
Journal of Engineering and Computer Innovations Vol. 2(7), pp. 125-137, September 2011
Available online at http://www.academicjournals.org/JECI
ISSN 2141-6508 ©2011 Academic Journals

Full Length Research Paper

Versatile solid-state stepper motor controllers

Inyiama Height Chibueze and Okezie Christiana Chikodi*

Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka, Anambra State West Africa,
Nigeria.

Accepted 8 June, 2011

Alternative forms of solid-state motor controllers have been presented in this paper including the
effective use of read only memories in stepper motor controller implementations. An innovative low-
cost universal stepper motor controller capable of controlling any kind of stepper motor has also been
featured. The treatment includes a way of achieving a time-multiplexed control of several stepper
motors with one universal controller and a method of generating a predetermined sequence of control
bit-patterns for a dedicated application.

Key words: Motor controller, memory, stepper motor.

INTRODUCTION

The essential features of a steeper motor (SM) control
system are illustrated in Figure 1. Four main parts are
discernible, namely: a stepper motor, a stepper motor
drive (or power circuit), a stepper motor controller, and an
optional opto-coupler (or opto-isolator) between the drive
and the controller.

The solid-state switches comprising the drive are logic
level operated. A logic 1 control input applied via A, B, C
or D closes the corresponding switch, allowing current to
flow through the coil controlled by the switch. A logic zero
input to any of the switches causes the switch to open,
thereby interrupting coil-current flow.

A stepper motor is a device used to achieve
incremental motion control and which takes one angular
or linear incremental step depending on the design for
every valid step command reaching the SM drive from its
controller (Pickering, 2010). The size of the angular or
linear incremental step and the direction of stepping
(clockwise or anticlockwise for rotary motors, forward or
backward for linear motors) depend on the nature of the
control bit-pattern sequence generated by the SM
controller and applied to the drive.

Tables 1 to 3 show the full-step, half-step, and ¼- step
control bit-pattern sequences respectively, of a 4-phase
stepper motor. Other fractional step sequences (for

*Corresponding author. E-mail:christianaokezie@yahoo.com.
Tel: 234-8032266191.

example, 1/8-step, 1/16-step etc.) are also possible. Note
that a 4-phase SM controller is identical to a 2-phase
controller but the 4-phase (Unipoar) drive is markedly
from a 2-phase (bipolar) drive (Smith, 2009).

The maximum incremental distance for a stepper motor
is the full step. The half-step is so called because it
corresponds to a distance equal to the half of a full-step.
Similarly, a quarter-step implies one quarter of the
distance covered in a full-step and so on. Typically, the
smaller the step size, the smoother the movement of the
motor shaft and hence that of the load coupled to the
motor shaft. Also, the torque levels the motor which is
able to develop and increase with decreasing step size.

For any step size desired, the appropriate control bit-
pattern sequence must be used. The bit-patterns are
generated one row at a time and applied to the drive as
step commands. The rate at which one row of bit-patterns
in a sequence is replaced by the next corresponds to the
SM stepping rate, as a step is always taken only at the
point in time when one row of bit-patterns is replaced by
the next. The clock (or step time) is an external signal
applied to the SM controller and used to control the
stepping rate. For every clock pulse, a new row of bit-
patterns is generated. Therefore, the clock frequency
corresponds to the stepping rate.

When the rows of a bit-pattern sequence are generated
(and applied to the SM drive) in a top-to-down order, the
SM steps in a clockwise or forward direction. In contrast,
when the rows of the bit-pattern sequence are generated
and applied to the drive in a bottom-up order, a counter-

126 J. Eng. Comput. Innov.

Stepper Motor Controller

(Source of Control Bit-Pattern Sequence)

A B C D

Opto-Coupler

(Optional)

A

 B

 C

 D

SM

DRIVE

SWITCH

PROTECTION

DIODES
SOLID

STATE

SWITCHES

SM SHAFT

CONTROL BIT PATTERN

(LOGIC LEVELS

CLOCK (OR STEP TIME)

+V

4-PHASE STEPPER MOTOR

Figure 1. Essential fectures of a stepper motor control system.

Table 1. 4-Phase full-step sequence.

