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Crop and irrigation modeling based on fundamental physics can be very valuable in forecasting 
requirements and production in preparation for next season's planting/harvesting cycle. AquaCrop is 
such a model. It forecasts daily watering needs and allows for simple through detailed data input. Its 
supplied input files offer configurations for various crop, soil, terrain, and irrigation types. If one knows 
historical weather, it is possible to estimate daily crop water needs in the coming season, assuming the 
weather of the coming season is similar to previous years. AquaCrop-OSPy is an open-source 
implementation of AquaCrop, created in cooperation with AquaCrop’s authors. Looking at this irrigation 
modeling tool from a computer engineering perspective, one begins to realize that AquaCrop-OSPy 
could be expanded to input real-time weather data and produce real-time signals to an irrigation 
system. A simple new console would show communication with the irrigation system. This paper 
discusses and illustrates a proof-of-concept for that possibility. The author started with basic software 
for querying up-to-date weather data and estimating ETo for a single crop under normal conditions. 
Those modules were coupled with a microcontroller to confirm what is possible. Those results 
encouraged an expansion to AquaCrop-OSPy so that it can be used to support fully-automated human-
supervised irrigation. All software for this paper is available at https://github.com/SoothingMist/ 
Embeddable-Software-for-Irrigation-Control. 
 
Key words: Precision irrigation, precision agriculture, water conservation, AquaCrop, drought mitigation, crop 
forecasting, irrigation control, irrigation requirements, irrigation methods, soil moisture. 

 
 
INTRODUCTION 
 
While taking a computer engineering view of precision 
irrigation, the author saw opportunities for drought 
mitigation. Available water could be husbanded while still 
maintaining and possibly improving the value of the crop. 
Human-supervised automated irrigation supports this 
activity in an understandable and implementable way. 

Precision irrigation applies water according to a crop’s 
requirement, as estimated via various sensing 
mechanisms and ambient conditions. Good reviews of 
the means  and  challenges  of  precision  irrigation  have 

been published (Gundim et al., 2023; Thorp et al., 2022; 
Liang et al., 2020; Brahmanand and Singh, 2022; Darji et 
al., 2023; Awawda and Ishaq, 2023; Samreen et al., 
2022; Plascak et al., 2021). 

Numerous papers specific to various techniques also 
exist: 
 
(1) Thermal imaging (Katz et al., 2022, 2023). 
(2) Normalized Difference Vegetation Index (Chen et al., 
2006; Mather, 1999; Steven, 1998). 
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(3) Direct soil-moisture measurements (Caldwell et al., 
2022; Schwamback et al., 2023; Chowdhury et al., 2022). 
(4) Soil moisture estimation (Allen et al., 1998; Luong et 
al., 2023; Sharma et al., 2018). 
 
Regarding various means of processing associated data: 
 
(1) Data-driven (Abolafie-Rosenzweig et al., 2019; Zhang 
et al., 2021; Abioye et al., 2022). 
(2) Physics-driven (Allen et al., 1998; Gurmiere et al., 
2020; Norizan et al., 2021). 
 
Vast indeed is the domain of precision irrigation, as is the 
greater domain of precision agriculture. 

In the course of this exploration, it becomes clear that a 
great deal of detail is needed for accurate water-need 
estimates to be produced for a given crop. These details 
involve terrain, soil, irrigation method, and daily weather 
conditions. Respected models already exist that take 
such detail into account. AquaCrop is one of these. It is 
drawn from basic physics (Allen et al., 1998; Martin and 
Gilley, 1998). 

AquaCrop’s executable is open-access but its source 
code is closed-source. AquaCrop-OSPy is a version of 
AquaCrop that is open-source and written in cooperation 
with AquaCrop’s authors. Both tools forecast watering 
need and crop production under assumed weather 
conditions. It is this author’s assertion that AquaCrop-
OSPy could be expanded so that it uses real-time 
weather readings and so can act as the heart of a 
human-supervised automated irrigation system. This 
would not be a trivial modification and would require 
tracing through the underlying source code during its 
operation. This paper discusses the results of having 
done so. The results are available under creative-
commons licensing. 

Therein lies the contribution of this work. It applies to a 
niche within precision irrigation, extending a respected 
physics-based irrigation and crop-yield forecasting model, 
AquaCrop-OSPy, so that the model can be used not only 
for forecasting but for direct control of an irrigation 
system. This proof-of-concept is accomplished by making 
as little change to the model's implementation as possible 
so that it still uses all available input and still can be used 
for parameter adaptation. The difference being that real-
time weather data and estimation of ETo replaces data 
drawn from a file. Watering need produced by the model 
can then be used to drive an automated human-
supervised irrigation system. 

