
Journal of Engineering and Computer Innovations Vol. 1(1), pp. 10-17, September 2010 
Available online at http://www.academicjournals.org/JECI 
©2010 Academic Journals 
 
 
 
 
Full Length Research Paper 
 

Simulating of microstructure and magnetic properties 
of nanostructured Fe and Fe50Co50 powders by neural 

networks 
 

Ali Heidari1*, Mehdi Delshad Chermahini2 and Mohammad Heidari3 
 

1Department of Civil Engineering, Shahrekord University, Shahrekord, Iran. 
2Department of Material Science and Engineering, Kerman University, Kerman, Iran. 

3Islamic Azad University, Aligodarz Branch, Aligodarz, Iran. 
 

Accepted 27 August, 2010 
 

In this study, a series of experiments were performed in order to determine� the effects of� changing 
milling time on the microstructure and magnetic properties of nanostructured Fe and Fe50Co50 alloys by 
back propagation neural networks (BPN). The microstructure and magnetic properties of Fe and 
Fe50Co50 alloys were estimated using the data acquired from the experiments performed, performance 
values obtained were used for training a BPN whose structure was designed for this operation. The 
network, which has two layers as hidden layer, and output layer, has two input and five output neurons. 
The BPN is used for simulating the microstructure and magnetic properties of nanostructured Fe and 
Fe50Co50 alloys. The BPN method is found to be the most accurate and quick, the best results were 
obtained by the BPN by quasi-newton algorithms training with 12 neurons in the hidden layer. The 
quasi-newton algorithms procedure is more accurate and requires significantly less computation time 
than the other methods. Training was continued until the mean square error is less than 1e-3, desired�
error value was achieved in the BPN was tested with both� data used and not used for training the 
network. Resultant of the test indicates the usability of the BPN in this area.  
 
Key words: Nanostructured materials, mchanical alloying, microstructure, magnetic measurements, computer 
simulation. 

 
 
INTROUDUCTION 
 
It is established that during mechanical alloying a solid 
state reaction takes place between the fresh powder 
surfaces of the reactant materials at room temperature. 
Consequently, it can be useful to produce alloys and 
compounds that are difficult and impossible to be 
obtained by conventional melting and casting techniques 
(Capdevila et al., 2001). 

Pure iron is a good ferromagnetic material with a low 
resistivity so in some applications it leads to large eddy 
current losses. Alloying can be engineered to instill 
greater magnetic permeability and lower core losses 
(Koohkan et al., 2008). Cobalt in iron is unique in 
increasing simultaneously the saturation magnetization 
and Curie  temperature  (McHenry et al., 1999).  Although  
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the maximum saturation magnetization (MS) occurs at a 
concentration of 35 at % Co, equiatomic compositions 
offer a considerably larger permeability for similar MS 
(Sourmail, 2005). Recently, the effects of milling time 
(Delshad Chermahini et all 2009a), composition (Delshad 
Chermahini et al., 2009c), heating time (Delshad 
Chermahini and Shokrollahi, 2009) and heating rate 
(Delshad Chermahini et al., 2009b) on the both 
microstructure and magnetic properties of nanostructured 
Fe-Co alloys were investigated. The present paper is 
focused on the prediction effect of the ball milling on the 
structure and the magnetic properties of Fe and Fe50Co50 
alloys, using artificial neural network.  

The structure and magnetic properties of Fe and 
Fe50Co50 alloys in the experiments were adjusted by 
changing the milling time. Then the data obtained from 
the test results was used for simulating the system 
performance   by  the   BPN.    Recent   developments  in  
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Table 1. Experimental measurements. 
 

