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A quantitative structure-activity relationship (QSAR) model was developed for prediction of log IC50 
values of aliphatic and aromatic alcohols based on their molecular descriptors. In this study, we have 
attempted to develop a simple and fast MLR model with high accuracy and precision. The molecular 
descriptors, which cover different information of molecular structures, were calculated by Dragon 
software. The most feasible descriptors were selected using forward selection. The QSAR model was 
validated by external set compounds without any contribution in model development step. The root 
means square error of prediction (RMSEP) and determination coefficient (R2) for training and test sets 
were 0.0938, 0.1819, 0.9909 and 0.9714, respectively. Results obtained show the validation of the 
proposed model in the modeling of the Log IC50 of aliphatic and aromatic alcohols. 
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INTRODUCTION 
 
The ability of a compound to penetrate various biological 
membranes, tissues and barriers is a primary factor in 
controlling the interaction of these compounds with 
biological systems. IC50 values were used to measure 
biological activity, which is defined as median inhibition 
concentration (concentration that reduces the effect by 
50%) (Banarjee et al., 1980). Aliphatic and aromatic 
alcohols are amphiprotic compounds which have both 
polar and nonpolar parts in their structure. These 
compounds are interested with respect to the noncreative 
toxic effects on the microorganism Pseudomonas putida. 
Alcohol toxicity to bacteria since this group is an 
important component of the ecosystem, to use the 
bacteria as early indicators of environmental problems 
and to establish structure-activity relationships (Miller et 
al., 1985; kemoto et al., 1992). 

Aliphatic and aromatic alcohols act as nonspecific 
toxicants which have inhibitory effects on bacterial cells 
corresponding to chemical concentration. There are 
several   experimental    methods    (in vivo or in vitro)  for  
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testing the toxicity and inhibition effect of chemicals and 
can provide the most reliable  quantitative  and qualitative  
data about the interaction of a given compound with a 
biological system (Veith et al., 1979; Kamlet et al., 1986; 
Stephenson and Stuart, 1986; Stephenson et al., 1984). 
Nevertheless, it wastes time and consumes too much 
material as well as being expensive, so it is not suitable 
for the screening of large data sets of compounds. In 
recent years, researches in the field of theoretical 
prediction of toxicity and inhibitor activity based on 
quantitative structure–activity relationships (QSAR) have 
become very attractive (Isnard and Lambert, 1988).  

In quantitative structure activity relationship (QSAR) 
models in which physicochemical parameters of drugs and 
the other compounds are correlated with biological activities, 
lipophilicity (partition coefficients, chromatographic 
parameters) has a major role. Other important parameters 
are polarizability, electronic and steric parameters, molecular 
weight, geometry, conformational entropies etc. Recently, 
many molecular modeling methods based on widely 
spread quantitative structure–property/activity relation-
ships (QSPR/QSAR) techniques found their place as an 
important tool for the chemical engineers, chemists and 
especially for different aims (Goodarzi and Freitas, 2008; 
Fatemi and Goudarzi, 2005; Goudarzi and Goodarzi, 
2008; Goodarzi  and Freitas, 2008; Goodarzi and Freitas, 
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2008). The aim of the present work is to propose a 
validate model for QSAR study of IC50 based on the large 
space of theoretically calculated molecular descriptors. 
 
 
DESCRIPTOR GENERATION AND DATASET 
 
In this study, the experimental data set was taken from Gul and 
Ozturk (1998). The 2D structures of the molecules were drawn by 
the Hyperchem 7 software (HyperChem Release 7, HyperCube, 
Inc., http: //www.hyper.com.).  

The pre-optimization was conducted using the molecular 
mechanics force field (MM+) procedure included in Hyperchem and 
then the molecular structures were finally optimized by the semi-
empirical method PM3 (parametric method-3) using the Polak–
Ribiere algorithm  (Helguera et al.,2006) until the root mean square 
gradient was 0.001 Kcal mol-1. The resultant geometry was 
transferred into the Dragon software package, which was 
developed by Milano chemometrics and QSPR group (Todeschini, 
Milano Chemometrics and QSPR Group, 
http://www.disat.unimib.it/vhml.), to calculate the descriptors in 
constitutional, topological, geometrical, charge, GETAWAY 
(Geometry, Topology and Atoms-Weighted Assembly), WHIM 
(Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE 
(3D-Molecular Representation of Structure based on Electron 
diffraction), molecular walk count, BCUT, 2D-autocorrelation, 
aromaticity index, randic molecular profile, radial distribution 
function, functional group and atom-centered fragment classes. The 
1457 descriptors were first analyzed for the existence of constant or 
near constant variables. The detected ones were then removed and 
618 descriptors were remained.  Secondly, correlation between 
descriptors and activity of the molecules was examined and 
collinear descriptors (that is, correlation coefficient between 
descriptors is greater than 0.9) were detected.  Among the collinear 
descriptors, the one presenting the highest correlation with the 
activity to be predicted was retained and others were removed from 
the data matrix. At the end, 281 descriptors were remained. 