Full step
SM Coils

A B C D

1 1 0 0 0

2 1 0 1 0

3 0 1 1 0

4 0 1 0 1

1 = Full amplitude coil current, 0 = Zero coil current.

Table 2. 4-Phase half-step sequence.

Half step
SM Coils

A B C D

1 1 0 0 1

2 1 0 0 1

3 1 0 1 0

4 0 0 1 0

5 0 1 1 0

6 0 1 0 0

7 0 1 0 1

8 0 0 0 1

Chibueze and Chikodi 127

Table 3. 4-Phase, 1/4-Step sequence.

Step
SM Coils

A B C D

1 1 0 0 1

2 1 0 0 ½

3 1 0 0 0

4 1 0 3/2 0

5 1 0 1 0

6 3/2 0 1 0

7 0 0 1 0

8 0 3/2 1 0

9 0 1 1 0

10 0 1 ½ 0

11 0 1 0 0

12 0 1 0 ½

13 0 1 0 1

14 0 ½ 0 1

15 0 0 0 1

16 ½ 0 0 1

clockwise or backward stepping motion results. The rows
of a bit-pattern sequence are generated as an endless
chain. Thus, in the top-down direction the last row is
immediately followed by the first, while in the bottom-
updirection, the first row is followed by the last.

The sophistication built into SM controllers differs
according to need. A controller may cater for just
clockwise (CW) motion or for counterclockwise (CCW)
motion. The motion may also be possible in full-steps
only or in a particular fractional step only, depending on
the Bit-pattern sequence the controller is designed to
generate. A versatile SM controller capable of
bidirectional full-step or fractional-step control can also be
realized. Technique for achieving this are treated in this
paper. Also detailed is a method of generating the control
bit-pattern sequence for any stepper motor (and for any
desired mode of stepping) from one and the same SM
controller.

However, SM drives are not detailed here in view of the
ready availability of suitable texts on the subject
(Pickering, 2010; Smith, 2009; Brown and Vranesic,
2009).

ROM-SEQUENCER-BASED SM CONTROLLERS

As SM controller may take one of several alternative logic
structures, however, the reliability and maintainability of
the resultant circuit depend on the type of logic system
employed.

When a sequential logic system such as that required
to generate a stepper motor control bit-pattern sequence
is implemented using discrete logic gates (such as AND,

NAND, OR, NOR, EX-OR, INVRTERS etc.) and memory
flip flops, what is termed a random logic system results
(Floyd, 2002). Since such a system involves mostly small
scale integration components, the component count is
usually high for a fairly complex circuit. This implies
several interconnections and many potential sources of
error.

Modifications and maintenance are also difficult to
achieve when either re-designing or fault-finding
becomes necessary. A random logic system is therefore
very inflexible.

Fortunately however, logic systems can be
implemented in forms more structured than random logic.
Such systems employ structured logic devices such as
multiplexers (or data selectors) (Inyiama, 1981),

and

Read-Only-Memories (ROMs) (Floyd, 2002).
A multiplexer-based SM controller requires as many

multiplexers as there are columns in the bit-pattern
sequence to be generated and each of these multiplexers
must have at least as many data input lines as there are
rows in the bit-pattern sequence. Thus, if an 8-phase full-
step sequence (which has 8 rows and 8 columns of bit
patterns) is to be generated by means of multiplexers, a
total of 64 data input lines would be involved. This is in
addition to other control inputs and outputs necessary in
such a system. The rapid proliferation of data input lines
(and hence potential sources of error) in multiplexer
based complex sequential logic systems is its main
disadvantage in such applications. Multiplexers that are
being structured by logic devices do, however, have a
considerable advantage over random logic in that errors
in the design can be corrected simply by altering the logic
levels applied to their data inputs. For compact, reliable

128 J. Eng. Comput. Innov.

EXHAUSTIVE

ADDRESS

DECODER

OR

AND-TIE

MEMORY

OR-TIE

OUTPUT VARIABLES

D1 D2 ...DM A1 A2 …An

ADDRESS INPUTS

(OR INPUT VARIABLES)

0

1

2

3

 .

.

.

DECODED ADDRESS

LINES

ROM

…….. ……..

2n – 1

Figure 2. ROM structure.

and easily maintainable implementation of a complex
sequential logic ROMs have an edge over multiplexers
and are usually preferred.