Fe Fe50Co50 Milling time 
Cry Mic Lat Coe Mag Cry Mic Lat Coe Mag 

0.3 101 0.03 0.28669 25.0 208.1 100 0.04 0.28650 72.0 178.0 
1.0 72 0.06 0.28673 27.0 208.3 68 0.08 0.28649 79.0 179.0 
1.5 50 0.15 0.28677 29.0 208.5 40 0.20 0.28648 85.0 180.0 
2.0 45 0.23 0.28680 30.0 208.7 35 0.33 0.28648 94.0 181.0 
3.0 40 0.30 0.28686 34.0 209.0 30 0.45 0.28642 103.0 182.0 
4.0 35 0.47 0.28692 33.0 209.1 25 0.63 0.28637 97.8 189.0 
5.0 30 0.66 0.28698 32.0 209.2 21 0.86 0.28631 92.6 196.0 
6.0 23 0.79 0.28703 31.3 209.3 17 1.00 0.28626 87.5 200.0 
7.0 18 0.90 0.28707 30.6 209.4 15 1.10 0.28623 78.7 204.0 
8.0 14 1.00 0.28710 30.0 209.5 12 1.20 0.28620 70.0 208.0 

12.0 13 1.13 0.28719 29.3 209.7 11 1.23 0.28617 67.0 208.7 
17.0 12 1.17 0.28727 28.6 209.9 12 1.23 0.28616 64.0 209.4 
20.0 12 1.20 0.28730 28.0 210.0 12 1.20 0.28615 61.0 210.0 
26.0 13 1.20 0.28732 27.4 210.3 12 1.18 0.28613 60.6 211.7 
30.0 12 1.21 0.27834 26.7 210.6 12 1.16 0.28611 60.3 213.4 
35.0 13 1.20 0.28735 26.0 211.0 12 1.15 0.28610 60.0 215.0 
37.0 15 1.15 0.28736 25.1 211.2 12 1.11 0.28610 57.0 215.6 
40.0 17 1.09 0.28736 24.2 211.4 13 1.06 0.28611 54.0 216.2 

211.7 14 1.00 0.28612 51.0 216.8 43.0 
45.0 

18 
19 

1.02 
0.95 

0.28737 
0.28737 

23.1 
22.0 212.0 15 0.95 0.28613 47.0 217.5 

 
 
 
information technology and increased computer powers 
led to the development of new programming techniques.  

One kind of artificial neural network is BPN. The BPN 
are being used in control applications, robots, pattern 
recognition, medicine, power systems, signal processing, 
social and psychological sciences. The BPN have also 
being used in heating (Rama Kumar and Prasad, 2006), 
cooling (Kanarachos and Geramanis, 1998), analysis 
(Swider et al., 2001), design (Heidari and Salajegheh, 
2006; Heidari and Karimpor, 2008; Heidari et al., 2009) 
and optimization (Salajegheh and Heidari 2004a, b).  
 
 
EXPERIMENTAL DETAILS 
 
Fe (99.5%, < 10 µm) and Co (99%, < 3 µm) powders supplied by 
Merck were mechanically alloyed in an argon atmosphere to form 
Fe and Fe50Co50 alloy in a  Fritsch planetary ball mill, whilst 
confined in sealed 250 ml steel containers rotated at 400 rpm for a 
variety of milling times. The container was loaded with a blend of 
balls (� = 10 mm, mass = 4.14 g and �  = 20 mm, mass = 32.12 

g). The total weight of the powder was about 23 g and the ball to 
powder mass ratio was about 20:1. 

X-ray diffraction measurements were carried out in a Philips 

X’Pert High Score diffractometer using Cu αK ( λ  = 1.5405
�

A ) 

radiation over 20 - 140° 2θ. The crystallite size and lattice strain 
were estimated using the Williamson-Hall method:  
 

sB cos� =2(ε )sin� +k�/D 

Where sB  is the full-width at half maximum of the diffraction peak, 

θ  is the Bragg angle, ε  is the internal microstrain λ  is the 

wavelength of the X-ray, D  is the crystallite size. sB can be given 

as  
 

222
cms BBB −=  

 
Where sB  is the width at half-maximum of the Si powder peaks 

used for calibration and mB  is the evaluated width. 

