
Journal of Engineering and Computer Innovations Vol. 2(5), pp. 90-97 May 2011
Available online at http://www.academicjournals.org/JECI
ISSN 2141-6508 ©2011 Academic Journals

Full Length Research Paper

Dynamic task scheduling using service time error and
virtual finish time

S. V. Kasmir Raja1 and Daphne Lopez2*

1
SRM University, Kattangulathur, Tamil Nadu, India.

2
VIT University, Vellore, Tamil Nadu, India.

Accepted 29 March, 2011

The computational grid has emerged as an attractive platform to tackle various science and engineering
problems. One of the challenging issues in the grid associated with the effective utilization of the
heterogeneous resources is scheduling. This paper designs and implements a task-scheduling
algorithm considering the dynamicity of the resources and the tasks. We explain the concept of queue’s
virtual time and combine it with virtual finish time and the service time error to allocate resources to the
tasks for improved fairness and better throughput. The detailed performance evaluation of virtual finish
time driven scheduling algorithm is carried out through a series of simulations by varying the number
of tasks and processors of different capacities to optimize the cost and execution time of the tasks to
achieve fairness.

Key words: Computational grid, heterogeneous resources, dynamicity, task-scheduling.

INTRODUCTION

Despite efforts that current grid schedulers with various
scheduling algorithms have made to provide comprehen-
sive and sophisticated functionalities, they have difficulty
guaranteeing the quality of schedules they produce. The
single most challenging issue that they encounter is the
dynamicity of resources, that is, the availability and
capability of a grid resource change dynamically (Foster
and Kesselman, 1999a, b). Although a resource may be
participating in a grid, its main purpose is for use by local
users of the organization that it belongs to. Therefore, the
load on the resource imposes a great strain on grid
scheduling. Though there are a number of scheduling
algorithms existing, identifying the best algorithm in a grid
environment is complex and critical. All the tasks that are
submitted to the grid will have to be executed in the
stipulated time and its complexity increases due to
dynamic change of the resources. An important issue in
practical scheduling is fairness in user service. The
scheduling policies could be preemptive or non-
preemptive as shown in Figure 1.

Non-preemptive scheduling is performed only when
processing the previous task is completed and is
attractive due to the simplicity of its implementation for it

*Corresponding author. E-mail: daphnelopez@vit.ac.in.

is not necessary to maintain a distinction between an
unserviced task and a partially serviced one. Preemptive
scheduling (Jackson and Rouskas, 2002) involves the
interruption of the task after it has executed for its time
quantum and added to queue of pending requests.
Irrespective of the type of policy, the objective function is
to reduce the execution time and cost associated with the
execution of the job, which increases the throughput of
the system.

Proportional share resource management provides a
flexible and useful abstraction for multiplexing scarce
resources among users and applications.

Virtual time is a paradigm for organizing and
synchronizing distributed systems which can be applied
to such problems as distributed discrete event simulation
and distributed database concurrency control. Virtual time
provides a flexible abstraction of real time in much the
same way that virtual memory provides an abstraction of
real memory. This paper introduces virtual time (Mattern,
1989), a concept that allows a distributed system to be
organized around a linear global clock; rather than
maintain a synchronized clock, it achieves efficiency by
having each node maintain its own local virtual time and
performing rollback when a node receives a message in
the past. Although not widely adopted, it has served as
an influential model of a general system with optimistic
results.

Raja and Lopez 91

Pre-emptive Non pre-emptive

Scheduling policy

Figure 1. Scheduling policy.