The read only memory (ROM)

A read only memory (ROM) consists of 2 main sections:
the address decoder section and the memory OR-tie
section (Figure 2). The address decoder is an exhaustive
AND-logic decoding of the control (now referred to as the
address) inputs.

It is exactly the same in function as a conventional
decoder except that its (active high) outputs are internally
fed to the OR-tie section. The OR-tie section performs a
similar function as a conventional OR-gate except that a
number of OR-gate outputs can be derived from the OR-
tie section of one ROM. Typically, the OR-tie section of a
ROM is committed to a particular logic function during
what is termed a programming process. Like the ROM
decoder section the entire OR-logic circuits are internal to
the ROM. Only the OR-gate outputs are sticking out on
the ROM chip. Thus, the only external signals associated
with a ROM are the control (or address) inputs to the
decoder section and the OR-gate outputs from the OR-tie
section (Figure 2). This is an important advantage for the
ROM as the very few external signal lines imply fewer
sources of error. Once the OR-tie section of a ROM is
programmed, the pattern cannot be altered (that is,
rewritten). It can be read, hence the name Read-Only-
Memory by which this device is known.

During the initial development of a ROM-based logic
circuit errors may occur in the OR-tie pattern
programmed into it. Since reprogramming is not possible,
the old ROM has to be thrown away and a fresh one
programmed with the correct pattern. This is often
considered wasteful. To overcome this disadvantage,
other versions of ROMs which can be programmed,
erased, and reprogrammed have been introduced.
Examples of these include the ultra-violet Erasable,
Programmable Read-Only-Memory (EPROM) and the
Electrically Alterable Read-Only-Memory (EAROM).
When all errors have been removed from the ROM
pattern, the final correct version is usually programmed
into a non-erasable ROM to guard against accidental
erasure, a danger to which EPROM- or EAROM- based
design are exposed.

ROM/Counter-based SM controllers

Table 4 shows the control bit-pattern sequence for a 6-
phase SM while its ROM-sequencer based
implementation is shown in Figure 3. The arrangement
shown uses six consecutive ROM locations to store the
six unique bit patterns in the sequence.

A modulus 6 (that is, divide-by-6) up/down counter (5)
is used to generate the row address (that is, location) of
the bit pattern to be output to the SM drive. For example,
an address input such as C B A-000 selects the first row
(that is, A2, B1, C1, A2, B2, C2, = 1, 0, 0, 0, 1, 0) and so
on.

Chibueze and Chikodi 129

Table 4. The 6-Phase sequence.

Full step
SM Coils

A1 B1 C1 A2 B2 C2

1 1 0 0 0 1 0

2 0 0 1 0 1 0

3 0 0 1 1 0 0

4 0 1 0 1 0 0

5 0 1 0 0 0 1

6 1 0 0 0 0 1

A1 B1 C1 A2 B2 C2

1 0 0 0 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 1 0 0

1 0 0 0 1 1

0 0 0 0 1 1

C B A

UP/DOWN

COUNTER

Controller
Outputs to

Motor Drive

A1

B1

C1

A2

B2

C2

Clock (Step Pulses)

System Reset

CW/CCW

0

1

2

3

4

5

LOCATIONS

Row Select

or Address

U = UP

D = Down

U/D

Figure 3. ROM-Sequence-based 6 phase stepper motor controller (CW AND CCW).

The clockwise/counterclockwise (CW/CCW) signal is the
up-down input to the modulus counter. A logic 1 at the
CW/CCW input means that the stepper motor is to move
in a clockwise (or forward) direction while a logic 0
specifies a counter clockwise (or backward) motion.
When CW/CCW = 1, the C B A outputs of the modulus
counter access the ROM locations in the top-down (that
is, clockwise) order, down to the last row and back to the
first. When CW/CCW = 0, the ROM locations are
accessed and output to the drive in the bottom-up (that is,
counter-clockwise) order, starting from the last row, up to
the first, and back to the last, in the usual endless-chain
fashion. The clock or step pulse applied to the clock input
of the modulus counter is derived from a square wave
generator. The generator frequency must be chosen to
correspond with the stepping rate desired as there is
usually one step per clock pulse.