 
Lattice parameters were determined using 3 high-angle peaks in 
order to increase the precision of the measurements. Morphology 
and particle size were observed using scanning electron 
microscopy (Camscan mv2300). Magnetic properties were 
estimated using a magnetometer VSM. 

The used data for this paper is prepared by the author at 
previous work (Delshad Chermahini et al., 2009a). The effect of 
milling time on the microstructure (crystallite size, microstrain and 
lattice parameter) and magnetic properties (coercivity and 
magnetization saturation) of nanostructured Fe and Fe50Co50 
powders has been investigated. The results of this experimental 
study are shown in Table 1, where Cry is crystallite size, Mic is 
microstrain, Lat is lattice parameter, Coe is coercivity and Mag is 
magnetization saturation.  

For each composition (Fe and Fe50Co50), 20 milling times are 
selected. The experimental results that are shown in Table 1 were 
conducted on the system by changing the milling time is used to 
train and test of the BPN (Delshad Chermahini et al., 2009a). 
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Figure 1. Architecture of the BPN used. 

 
 
 
BACK PROPAGATION NEURAL NETWORK 
 
Back propagation neural network resembling neural neurons of a 
human brain are used successfully in many science branches on 
modelling and control applications. The BPN can be used to learn 
from the training dataset the non-linear relationships between 
multiple inputs and outputs without requiring specific information on 
the fundamental mechanisms relating them. The BPN is composed 
of interconnected computational processing elements called 
neurons that process input information and give outputs. The BPN 
have an algorithm that can learn and decide by its own throughout 
the process. They have data processing units called neurons. 
These networks involve connections between the neurons, which 
have their own weights. Their total energy is calculated by 
multiplying data signals by these weights. Data at the neuron output 
is found by making use of an activation function. The BPN have 
structural and mathematical variations (Heidari and Karimpor, 2008; 
Salajegheh and Heidari, 2004a; Salajegheh and Heidari, 2004b).  

Structural differences arise from the number of layers and the 
variations of the connections among the nodes. Generally, they 
have two layers as; hidden layer and output layer. Number of the 
layers can change and can be rebounded between the layers. This 
completely depends on the usage purpose of the network. Number 
of the nodes in the input equals to the number of data to be given to 
the BPN. Number of nodes at the output layer equals to the number 
of knowledge that will be taken from the BPN (Figure 1). 

Learning capability of the BPN improves as the number of nodes 
and the connections increases; however, it takes more time to train. 
A node has many inputs while it has only one output. Nodes 
process these input data and feed forward to the next layer. Input 
data are processed as follows; each data are added up after it was 
multiplied by its weight and then it is subjected to activation 
function. Thus, the data, which will be transferred to the next layer, 
is obtained. The algorithm used in training the BPN, and the type of 
activation function used at the output of the node are the 
mathematical differences. Activation functions involve exponential 
functions and thus non-linear modeling can be achieved. Various 
algorithms have been developed according to the BPN purpose of 
usage. They can be preferred according to their convenience to the 
problem to be solved, and training speed. The BPN are trained with 
known data and then tested with data not used in training. Although 
training takes a long time, they make decisions very fast during 
operation. They are used widely in simulating non-linear systems 
thanks to their ability to learn, generalize, tolerate the faults and 
benefit from the faulty samples. In the BPN optimizes the weighted 
connections   by   allowing  the  error  to  spread  from  output  layer 

towards the lower layers, was used as the training system in 
training networks. The values of the training and test data were 
normalized to a range from -1 to 1. The formulas used in this 
algorithm are as follows (Heidari, 2008): 
 
i.) Hidden layer calculation results: 
 

iii wxnet �=                                                                            (1)                                          

 
)( ii netfy =                                                                              (2)                                                                                                         