Finally, eight descriptors were selected by stepwise regression 
for construction of MLR model. The MLR modeling is the simple 
model for predicting of physiochemical properties or activities for a 
series of molecules. These descriptors are: 3D-MoRSE-signal 
29/weighted by atomic polarizabilities (Mor29p), R autocorrelation 
of lag3/ weighted by atomic Sanderson electro negativities (R3e), 
3D-MoRSE-signal 20/ weighted by atomic Sanderson electro 
negativities (Mor20e), Radial Distribution function-4.5 / weighted by 
atomic Sanderson electro negativities (RDF045e), Moran 
autocorrelation-lag 5 / weighted by atomic polarizabilities 
(MATS5p), folding degree index (FDI) , 3D-MoRSE-signal 04/ 
weighted by atomic masses (Mor04m) and 3D-MoRSE-signal 23/ 
weighted by atomic masses (Mor23m). 

The general purpose of multiple linear regressions (MLR) is to 
model the relationship between two or more independent variables 
and a dependent variable by fitting a linear equation to observed 
data. Every value of the independent variable X is associated with a 
value of the dependent variable Y. Formally, the model for multiple 
linear regression, given n observations, is: 
 
y = b1x1 + b2x2+ b3x3 + … + bmxm + �                                    (1) 
 
Where m is the number of independent variables, b1,. . ., bm the 
regression coefficients and y is the dependent variable. Also � is a 
constant. Regression coefficients represent the independent 
contributions of each calculated molecular descriptor. The algebraic 
MLR model is defined in Eq. (2) and in matrix notation: 
 
y = Xb + e                                                                             (2) 

 
 
 
 
When X is of full rank, the least-squares solution is: 
 

b̂ = (XTX)�1XTy                                                                  (3) 

Here, b̂ is the estimator for the regression coefficients in b̂ .  
The MLR model was built using a training set and validation using 
an external prediction set. Multiple linear regression (MLR) 
techniques based on least-squares procedures are very often used 
for estimating the coefficients involved in the model equation [3]. 
 
 
RESULTS AND DISCUSSION 
 
As a matter of fact the quantitative structure-activity or 
property relationship (QSAR/QSPR) plays important role 
in design of compounds and help us to reduce 
consuming of time and money. Therefore researchers 
paid more attention to like these studies, altogether ability 
of prediction of QSAR/QSPR studies affected by two 
parameters, which one is descriptors that could very 
carry enough information of molecular structure for 
interpretation of the activity or property and the other is 
the modeling method employed.  

However one of the most important points in this work 
is that we have used multiple linear regressions as a 
simple, fast and precise method with high accuracy to 
predict activity of the mentioned compounds. In the first 
step, the 34 compounds data set was separated based 
on activity range into a training set of 27 compounds 
between 2.01-5.88, which is including 80% of whole 
dataset and a test set of 10 compounds between 2.18 - 
5.25 that is including 20% of whole dataset. Then, we 
made use of forward selection as a common feature 
selection on training dataset. The forward selection (FA) 
method adds variables to the model one at a time. The 
first variable included in the model is the one which has 
the highest correlation with the independent variable y. 
The variable that enters the model as the second variable 
is one which has the highest correlation with y, after y 
has been adjusted for the effect the first variable. This 
process terminated when the last variable which entered in 
the model, has insignificant regression coefficient or all the 
variables are included in the model. 

Descriptors that have been selected using the FS method 
are shown in Table 1. Table 2 shows all the information 
about the descriptors. As it can be seen from the 
correlation matrix (Table 2), there is no significant 
correlation (� 0.9) between the selected descriptors. It 
should be noted that we constructed linear models with 
different number of descriptors, as it can be seen in the 
Figure 1. When we add the descriptors into the model, 
the correlation coefficient is improved and also the 
standard error is decreased, so this figure shows that if 
we use of all descriptors that have been selected by FS, 
the model results for prediction of log IC50 is better. 

In order to build linear and test model, the 27 
compounds data set was used as training to build model 
and   10 compounds  as  a  test  set  for  an  external   set  
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Table 1. Descriptors are presented in the models. 
 