A bidirectional bit-pattern sequence generator may be
similarly implemented for any stepper motor with
corresponding ease of design. However, the number of

ROM locations needed will vary with the number of rows
in each bit-pattern sequence. The same is true of the
maximum count required of the up/down counter before it
restarts form zero.

Table 5 shows the full-step sequence for an 8-phase
SM. Its ROM-based implementation is shown in Figure 4.
Note that the 3-bit ripple up/down. Counter shown in
Figure 4 is capable of generation eight unique addresses,
corresponding to the eight ROM locations required to
store the 8-phase sequence. Any of the ROM versions
may be used in these implementations but with the
implications high-lighted earlier (The read only memory
(ROM)).

Fully expanded SM control sequences

It is possible to design an SM controller in which the
present output bit-pattern is used as the address of the
next output patter in the sequence. This approach

130 J. Eng. Comput. Innov.

Table 5. 8-Phase full-step sequence.

Full step
SM Coils

A1 B1 C1 A2 B2 C2

1 1 0 0 0 1 0

2 0 0 1 0 1 0

3 0 0 1 1 0 0

4 0 1 0 1 0 0

5 0 1 0 0 0 1

6 1 0 0 0 0 1

1 1 1 0 1 0 0 0

0 0 1 0 1 0 0 0
0 0 1 1 0 0 0 0

0 1 0 1 0 0 1 0

0 1 0 0 0 1 1 1

1 0 0 0 0 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 0 0 1

 C B A

U/D 3-Bit Binary Up

or Down Counter

A1 B1 C1 D1 A2 B2 C2 D2

A1

B1

C1
D1

A2
B2

C2

D2

 Controller

Outputs

to Motor Drive

Clock (Or Step Pulses)

System Reset
CW/CCW

LOCATIONS

1

2

3

4

5

6
7

8

Row Select

or Address

Figure 4. ROM sequencer-based bi-directional b-Phase stepper motor controller.

Table 6. 5-Phase full-step sequence.

Half
SM Coils

Full-step codes
A B C D E

1 1 0 1 0 1
1

2 0 0 1 0 1

3 0 1 1 0 1
2

4 0 1 0 0 1

5 0 1 0 1 1
3

6 0 1 0 1 0

7 1 1 0 1 0
4

8 1 0 0 1 0

9 1 0 1 1 0
5

10 1 0 1 0 0

obviates the need for modulus up/sown counters but
requires the use of much more expanded bit-pattern
sequence table.

Table 6 shows the half-step bit-pattern sequence for a
5-Phase stepper motor while Table 7 shows its fully
expanded version. Table 7 covers four possible modes of

SM operation and is comprised of four main sections as
follows:

(a) Section (1): when the bit pattern under the CW/CCW
and F/H (that is, full-step or half-step) columns are both
zero (or CW/CCW, F/H = 0, 0) signifying the

Chibueze and Chikodi 131

Table 7. Fully expanded state transition table for a CW/CCW full/half step 5-Phase stepper motor controller.