Where ix  and iw  are input data and weights of the input data, 

respectively. f is activation function, and iy  is result obtained 

from hidden layer. 
 
ii.) Output layer calculation results: 
 

jkik wynet �=                                                                            (3) 

 

)( kk netfo =                                                                             (4)  

 

Where jkw are weights of output layer and  ko  is result obtained 

from output layer. 
 
iii.) Activation functions used in layers are tansig and linear (Heidari, 
2008): 

i

i

net

net

i e
e

netf −

−

+
−=

1
1

)(  (tansig)                                                  (5)                                                                  

 

ii netnetf =)(     (linear)                                                    (6)                                                

 
iv.) Errors made at the end of one cycle: 
 

)1()( kkkkk ooote −−=                                                    (7)                  

 

ijkiii weyye �−= )1(                                                              (8)                                                                                           
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Table 2. Result of neural network with the BPN for Fe. 
 

Fe (Neural network) Error = (Exp - Neu)/Exp × 100 
Milling time 

Cry Mic Lat Coe Mag Cry Mic Lat Coe Mag 
1.0 74.2 0.062 0.28645 26.89 209.29 3.06 3.33 0.097 0.41 0.44 
6.0 22.13 0.76 0.28702 31.82 210.61 3.78 3.79 0.004 1.66 0.63 

17.0 12.34 1.16 0.28728 28.12 209.46 2.83 0.85 0.004 1.68 0.21 
30.0 12.13 1.24 0.28743 25.93 211.61 1.08 2.47 0.035 4.53 0.48 
40.0 16.63 1.12 0.28738 24.43 212.32 2.18 2.75 0.007 0.95 0.44 

Mean relative error for the data not used in training 2.59 2.64 0.029 1.52 0.45 
 
 
 
Where kt  is result expected from output layer, ke  is error occurred 

at output layer, and ie  is error occurred at hidden layer. 

 
v.) Weights can be changed using these calculated error values 
according to: 
 

jkikjkjk wyeww ∆++= βα                                                  (9)                                                                                  

 

ijiiijij wxeww ∆++= βα                                                      (10)                                                                       

 

Where jkw  and ijw  are weights of output and hidden layers, 

respectively. jkw∆  and ijw∆  are correction made in weights at 

the previous calculation. α  is learning ratio and β  is momentum, 

that is used to adjust weights. In this paper, 75.0=α  

and 70.0=β , are used.  
 
vi.) Square error, occurred in one cycle, can be found by Eq. 11. 
 

2
5.0 kk ote −�=                                                                 (11)                                                                                             

 
vii.) The completion of training the BPN, relative error (RE) for each 
data and mean relative error (MRE) for all data are calculated 
according to Eqs. 12 and 13, respectively.  
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Where n  is the number of data.  
 
 
RESULTS AND DISCUSSION 
 
Thirty out of forty experiments results used in training and 
the other 10 experiments were used to test of the BPN. 
Square error condition of less than 1e-3 was tried to be 
realized in training and it was achieved for the BPN. The 
various training algorithm (Heidari, 2008) is used for 
training   the   BPN.  All   weights   were    corrected   and 

repeated after the calculation of each data set. The best 
algorithm for this problem is the quasi-Newton algorithms. 
This is the type of problem for which the quasi-newton 
algorithms is best suited. A personal computer Pentium 4 
is used and the computing time is calculated in clock 
time. The BPN with twelve hidden neuron reached to 
desired error value after repeating 4.23 s.  

No more the BPN having hidden layer neurons other 
than this number was tested since the desired error value 
was reached by this the BPN. Relative error values were 
calculated for the data used and not used in training 
according to Equations 12 and 13. Crystallite size, micro-
strain, lattice parameter, coercivity and magnetization 
saturation error values of these (RE, MRE) found by 
artificial neural network with the BPN as well as. The test 
and RE values can be seen in Tables 2 and 3. Crystallite 
size, micro-strain, lattice parameter, coercivity and mag-
netization saturation predicted by the BPN and the expe-
rimental results were compared in Figures 2 - 6. Apses of 
the graphic shows the values measured, and estimated 
by the BPN. The regression value (R2) of the output 
variable values between the experimental values and the 
values estimated by the BPN were also calculated.  