No. Compounds Mor29p R3e Mor20e RDF045e MATS5p FDI Mor04m Mor23m 

1 Methanol 0.027 0.644 0.138 0 0 0.84 -0.297 -0.013 
2 Ethanol -0.024 1.722 0.087 0 0 0.906 -0.353 0.044 
3 1-Propanol -0.039 1.935 0.171 1.976 0.369 0.927 -0.522 0.043 
4 2-Propanol -0.037 1.966 0.173 0.05 0 0.92 -0.241 0.038 
5 1,2-Propanediol -0.01 2.101 0.176 2.08 0.365 0.928 -0.303 0.037 
6 1,2,3-Propanetriol 0.003 2.191 0.262 1.901 0.317 0.929 -0.223 -0.004 
7 1-Butanol -0.057 2.016 0.248 1.577 0.23 0.942 -0.572 0.051 
8 2-Butanol -0.064 1.99 0.193 0.94 0.393 0.932 -0.287 0.062 
9 2- Methyl-1-propanol -0.032 1.889 0.308 2.399 0.393 0.929 -0.392 0.04 

10 2-Methyl-2-propanol -0.029 2.009 0.388 0.134 0 0.924 0.005 0.037 
11 1-Pentanol -0.05 2.105 0.54 1.826 -0.037 0.964 -0.732 0.048 
12 1-Hexanol -0.05 2.105 0.54 1.826 -0.037 0.964 -0.732 0.048 
13 Cyclohexanol -0.163 2.764 0.093 3.059 0.377 0.958 -0.48 0.069 
14 1-Heptanol -0.062 2.143 0.614 2.123 -0.024 0.973 -0.778 0.063 
15 1-Octanol -0.064 2.198 0.681 2.255 -0.017 0.981 -0.87 0.061 
16 Phenol 0.074 1.11 0.534 3.182 0.555 1 -0.495 -0.228 
17 2-Methylphenol 0.068 1.107 0.43 4.246 0.298 0.99 -0.448 -0.183 
18 3-Methylphenol 0.077 1.064 0.637 3.713 0.023 0.996 -0.476 -0.182 
19 4-Methylphenol 0.072 1.16 0.664 4.715 0.226 0.997 -0.616 -0.234 
20 2-Aminophenol 0.092 1.022 0.624 4.437 0.358 0.992 -0.487 -0.261 
21 4-Aminophenol 0.066 1.061 0.685 5.941 0.294 0.996 -0.665 -0.263 
22 3-Nitrophenol 0.108 1.013 0.522 1.956 0.201 1 -0.313 -0.086 
23 4-Nitrophenol 0.11 1.085 0.459 3.276 0.324 1 -0.436 -0.066 
24 2,4-Dinitrophenol 0.117 0.992 0.44 1.872 0.139 1 0.122 0.024 
25 1,2-Dihydroxybenzene 0.098 1.105 0.499 5.258 0.427 0.996 -0.48 -0.306 
26 1,3-Dihydroxybenzene 0.097 1.098 0.501 3.609 0.326 0.999 -0.557 -0.28 
27 1,4-Dihydroxbenzene 0.101 1.145 0.452 5.651 0.386 0.998 -0.762 -0.249 
28 1,2,3-Trihydroxybenzene 0.121 1.096 0.488 5.324 0.317 0.994 -0.355 -0.406 
29 2-Chlorophenol 0.045 1.153 0.512 3.619 0.333 1 -0.242 -0.318 
30 3-Chlorophenol 0.021 1.132 0.534 3.136 -0.149 1 -0.281 -0.254 
31 4-Chlorophenol 0.016 1.15 0.492 4.356 0.436 1 -0.572 -0.23 
32 4-Ethylphenol 0.057 1.628 0.774 8.447 0.003 0.982 -0.599 -0.237 
33 Benzyl alcohol 0.094 1.337 0.837 2.089 0.119 0.998 -0.359 -0.172 
34 2- Naphthol -0.038 1.597 0.897 3.286 -0.073 1 -0.548 -0.404 

 
 
 

Table 2. Correlation matrix for the eight selected descriptors by forward selection and details of names of descriptors. 
 

 Mor29p R3e Mor20e RDF045e MATS5p FDI Mor04m Mor23m 

Mor29p 1        
R3e 0.849 1       
Mor20e 0.169 0.202 1      
RDF045e 0.230 0.232 0.256 1     
MATS5p 0.101 0.110 0.078 0.110 1    
FDI 0.408 0.513 0.565 0.405 0.036 1   
Mor04m 0.039 0.008 0.139 0.185 0.0002 0.087 1  
Mor23m 0.393 0.504 0.384 0.552 0.068 0.494 0.039 1 
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Figure 1. Plot of correlation coefficient and standard error versus 
the number of descriptors that have used in different MLR 
models. 