RELATED WORK

Proportional fair is a compromise-based (Kushner and
Whiting, 2004) scheduling algorithm. It is based upon
maintaining a balance between two competing interests:
This concept is basically applied to networks in the
context to maximize total wireless network throughput,
while at the same time allowing all users at least a
minimal level of service. Fair queuing (Doulamis et al.,
2007; Hosaagrahara and Sethu, 2008) can be interpreted
as a packet approximation of generalized processor
sharing (GPS). This is done by assigning each data flow
a data rate or a scheduling priority (depending on the
implementation) that is inversely proportional to its
anticipated resource consumption. Demers et al. (1989)
propose fair queuing for network packet scheduling as
Weighted Fair Queueing (WFQ), with a more extensive
analysis provided by Parekh and Gallager (1993), and
later applied by Waldspurger (1995) to CPU scheduling
as stride scheduling. Fair queuing in network emulates
fairness of bitwise round-robin (Shreedhar and Varghese,
1996) sharing of resources among competing flows.
Elshaikh et al. (2006) propose a fair new weighted fair
queuing algorithm used in networks where two types of
queues and the queue length is used as a parameter
incalculating the virtual time, to ensure that the flows or
aggregates are not punished for using uncounted
bandwidth.

Doulamis et al. (2007) uses a max-min fair sharing
approach for providing fair access to users. When there
is no shortage of resources, the algorithm assigns to
each task enough computational power for it to finish
within its deadline. When there is congestion, the main
idea is to fairly reduce the CPU rates assigned to the
tasks so that the share of resources that each user gets
is proportional to the user’s weight. All tasks whose
requirements are lower than their fair share CPU rate are
served at their demanded CPU rates which they define
as fairness. Distributed scheduling algorithms with
multiprocessor systems (Ramamritham et al., 1990) and
metascheduler (Shreedhar and Varghese, 1996) is also

proposed.
In order to reduce the computational load, the concept

of virtual time is introduced. Weighted fair queuing
introduces the idea of a virtual finishing time (VFT) to do
proportional sharing scheduling. The virtual finish time is
dependent on the virtual time. Virtual time of a task is
defined as the degree to which a task has received its
proportional allocation relative to other tasks. Given a
task’s virtual time, the virtual finish time (VFT) is the
virtual time the task has after executing for one time
quantum. Virtual time round robin is another scheduling
algorithm that uses the virtual finish time parameter in
Linux to achieve fairness.

Sanjay and Vadhiyar (2008) calculated the time taken
to execute parallel application by considering the problem
size, the varying number of processors and the transient
CPU and network characteristics respectively. The
execution time is split into two, one for representing the
computation and the other for communication costs.

DYNAMIC VIRTUAL TIME FAIR QUEUE ALGORITHM

Grid model

The grid model consists of a number of computational
nodes and each node consists of a number of processors
of varying capacity. Once the user is issued, an accep-
tance of the task it belongs to the grid administrator.

The resources are discovered that are capable of
executing the tasks that are submitted to the site. The
resources that do not meet the tasks requirements are
moved to the other site.

The tasks are placed in the task queue and move to the
active state. Tasks in the active state are scheduled and
ready for execution. When the task is allocated, the
resources transits to the execution state and on expiry of
the time quantum the task is either moved to the end of
the queue or removed from the queue if it is not ready for
the second time quantum. On successful completion the

92 J. Eng. Comput. Innov.

tasks enters a finished state and is moved to the user’s
site.

Problem formulation

The problem of task scheduling in a grid G basically
consists of a dynamic set of T independent tasks to be
scheduled on a dynamic set of N computational nodes
(resources).

An instance of the problem consists of:

1. A set of T independent tasks to be scheduled. Each
task has associated with it a workload (in million of
instructions). Every task must be entirely executed in a
unique machine.
2. A set of M number of processors which has its
corresponding computing capacity (in MIPS).

ALGORITHM

The user submits the task to the grid environment. The
grid scheduler allocates the submitted tasks to the
computational nodes. A queue is maintained for each
computational node and the queue size depends on the
number of tasks submitted initially in the grid
environment. The size may not be equal at all intervals of
time because of the dynamic nature of the grid.