This study focuses now on literature directly related to 
the present effort. 

 
AquaCrop (FAO) “is the crop growth model developed by 
FAO to address food security and assess the effect of the 
environment and management on crop production. 
AquaCrop simulates the yield response of herbaceous 
crops to water and is particularly well suited to  conditions  
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in which water is a key limiting factor in crop production.”  
 
This is a production/irrigation forecasting tool that has not 
previously been aimed at real-time operation of irrigation 
systems. Given the amount of detail used by this model, 
there is much potential beyond forecasting and planning. 
While its executable is available open-access, its source 
code is not available. 

Foster et al. (2016), Kelly and Foster (2021), and Kelly 
(2022) developed AquaCrop-OS, open source software 
written in M-Language that is meant to mirror the 
capability of FAO’s AquaCrop. Their code will run under 
MatLab, a commercial M-Language interpreter, and 
Octave, an open-source M-Language interpreter. They 
also produced a sister version in Python (AquaCrop-
OSPy). Both provide an opportunity to add real-time 
capability. This present project uses the Python version 
since that is a language that is more commonly known, in 
the author’s experience. 

Delgoda et al. (2015, 2016) used AquaCrop as a 
physical model to project the results of an approach to 
real-time irrigation control. Their work stimulates the 
development and testing of various control methods and 
acts as a means of estimating results prior to 
implementation. 

Operating with AquaCrop-OS, Kassing et al. (2020) 
and Mather (1999) developed a water-use optimization 
method for a large farm covering various soil types and 
terrain. Their simulation demonstrates very encouraging 
results relative to actual results.  

Parameter optimization of an AquaCrop-OS predictive 
model is carried out by Zhang et al. (2019). They present 
a means of predicting canopy states in real-time using 
Bayesian statistics. This is important to associating a 
model with a specific farm and crop. Their refined 
parameters cause their model to correspond closely to 
actual results. 

Another success in parameter optimization is attained 
by Ccama et al. (2022). They use real-time data to 
continuously adjust AquaCrop-OS so that it provides 
excellent irrigation guidance. 

An example of evolutionary algorithms applied to 
AquaCrop-OSPy parameter optimization is offered by Lyu 
et al. (2022). They show an optimization method over 
three different water climates to minimize water-use while 
maximizing crop yield. This is another good example of 
integrating AquaCrop-OSPy with external data flows and 
analysis techniques as part of forecasting and planning 
for the following year. 

These papers illustrate how AquaCrop-OS can be 
joined with external dataflows to optimize model 
parameters during forecasting/planning processes. They 
predict optimal schedules so that water-use is minimized 
while irrigating farmland for best crop results. Extending 
beyond forecasting/planning, the author illustrates a way 
to apply real-time weather data so that optimized 
parameters   resulting   from   forecasting/planning   allow 
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AquaCrop-OSPy to act as the heart of a human-
supervised fully-automatic irrigation system. This is a 
reasonable next-step given the successes of the cited 
work. 
 
 
MATERIALS AND METHODS 
 
The approach used to modify AquaCrop-OSPy’s implementation 
employed the following tools: 
 
(1) Standard AquaCrop-OSPy source code as downloaded from its 
public github repository. 
(2) PyCharm Community, an open-access tool for working with 
software written in Python. 
(3) Software for ETo calculations (single-crop under normal 
conditions derived from Allen et al.) 
(4) Access to weather data via US Weather Service API. 
(5) Microsoft Visual Studio, an open-access tool for working with 
software written in C++ 
 
 

Modifying AquaCrop-OSPy 
 
Herein is described the modifications made to AquaCrop-OSPy. 
 
 

Top-level design 
 
At its most basic level, AquaCrop-OSPy begins with an initialization 
step. Then it initiates the simulation. Once the simulation is finished, 
it reports on the results. Data for the simulation comes from 
initialization and also from a group of files containing details on 
weather, crop, terrain, soil, and irrigation method. Documentation is 
very detailed. One can just provide pointers to existing files or 
develop files of one’s own. Initialization can also be simple or 
detailed since there are defaults for everything. Thus, one can 
proceed according to one’s knowledge and time. Figure 1 illustrates 
basic design and workflow. 