Figure 2 shows the changes in crystallite size. The 
BPN learned the data not used in training with a MRE of 
2.19% and a regression value of 0.9881. The change in 
microstrain is shown in Figure 3. Mean relative error of 
the BPN in these values is 2.42% and regression value is 
0.9804. The lattice parameter is shown in Figure 4. The 
BPN learned the data not used in training with a MRE of 
0.025% and a regression value of 0.9992. The coercivity 
is shown in Figure 5. The BPN learned the data not used 
in training with a MRE of 1.41% and a regression value of 
0.9955. The magnetization saturation is shown in Figure 
6. The BPN learned the data not used in training with a 
MRE of 0.31% and a regression value of 0.9979.  
 
 
CONCLUSION 
 
Microstructural and magnetic properties estimation was 
made according to the experimental values by using the 
BPN. Results of 30 experiments out of 40, which were 
conducted at laboratory conditions, were used to train the  
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Table 3. Result of neural network with the BPN for Fe50Co50. 

 
Fe50Co50 (Neural network) Error = (Exp - Neu)/Exp × 100 

Milling time 
Cry Mic Lat Coe Mag Cry Mic Lat Coe Mag 

2.0 36.21 0.34 0.28645 93.23 181.44 3.46 3.03 0.011 0.82 0.24 
5.0 20.62 0.84 0.28613 91.81 195.91 1.81 2.32 0.063 0.85 0.05 

20.0 12.11 1.19 0.28611 62.15 210.83 0.92 0.83 0.014 1.89 0.39 
37.0 12.17 1.09 0.28612 56.91 215.29 1.42 1.80 0.007 0.16 0.14 
43.0 13.81 0.97 0.28614 52.43 216.7 1.36 3.00 0.007 2.80 0.05 

Mean relative error for the data not used in training 1.79 2.20 0.020 1.30 0.17 
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Figure 2. (a) The crystallite size of pure Fe from the experimental data, and the one obtained from neural network. (b) The crystallite size of Fe50Co50 from 
the experimental data, and the one obtained from neural network.
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Figure 3. (a) The microstrain of pure Fe from the experimental data, and the one obtained from neural network. (b) The microstrain of 
Fe50Co50 from the experimental data, and the one obtained from neural network. 
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Figure 4. (a) The lattice parameter of pure Fe from the experimental data, and the one obtained from neural network. (b) The lattice 
parameter of Fe50Co50 from the experimental data, and the one obtained from neural network. 
 
 
 
BPN and the other 10 were used to test the BPN. Mean 
relative errors of the test of artificial neural network were 
found to be 2.19% for crystallite size, 2.42% for 
microstrain,   0.025%   for   lattice  parameter, 1.41%   for 

coercivity and 0.31% for magnetization saturation. 
Multiple determination coefficient found by the BPN were 
0.9881 for crystallite size, 0.9804 for microstrain, 0.9992 
for  lattice parameter, 0.9955 for coercivity and 0.9979 for 
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Figure 5. (a) The coercivity of pure Fe from the experimental data, and the one obtained from neural network. (b) The coercivity of 
Fe50Co50 from the experimental data, and the one obtained from neural network.  
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Figure 6. (a) The magnetization saturation of pure Fe from the experimental data, and the one obtained from neural network, (b) The 
magnetization saturation of Fe50Co50 from the experimental data, and the one obtained from neural network. 

 
 
 
magnetization saturation. These results showed that the 
BPN gave a good estimation of results and it can be used 
in performance estimation of microstructural and 
magnetic properties with appropriate network architecture 
and training set. 
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