In this algorithm, a task has six values associated with
its execution state: share, service time error, virtual
finishing time, time counter, task identity and the run
state. A task’s share value identifies its resource rights.
Share is allocated to the task based on the price the user
pays. Perfect fairness is an ideal state in which each task
has received service exactly proportional to its share at
all intervals of time. Denoting the share of a task as S
and the service received by task during a time interval t1,
t2 as W, the perfect fairness of a task is represented as:

1 2 2 1

1

(,) () /
n

i

W t t t t S S
=

= − ∑
 (1)

The service time error is calculated as the difference
between the amount of service time allocated to the task
during interval (t1, t2) under the given algorithm, and the
amount of time that would have been allocated under an
ideal scheme that maintains perfect fairness for all clients
over all intervals:

1 2 1 2(,) (,)E st t t w t t= −
 (2)

The virtual time of a task is a measure of the degree to
which a task has received its proportional allocation
relative to other tasks. Virtual time is represented as:

() /VT W t S=
 (3)

Given a task’s virtual time, the task’s virtual finishing time
(VFT) is defined, as the virtual time the task would have
after executing for one time quantum. A task’s VFT
advances at a rate proportional to its resource
consumption divided by its share. The VFT is used to
decide the position of the task in the queue and that the
task in the beginning of the queue would be allocating the
resources. A task’s time counter measures the number of
allocations for that particular task in order to measure the
fairness at the end of each scheduling cycle. Information
about the scheduler as the time quantum, queue, total
shares and the queue virtual time is also maintained. The
total shares are the sum of the shares of all the tasks that
are ready to run.

Dynamic considerations

Initially when the execution starts, the tasks are sorted to
their share values and tasks would not have consumed
any time quantum so the task’s implicit virtual time is set
to be the same as the queue virtual time (QVT). Virtual
finish time of a new task is calculated as

() () /VFT t QVT t Q S= +

 (4)

If the executable task is not in an active state, it is simply
removed from the queue and the service time error for
the current and the next task is calculated and is allotted
the resource. The task that is in an inactive state lies
somewhere in the queue then the task is removed and
the pointer values are appropriately modified in the linked
lists. This way, the tasks can be preempted and used.
The pseudocode is given in Figure 2. The time
complexity is O(n

2
).

Arrival model

The tasks arrival is modeled as an application of a
queuing system. They are allowed up to Q seconds of
time and are fed back to the queue if they have not
completed their processing. We assume that the task
resumes its operation when it gets the processor for the
next time quantum. We also assume that the arrival times
are independent of each other. λ is the rate at which the
jobs arrive at the system, µ is the rate at which the jobs
are serviced. Assuming ρ = λ / µ.

Modeling each queue as an M/D/1 system, it can be
shown that the average length of the queue:

2

2(1)
Q

ρ

ρ
=

− (5)

 Raja and Lopez 93

Input: A set of taks T, a set of N computational nodes with multiple processors

Output: A schedule of T onto N

1. Create a set Q of N queues qsize = T/N

2. Each user is associated with the broker entity and the resource characteristics are

identified

3. Assign shares to the tasks, a positive value (depends on how much the user pays for

his service)

4. Remove qsize tasks in T and enqueue them to qi

5. SCHEDULING: (a) Assign shares to the tasks in each queue.

SORT is performed (Arrange the tasks in decreasing order of their shares)

Repeat c & d for one scheduling cycle

(b) The first task in queue is executed initially for the required time quantum

(c) Compute the service time error for the task in execution and the task in the head of

the queue

(d) Schedule the job which has the least value

6. VIRTUAL TIME: Compute the virtual time and the virtual finish time and store the

values in the counters.

7. Schedule the task with a negative value

8. Change position: After every scheduling cycle the order of the tasks are based on

their virtual finish time. The task with the smallest Virtual Finish Time is first chosen.

9. Repeat steps 5c through 5d for the current scheduling cycle

10. RESULT: Return the result set to the user

Figure 2. Pseudocode for dynamic virtual time fair queuing.

While the average waiting time is given by:

)1(2 ρµ

ρ

−
=W

 (6)

And the total time for task completion is:

)1(2

2

ρµ

ρ

−

−
=t

 (7)

Objective function

The objective function is to minimize the service time
error. Minimization of error uses root mean square
method as given in Equation (8):

2

2 1

1 1

{ }* /
m

n n n n n

n tom n

W t t S S

Z
m

− −

  
− −  

  
=  
 
 
 

∑ ∑

 (9)

SIMULATION EXPERIMENT SETUP

GridSim requires the creation of resources with different capacities.
We model the application as Gridlets and define all the parameters
associated with the task. Then a GridSim user entity is created, that
interacts with the resource broker scheduling entity to coordinate
the execution of the tasks. Finally we implement a resource broker
entity that performs scheduling on grid resources. The resources
with their attributes used in scheduling are listed in Tables 1 and 2.