Clearly, iterative optimizations carried out by the authors cited 
earlier require integration with baseline software. In the case of the 
present project, modifications were carried out in the initialization 
block and the simulation block. Underlying algorithms were not 
touched. Variables were only accessed, except for the weather data 
and the associated ETo value. That data is no longer read from a 
file but from an external source, as needed. 

 
 
Modifications 
 
The first modification is in the concept of operations. Originally, 
several years of daily historical weather data is read, all at the same 
time. That data becomes a table for access during the simulation. 
As the simulation progresses, that data is partitioned into crop 
seasons. Since this project deals with irrigation automation, no 
historical weather data is involved and only one season is 
assumed. Daily weather data is queried for that season. All other 
parameters are left as set via whatever paradigm or optimization 
created them. In fact, there is no reason iterative optimization could 
not continue, since nothing but weather data is touched. 

 
 
Initialization 
 
Initialization takes place within the AquaCrop-OSPy code module 
main.py. To maintain the inner workings of the simulation, the 
means of identifying weather data is changed: 

 
 
 
 
Originally: 
   weather_file_path = get_filepath(<climate file within the data subdirectory>) 
   weather_df = prepare_weather(weather_file_path) 
 
Now: 
   weather_df = pd.DataFrame(np.array([[0.0,0.0,0.0,0.0,today_timestamp], 
                                                                        [0.0,0.0,0.0,0.0,harvestDay_timestamp]]), 
                                         columns = ['MinTemp', 'MaxTemp', 'Precipitation', 'ReferenceET', 'Date'])  
 

The variables today_timestamp and harvestDay_timestamp are 
Timestamp variables created using Python’s pandas and datetime 
libraries. The resulting weather_df matches the internal data format 
as determined via code tracing. It identifies the start and end dates 
of the crop season. The subsequent call to AquaCropModel 
initializes the simulation. weather_df is required for that 
initialization. After initialization, the model is set to running in the 
standard way. 
 
 

Simulation 
 
Here is where the rest of the new programming occurs. External 
code modules are added so that the least disturbance is made to 
the existing code. Figure 2 summarizes the modifications. 

External executables are simply a matter of convenience since 
those were already written in C++. There is nothing essential about 
that means of implementation.  

The simulation step begins by gathering and injecting daily real-
time weather data whenever a reading is called for. A query is 
made for all readings during the last 24 h. Those are averaged. 
Precipitation is summed. A vector is created that is the same as 
appears in the original historical weather data file. 
 
Originally: 

        # extract _weather data for current timestep 

        weather_step = _weather_data_current_timestep(self._weather,  

                                                                                                    self._clock_struct.time_step_counter) 

Now (code prepended): 

        # Replaced historical weather file input with input resulting from real-time weather query. 

        thisExternalRecord = DailyWeatherQueries.PerformNextQuery() 

        if thisExternalRecord is None: # look at console to see error messages 

          print("Unable to obtain current weather query results.") 

          return 

        self._weather_df.loc[self._clock_struct.time_step_counter] = thisExternalRecord 

        if self._clock_struct.time_step_counter > 0: 

          self._weather = np.vstack([self._weather, thisExternalRecord]) 

        else: 

          self._weather = np.array([thisExternalRecord]) 

        # extract _weather data for current timestep 

        weather_step = _weather_data_current_timestep(self._weather,  

                                                                                                    self._clock_struct.time_step_counter)  
 

The second step occurs just prior to the daily time step checking for 
model termination. Code is inserted to interact with the irrigation 
system. Within that external module, the number of milliliters 
required is converted to a volume, according to the size of the field. 
Then the fixed-flow irrigator is triggered for an appropriate length of 
time. 
 

        # Code tracing reveals that this is the daily irrigation requirement: 

        # outputs.water_flux[self._clock_struct.time_step_counter, 6] 

        if outputs.water_flux[self._clock_struct.time_step_counter, 6] > 0.0: 

            commandLine = "IrrigationSystem.exe " +\ 

                          str(outputs.water_flux[self._clock_struct.time_step_counter, 6]) 

            operatingMinutes = os.system(commandLine) 

            if operatingMinutes < 0: DailyWeatherQueries.secondsBeforeNextQuery = 0.0 

            else: DailyWeatherQueries.secondsBeforeNextQuery =\ 

                DailyWeatherQueries.secondsIn24hours - (operatingMinutes * 60.0) 

        else:  

          DailyWeatherQueries.secondsBeforeNextQuery = DailyWeatherQueries.secondsIn24hours  
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Figure 1. AquaCrop-OSPy basic design and workflow. 
Source: Author 

