements in patients with type 2 DM with decreased insulin levels, suggesting enhanced insulin sensitivity and secretion (Yeh et al., 2003). No adverse effects were reported.

Eucalyptus globulus

This tree is widely found in tropical regions and is commonly used to control diabetes in India. The parts used include the bark and leaves. An aqueous extract (0.5 g/ml) of *E. globulus* increased peripheral glucose utilization in mice abdominal muscle, and stepwise enhanced insulin secretion from the clonal pancreatic β-cells (Gray and Flatt, 1998a). Administration of *E. globulus* leaves to normal rats for 12 days however, did not result in hypoglycaemia. Streptozocin (STZ) administration to these pre-treated rats did not produce hyperglycaemia as severely as it was seen in the controls. In addition, pre-treated rats also showed less polydypsia and body weight loss (Swanston-Flatt et al., 1989). A study of the effects of the leaves on STZ-induced damage in pancreatic islets on normal Wistar rats suggested that the plant ameliorates diabetic states by partial restoration of pancreatic β-cells and repair of the STZ-induced damage. This study suggests a beneficial effect of *E. globulus* in DM management (Mahmoudzadeh et al., 2010). No adverse effects have been reported.

Mangifera indica (mango)

This mango species is commonly found in tropical regions. It has been used as an anti-diabetic agent in Ayurvedic and Nigerian folk medicine. The glucose-lowering effect of aqueous extract of the leaves has been reported in normal and diabetic rats (Aderibigbe et al., 1999b). The active component, 3β-taraxerol, enhances insulin induced glucose uptake through translocation of the glucose transporter, GLUT 4 (Sangeetha et al., 2010).

Syzygium cumini (Black berry, Jamun, Jambul)

This is an evergreen tree found in Sri Lanka, Nepal, Pakistan, India, America, Brazil and Caribbean islands. Alcohol extracts of the seeds were shown to significantly decrease blood glucose and urine sugar in alloxan-induced albino rats (Prince et al., 2004). Aqueous leaf extract (60 to 1000 µg/ml) administered to diabetic subjects, caused a dose dependent inhibition of adenosine
deaminase (ADA) activity and a decrease in blood glucose level (Bopp et al., 2009).

Musa sapientum (banana)

This is a hybrid of wild seeded bananas (Musa balbasiana and Musa acuminata) found in tropical countries, especially Philippines. Aqueous and methanol root extracts have been reported to have anti-oxidant and glucose-lowering effects comparable to glibenclamide (Pari and Maheswari, 1999; Dhanabal et al., 2005; Adewoye et al., 2009).

Lantana camara

This flowering plant of the Verbena family is native to the American tropics: Mexico, Central America and Venezuela. It is also found in Africa, Australia and India. A stearoyl glucoside of ursolic acid isolated from its leaves, showed significant blood glucose level reduction in STZ-induced diabetic rats (Kazmi et al., 2012). Once daily, administration of the leaves juice (1500 mg/kg) for 14 days showed significant glucose-lowering effect in rats (Garg et al., 1997).

Catharanthus roseus (Madagascar Periwinkle)

This plant, also known as Vinca rosea and Ammocallis rosea, is found in Madagascar. In Traditional Chinese Medicine, its extracts have been used to treat DM and malaria. Crude aqueous extracts of its leaves has been shown to reduce blood glucose level in normal and diabetic rats. It has however been shown to be cytotoxic (Nammi et al., 2003; Ahmed et al., 2007).