94 J. Eng. Comput. Innov.

Table 1. The grid resources attributes.

Parameter Value Notation

Total number of resources R0 to R20 1-20 Machines

Speed 200-400 Million instructions per second

Number of processors 4-6 Processing elements

Resource manager type Time-shared

Table 2. Workload attributes.

Parameter Value Notation

Total number of tasks 100-500

Length of a task 1,000-5,000 Million instructions (MI)

Number of processors required 4-6 Million instructions per second (MIPS)

Table 3. Experimental results for number of tasks 100 and 4 processing elements in each machine.

Parameter Cost Execution time Min. error Max. error

FCFS 461452.0 19342 -26.20000 25.54433

Round robin 422050 .9 17509 -25.80999 23.83333

Dynamic virtual time fair queue 300139.0 10766 -16.15 17.13205

Table 4. Experimental results for number of tasks 300 and 6 processing elements in each machine.

Parameter Cost Execution time Min. error Max. error

FCFS 521252.2 21251.93 -37.46000 37.21818

Round robin 495897.3 19690.05 -36.45126 36.63650

Dynamic virtual time fair queue 401112.19 14389.11 -29.7989 30.97099

Table 5. Experimental results for number of tasks 500 and 6 processing elements in each machine.

Parameter Cost Execution time Min. error Max. error

FCFS 656040.5 28765.54 -42.7814 42.72

Round Robin 615497.6 25721.15 -39.100 39.4535

Dynamic virtual time fair queue 551960.17 18435.12 -29.7576 28.4557

EXPERIMENTAL RESULTS

We perform simulations to implement fairness by using
service time error as one parameter and using the virtual
time fair queue performing simulations with 100 to 500
numbers of tasks. The experiment is carried out for FCFS
(First Come First Serve), round robin and dynamic virtual
time fair queuing. It minimizes error as well as using the
virtual finish time it maximizes fairness. The experimental
results in terms of cost, execution time, minimum and

maximum error are shown in Tables 3 to 5, for number of
tasks 100, 300 and 500, respectively. A comparison of
execution time with tasks, maximum error with tasks and
cost with tasks is given in Tables 6 to 8 respectively.
Corresponding graphical representations are also shown
in Figure 3 to 5. Maximum error for the number of tasks
ranging from 100 to 500 is tabulated in Table 9. It guaran-
tees that all the tasks are considered for execution.

The experimental results show that the maximum error
reaches a maximum value and starts declining even

 Raja and Lopez 95

Table 6. Comparison of execution time with number of tasks.

No. of task
Execution time

FCFS RR Dynamic virtual time fair queue

100 19342 17509 10766

300 21251.93 19690.05 14389.11

500 28765.54 25721.15 18435.12

Table 7. Comparison of maximum error with number of tasks.

No. of task
Maximum error

FCFS RR Dynamic virtual time fair queue

100 25.54433 23.83333 17.13205

200 37.21818 36.63650 30.97099

300 42.72 39.4535 28.4557

500 48.96457 45.68740 25.16666

Table 8. Comparison of cost with number of tasks.

No. of task
Cost

FCFS RR Dynamic virtual time fair queue

100 461452.0 422050 .9 300139.0

200 521252.2 495897.3 401112.19

300 656040.5 615497.6 551960.17

500 721460.3 701412.3 591209.8

0

5000

10000

15000
20000
25000
30000
35000

0 100 200 300 400 500 600

No. of tasks

E
x

e
c

u
ti

o
n

 t
im

e

ti
m

e

FCFS RR Dynamic virtual time fair queue

E
x

e
c
u

t
io

n
 t

im
e

Figure 3. Execution time versus number of tasks.