 
 
 

 
 

Figure 2. Modifications to the Simulation block. 
Source: Author 
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Abdulhameed (2016) provides a very good discussion on 
converting millimeters of irrigation requirement to the related 
volume of water relative to the size of the field. The results of this 
calculation are used to drive a microcontroller, which could be 
connected to an irrigation system. In this present project, the author 
assumed a constant-flow irrigation system as discussed by Netafim 
(2022). Therefore, the microcontroller simply stays activated for a 
certain length of time, according to the assumed flowrate. However, 
a system that does not have a constant flowrate would require the 
addition of a flowmeter so that the amount of water delivered can 
be measured. The microcontroller would turn off when the required 
volume has passed through the meter. This approach would be 
essential, for instance, in the case of an irrigation system fed by an 
elevated water tank. 

This proof-of-concept used an Arduino Uno microcontroller 
development board, rather than a single-board computer (SBC) 
such as a RaspberryPI or BeagleBoneBlack, because the Uno has 
a relatively low power drain. Like SBCs, it can connect to and 
control external devices such a solenoids and actuators (although 
those were not employed in this phase, just an LED). Sensors 
associated with the US Weather Service were employed via internet 
query. 
 
 
RESULTS AND DISCUSSION 
 
Recalling Figure 2, the external executable, 
WeatherQuery-ETo.exe has two modes: (1) read a 
weather record from a file and (2) query a weather station 
real-time for its daily weather data. Records in the file are 
the exact same format and units as produced by the real-
time query. Those records match the style that is 
normally input to unmodified AquaCrop-OSPy. 

Testing was conducted in two phases. First, a single 
season of historic weather data was selected. AquaCrop-
OSPy was then run in its pure form against that data. The 
output was saved for later comparison. Then 
modifications were made to AquaCrop-OSPy that enable 
external data feeds during the simulation. WeatherQuery-
ETo.exe opened the same historic weather data file and 
fed the data to the simulation when the next day’s 
weather was requested. The new simulation’s output was 
compared to the original and found to be exactly the 
same. 

After that, real-time weather data was substituted for 
file-based weather data. When daily weather data is 
needed, a query is sent to the US Weather Service for 
the last 24 hours of data, which is then summarized for 
use by the simulation. Everything proceeds as before, 
except that real-time weather data is employed and 
irrigation signals are sent. The system was run over 
several days to check for anomalies. None were found 
(There are many open-access weather services that can 
be queried. The author chose the US Weather Service as 
a matter of location, convenience, reliability, and 
understandability. One could also query an on-farm 
weather station). 

The modified software was found to deliver the same 
results as the unmodified software. Reliability and 
stability of the modified software was established. 
AquaCrop-OSPy    is   already  established  as  accurate,  

 
 
 
 
given its acceptance by a global community and its use in 
numerous forecasting studies. 
 
 
Conclusion 
 
AquaCrop-OSPy has been modified to enable real-time 
weather feeds and to send control signals to an irrigation 
system. No changes to the underlying algorithms were 
made. The only variable values changed are the weather-
data vector. An ETo value is calculated from that vector. 
Everything else remains the same so that AquaCrop-
OSPy operates as before, to include any iterative 
optimizations previously employed. In this way, we move 
beyond forecasting/planning to driving irrigation systems 
in a human-supervised automated way. 

A challenge in modifying AquaCrop-OSPy was tracing 
through the code and finding the right variables to 
access, and which vector to modify for real-time weather 
data. A fair number of hours went into several cycles of 
tracing, modification, and testing. Another challenge was 
integrating external software modules so that the least 
change possible was made to the original software. 

Rain prediction is another step that could be added. If 
rain is predicted, should irrigation take place? That is a 
modification that could be added to IrrigationSystem.exe 
(Figure 2) and would not affect AquaCrop-OSPy. 

A graphical user interface would be a good step 
towards industrialization. At the present time, the only 
output provided is sent to the command console. It is not 
presently possible to affect the model while it is running. 
Still, the essential proof-of-concept has been provided. 

Where AquaCrop-OSPy has been used only for 
forecasting, it now shows the potential for being used as 
the heart of a human-supervised fully-automated 
irrigation system. Future work could move this present 
proof-of-concept in that direction, while still maintaining 
applications in iterative parameters and forecasting/ 
planning. In this way, physics theory directly impacts 
drought mitigation. 
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