 
 
 
compounds, which did not have contribution in model 
development steps that was used to test the built model. 
Finally with the selected eight descriptors, we built the linear 
model using the training set data and the following equation 
was obtained: 
 
LogIC50 = 24.47+13.152×Mor29p+2.0441×R3e-
1.6888×Mor20 e-0.23626 ×RDF045e+1.2104 × MATS5p 
-24.62 × FDI -0.82693 × Mor04m -5.3278 × Mor23m. 
 
The constructed model was used to predict the test sets 
data. The prediction results were given in Table 3. Figure 
2 shows experimental values versus the Log IC50 
predicted by multiple linear regressions (MLR). Also, the 
residuals of the MLR calculated values of logIC50 are 
plotted against the experimental values in Figure 3. The 
propagation of residuals at both sides of the zero line 
indicates that no systematic error exists in the 
development of MLR model. Obviously for evaluating the 
prediction ability of a multivariate calibration model we 
can use of several statistical test such as  the F 
statistical, t test,  determination coefficient (R2), root mean 
square error of prediction (RMSEP) and relative standard 
error of prediction (RSEP) and mean absolute error (MAE) 
values (Goodarzi et al., 2007). 

The statistical results in Table 4 show that FS-MLR was 
achieved in this study and reliable in predicting of logIC50 of 
this class compounds. The some of these descriptors 
encode the size, shape, electronegativities, polarizabilities 
and 3-D structure of a molecule in respect to some 
molecular properties. The appearance of these descrip-
tors in the model reveals the role of these properties on 
the IC50 activity. 

 
 
 
 
Table 3. Experimental values observed and predicted values of 
the log IC50. 
 

No. Compounds Exp. Log 
IC50 Predicted 

1* Methanol 5.250 5.542 
2 Ethanol 5.360 5.279 
3 1-Propanol 4.880 4.983 
4 2-Propanol 5.000 5.044 
5 1,2-Propanediol 5.440 5.492 
6 1,2,3-Propanetriol 5.880 5.814 
7 1-Butanol 4.350 4.337 
8* 2-Butanol 4.570 4.585 
9 2- Methyl-1-propanol 4.490 4.538 

10 2-Methyl-2-propanol 4.600 4.558 
11* 1-Pentanol 3.590 3.343 
12 1-Hexanol 3.340 3.343 
13 Cyclohexanol 4.050 3.996 
14 1-Heptanol 2.720 2.820 
15 1-Octanol 2.680 2.660 
16 Phenol 3.800 3.734 
17 2-Methylphenol 3.390 3.230 
18* 3-Methylphenol 2.360 2.574 
19 4-Methylphenol 3.210 3.036 
20 2-Aminophenol 3.440 3.470 
21 4-Aminophenol 2.600 2.732 
22 3-Nitrophenol 3.050 2.958 
23 4-Nitrophenol 3.080 3.069 
24 2,4-Dinitrophenol 2.010 2.171 
25 1,2-Dihydroxybenzene 3.790 3.955 
26* 1,3-Dihydroxybenzene 4.240 4.043 
27 1,4-Dihydroxbenzene 3.780 3.893 
28 1,2,3-Trihydroxybenzene 4.590 4.588 
29* 2-Chlorophenol 3.380 3.376 
30* 3-Chlorophenol 2.180 2.203 
31 4-Chlorophenol 2.900 2.777 
32 4-Ethylphenol 2.920 2.829 
33 Benzyl alcohol 3.390 3.319 
34 2- Naphthol 2.730 2.841 

 

* Compounds were used in test set. 
 
 
 
Conclusion 
 
In this study, multiple linear regressions were used as a 
simple method to construct a quantitative relation 
between the logIC50 and their calculated descriptors. We 
have used forward selection as a common feature 
selection that this technique has selected eight important 
descriptors. Descriptors appearing in this QSAR models 
were Mor29p, R3e, Mor20e, RDF045e, MATS5p, FDI, 
Mor04m and Mor23m that provided enough information 
related  to   different   molecular   properties,   which   can  
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Figure 2. Plot of the calculated Log IC50 against the experimental 
values. 
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Figure 3. Plot of the residuals versus experimental values of log 
IC50. 
 
 
 
participate in the physicochemical process that affected 
the log IC50 of the compounds. The results obtained 
demonstrated that the MLR is a simple and fast model 
which has good ability for prediction of IC50. 
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