96 J. Eng. Comput. Innov.

0

10
20

30
40
50

0 100 200 300 400 500 600

No. of tasks

FCFS RR Dynamic Virtual Time Fair Queue

M

a
x
im

u
m

 e
rr

o
r

Figure 4. Maximum error versus number of tasks.

0

100000
200000
300000
400000
500000
600000
700000

0 100 200 300 400 500 600

No. of tasks

C
o
s
t

FCFS RR Dynamic virtual time fair queue

Figure 5. Cost versus number of tasks.

Table 9. Maximum error values for number of tasks 100
to 500.

No. of tasks Max error

100 17.13205

200 18.002

300 20.013

400 21.1201

500 19.0

when the number of tasks increases. This is due to the
consideration of the virtual finish time in the allocation of
resources. The algorithm has proved to give the best
results of all the algorithms even after considering the
dynamic submission of the jobs. When new job arrives,
the queue’s virtual time is the virtual time of the job. In
this way, after every scheduling cycle even, a new job
that has arrived recently gets a proportional allocation of
the resource. Even with dynamic considerations, virtual
time fair queue algorithm shows a 50% higher perfor-
mance than FCFS and round robin.

Conclusion

We discussed the use of service time error and virtual
finish time for devising scheduling strategies for high end
tasks on distributed resources. We simulated and
evaluated the performance of scheduling algorithms in
terms of error, cost and time for a variety of scenarios.
This algorithm can be used to study the performance of
various real time applications and can be embedded in a
metascheduler also for enabling global scheduling. It is
proposed to scale it up to the cloud infrastructure.

REFERENCES

Foster I, Kesselman C (1999a). “The Grid: Blueprint for a Future

Computing Infrastructure”. San Francisco, CA: Morgan Kaufmann
Publishers, pp. 21-26

Foster I, Kesselman C (1999b). “The Grid: Blueprint for a new
computing infrastructure”. Chapter “The Globus toolkit”, 1st edition,
San Francisco, CA: Morgan Kaufmann Publishers Inc., pp. 259-278.

Demers A, Keshav S, Shenker S, (1989). “Analysis and simulation of a
Fair Queuing Algorithm”. In Proc. ACM SIGCOMM ’89, New York,
NY: ACM, pp. 1-12.

Doulamis ND, Varvarigos E, Varvarigou T (2007). “Fair Scheduling
Algorithms in Grids”. IEEE Trans. Parallel Distrib. Syst., 18(11): 1630-
1648.

Hosaagrahara M, Sethu H (2008). “Max-Min Fair Scheduling in Input-
Queued Switches”. IEEE Trans. Parallel Distrib. Syst., 19(4): 462-
475.

Elshaikh MA, Othman M, Shamala S, Desa J (2006). “A New Fair
Weighted Fair Queuing Scheduling Algorithm in Differentiated
Services Network”. Int. J. Comput. Sci. Netw. Security, 6(11): 267-
271.

Mattern F (1989). “Virtual Time and Global States of Distributed
Systems”. J. Parallel Distrib. Algorithms. pp. 215-226.

Raja and Lopez 97

Shreedhar M, Varghese G (1996). “Efficient Fair queuing using Deficit

Round Robin”, IEEE Trans. Netw., 4(3): 375-385.
Waldspurger CA (1995). “Lottery and Stride Scheduling: Flexible

Proportional-Share Resource Management”. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, pp. 12-34
Sanjay HA, Vadhiyar S (2008). “Performance modeling of parallel

applications for grid scheduling,” J. Parallel Distrib. Comput., 68:
1135-1145.

Ramamritham K, Stankovic JA, Shiah PF (1990). “Efficient Scheduling
Algorithms for Real-Time Multiprocessor Systems”. IEEE Trans.
Parallel Distrib. Syst., 1(2): 184-194.

Kushner HJ, Whiting PA (2004). “Convergence of proportional-fair
sharing algorithms under general conditions”. IEEE Trans. Wireless
Commun., 3(4): 1250-1259.

Parekh AK, Gallager RG (1993). “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case”. IEEE/ACM Trans. Netw., 1(3): 344-357.