Other medicinal herbs

Other herbs with reported glucose-lowering effects include: Aegle marmelos, Andrographis paniculata, Artemisia pallens, Artocarpus heterophyllus, Asteracanthus longifolia, Azadirachta indica, Biophytum sensitivum, berberine, Beta vulgaris, Brassica juncea, Boerhavia diffusa, Cassia auriculata, Caesalpinia bonducella, Cajanus cajan, Citrullus colocynthis, Casearia esculenta, Cinnamomum tamala, Clerodendrum myricoides, curry, Enicostemma littorale, Eugenia jambolana, Ficus bengalensis, Foeniculum officinale, gingko, Hibiscus rosa sinensis, Lepidium latifolium, Lepidium sativum, Morus indica, Murraya koeingii, Native American herb combination, Phyllanthus amnisi, Salacia reticulata, Sambucus nigra, Sambucus Mexicana, Swertia chirayita, Syzygium cumini, Scoparia dulcis, Silibum marianum (Milk thistle), Sorolanium torvum, Traditional Chinese Medicine (TCM), Vinca rosea, Withania somnifera, and Zingiber officinale, among others (Table 1).

Mineral and vitamin supplements

Chromium

Chromium is an essential micronutrient in humans. It serves as a cofactor in all insulin regulating activities, being a major determinant of insulin sensitivity (Offenbacher and Pi-Sunyer, 1990). Chromium facilitates insulin binding and subsequent uptake of glucose into the cell. Without chromium, insulin’s action is blocked and glucose levels are elevated (Mooradian et al., 1994). Supplemental chromium has been shown to decrease fasting glucose levels, improve glucose tolerance, lower insulin levels and decrease total cholesterol and triglycerides, while increasing HDL cholesterol in normal, elderly and type 2 DM subjects (Mooradian et al., 1994). Foods rich in chromium include brewer’s yeast, barley flour, broccoli, grape juice, whole wheat, potatoes, garlic, basil, orange juice and red wine (Castro et al., 1998; Miller, 1998). On the other hand, refined sugars, white flour products, and lack of exercise can deplete chromium levels.

Vanadium

Vanadium was used to control blood glucose levels prior to the discovery of insulin. Two studies confirmed the effectiveness of vandal sulphate at a dose of 100 mg/day in improving insulin sensitivity (Halberstarn et al., 1996).

Magnesium

Magnesium deficiency is more common in type 2 diabetics than in the general population (Sjogren et al., 1988). It is essential in glucose metabolism and in the prevention of DM complications. Magnesium deficiency has been associated with complications of DM, especially, retinopathy. Magnesium is contraindicated when administering antibiotics, drugs to prevent osteoporosis, calcium channel blockers, muscle relaxants and diuretics. Increased magnesium intake can be achieved through diet without the use of supplements. Foods rich in magnesium include whole grains (brown rice, barley and oats), green vegetables (spinach and Swiss chard) and many bean varieties (Lucy et al., 2002).

Vitamin E

Diabetes produces a state of increased free radical activity. The purported effects of vitamin E on glucose
control relate to the vitamin’s potent lipophilic anti-oxidant activity, with possible influences on protein glycation, lipid oxidation, and insulin sensitivity and secretion. Although its mechanism of action is unknown, it may also affect non-oxidative glucose metabolism (O’Connell, 2001).

Other supplements

Other glucose-lowering supplements include zinc, niacin, vitamin B12, vitamin C, vitamin D, vitamin E, manganese, CQ 10, fish oil supplements (omega 3), cinnamon, alphalipoic acid, and green drinks “phytogreens” such as Elotin tea, among others (Lucy et al., 2002; Yeh et al., 2003).

Physical interventions

Acupuncture

Acupuncture is a well known alternative therapy for chronic pain. In addition, experimental and clinical trials have reported its role in the management of DM and its complications (Hui, 1995; Huang, 1996). Acupuncture can act on the pancreas to enhance insulin synthesis, increase the number of receptors on target cells, and accelerate the utilization of glucose, resulting in blood glucose-lowering (Hui, 1995). Acupuncture also has an anti-obesity effect, the most modifiable risk factor for type 2 DM. Its precise mechanisms of action remain unclear.

Hydrotherapy (Hot-tub therapy)

Hot-tub therapy increases blood flow to skeletal muscles hence has been recommended to diabetic patients who are unable to exercise (Hooper, 1999). Hot-tub therapies also lead to decreased patient body weight, mean plasma glucose level and mean glycosylated haemoglobin (Hooper, 1999). Proper water sanitation and appropriate guidance should however be considered when administering hot-tub therapy for diabetic patients (Hooper, 2000). Caution must be taken to ensure that the water is not too hot, as neuropathy, a complication of diabetes, may prevent the patients from realizing that they are burning themselves, resulting in injury.

DISCUSSION

Thousands of plants are attributed with glucose-lowering effects. These herbs are used singly or in combination, to address various underlying factors contributing to hyperglycaemia (Sikha et al., 2012). This review summarizes the commonly used herbs in DM management, as well as explores some philosophies behind CAM use. Though conventional practitioners pose great concern about CAM use, its use is widely gaining popularity (Yeh et al., 2003; Chang et al., 2007). The use of CAM is grounded on culture, knowledge, beliefs, experience and the advice of family and friends (Coulter and Willis, 2004). The people most likely to use CAM therapies thus include: people in poor health with chronic diseases, people committed to the environment, well-educated women (67%) interested in self-care, some cultural groups, those whose philosophies and values are congruent with CAM, those who think CAM is culturally relevant, on advice of family and friends, or after a traumatic event (International Diabetes Federation, 2011b).

The World Health Organisation (WHO) encourages member states to integrate traditional and CAM therapy into national health care systems and ensure their rational use (WHO Traditional Medicine Strategy, 2002). China is one of the countries with a truly integrated system (International Diabetes Federation, 2011b). This integration entails collaboration between conventional and CAM practitioners through sharing of information and negotiating careful plans with achievable goals. Empowering CAM practitioners through appropriate education and skills is thus crucial (WHO Traditional Medicine Strategy, 2002).

Having more than one active ingredient, CAM is attributed with a range of actions (International Diabetes Federation, 2011b). It takes a while for an effect to show and may produce fewer side effects. Adverse effects associated with CAM include: ketoacidosis due to stoppage of insulin in type 1 DM, trauma and burns from moxibustion (TCM), cupping on neuropathic legs, hypoglycaemia, interaction with conventional medicines, hypertension, bruising from massage, allergy, inappropriate weight loss, renal and hepatic toxicity, and infections (WHO Traditional Medicine Strategy, 2002; Yeh et al., 2003).

Some concerns regarding CAM use are justified; hence, legislation to govern CAM use is inevitable. Only CAM therapies with established empirical evidence should be used. Regulatory systems should ensure product quality, as well as report any herb/herb or herb/drug interactions. CAM products with no empirical evidence or with serious adverse effects should not be used.

This review is not without limitations. Thousands of herbs have demonstrated glucose-lowering effects, thus, they cannot all be included within the scope of this one review. Moreover, the review of CAM use is complicated by inconsistency of definition and research design. The number of subjects used in the trials, the methods of extracting the fruits, the parts of the plants used, and the amount of dose used, are different in the various trials. The various non-standardized forms of the drugs have been the basis for some trials hence results have been difficult to replicate. We thus recommend the preparation
of standardized medicinal herbs for future studies and therapies. CAM safety and efficacy needs better evaluation by well-designed, controlled clinical studies.

Conclusion

Research and use of CAM therapy in DM is on the increase worldwide. Commonly used CAM products include herbal medicine, mineral and vitamin supplements, acupuncture and hot-tub therapy, among others. Of these, medicinal herbs have demonstrated better efficacy. However, exercise, weight control and nutrition remain key pillars in DM management, in addition to conventional therapy. Adverse effects have been reported in CAM; hence, empirical evidence should guide the safe and appropriate use of CAM. Stringent regulatory policies and guidelines of CAM use are required.

ACKNOWLEDGEMENT

The authors wish to thank Peris W. Njenga for her input and advice in preparing the review.

REFERENCES