HEX
Qualifiers Present state Next states

HEX′
CW/CCW F/H A B C D E A′ B′ C′ D′ E′

15 0 0 1 0 1 0 1 1 0 1 0 0 14

05 0 0 0 0 1 0 1 1 0 1 0 1 15

00 0 0 0 1 1 0 1 0 0 1 0 1 05

09 0 0 0 1 0 0 1 0 1 1 0 1 0D

08 0 0 0 1 0 1 1 0 1 0 0 1 09

0A 0 0 0 1 0 1 0 0 1 0 1 1 08

1A 0 0 1 1 0 1 0 0 1 0 1 0 0A

12 0 0 1 0 0 1 0 1 1 0 1 0 1A

16 0 0 1 0 1 1 0 1 0 0 1 0 12

14 0 0 1 0 1 0 0 1 0 1 1 0 16

35 0 1 1 0 1 0 1 1 0 1 1 0 16

25 0 1 0 0 1 0 1 1 0 1 0 0 14

20 0 1 0 1 1 0 1 1 0 1 0 1 15

29 0 1 0 1 0 0 1 0 0 1 0 1 05

28 0 1 0 1 0 1 1 0 1 1 0 1 0D

2A 0 1 0 1 0 1 0 0 1 0 0 1 09

3A 0 1 1 1 0 1 0 0 1 0 1 1 08

32 0 1 1 0 0 1 0 0 1 0 1 0 0A

36 0 1 1 0 1 1 0 1 1 0 1 0 1A

34 0 1 1 0 1 0 0 1 0 0 1 0 12

55 1 0 1 0 1 0 1 0 0 1 1 0 05

45 1 0 0 0 1 0 1 0 1 1 0 0 0D

40 1 0 0 1 1 0 1 0 1 0 0 1 09

49 1 0 0 1 0 0 1 0 1 0 0 1 08

4B 1 0 0 1 0 1 1 0 1 0 0 1 0A

4A 1 0 0 1 0 1 0 1 1 0 0 1 1A

5A 1 0 1 1 0 1 0 1 0 0 1 1 12

52 1 0 1 0 0 1 0 1 0 1 1 0 16

56 1 0 1 0 1 1 0 1 0 1 1 0 14

54 1 0 1 0 1 0 0 1 0 1 1 0 15

75 1 1 1 0 1 0 1 0 1 1 0 1 0D

65 1 1 0 0 1 0 1 0 1 0 0 1 09

132 J. Eng. Comput. Innov.

Table 7. Contd.

60 1 1 0 1 1 0 1 0 1 0 1 1 08

69 1 1 0 1 0 0 1 0 1 0 1 0 0A

6B 1 1 0 1 0 1 1 1 1 0 1 0 1A

6A 1 1 0 1 0 1 0 1 0 0 1 0 12

7A 1 1 1 1 0 1 0 1 0 1 1 0 16

72 1 1 1 0 0 1 0 1 0 1 0 0 14

76 1 1 1 0 1 1 0 1 0 1 0 1 15

74 1 1 1 0 1 0 0 0 0 1 0 1 05

counter-clockwise, half-step mode
(b) Section (2): when CW/CCW, F/H = 01,
signifying the counter clockwise, full-step mode
(c) Section (3): when CW/CCW, F/H = 10, which
is the clockwise, half-step mode; and
(d) Section (4): when CW/CCW, F/H = 13, the
clockwise, full-step mode.

The control bit-pattern sequence for each of the
four modes of operation appears under the
column headed by the label “Present States” and
in the section for that mode.

The columns of bit patterns under Present
States are labelled A, B, C, D, and E. Each row of
bit-patterns under Next States (labeled A

1
, B

1
, C

1
,

1
 and E

1
) is obtained by determining the next

appropriate control bit-pattern following that under
Present States (on the same row) when the mode
of stepping is as defined by the CW/CW, F/H bit-
pattern. For example, when CW/CCW, F/H -0, 0
(counter clockwise half-step mode) and the
present states ABCDE = 10101, The Next States
A

1
 B

1
 C

1
D

1
E

1
=

10100. This is because in the

reverse order of the 5-Phase bit-pattern sequence
(Table 6) 10101 (top row) is followed by 10100
(bottom row). Similarly, when CW/CCW, F/H -11
(clockwise, full-step) and ABCDE = 10101, the
next states A

1
B

1
C

1
D

1
E

1
= 01101, which is the next

bit-pattern in the full-step sequence in a top-down
direction (Table 6) and so on.

The preparation of the present states and next
states table as illustrated in Table 7 is a
necessary step used first in the realization of a
versatile SM controller. Such a table is often
referred to, as a fully expanded state transition
table (STT) for the particular motor whose bit-
pattern sequence is so expanded. When such
tables are used in SM controller design, error-free
transitions between the full-step and half-step
modes are made possible.

In ROM-based designs, a fully expanded table
such as Table 7 can be generated by viewing the
bit-pattern under CW/CCW, F/H A, B, C, D and E
as a ROM address, storing each control bit-
pattern under A

1
, B

1
, C

1
,

1
 and E

1
in the address

on the same row as that control bit-pattern and
using an appropriate number of presentable flip
flops both to define the first bit-pattern to be
generated and to transform next states into
present states when the step command (clock
pulse) occurs. Looking back at Table 5, the
hexadecimal value of each ROM address is
shown under the column labeled HEX while its
content is shown on the same row under HEX

1
 A

suitable ROM-based implementation of Table 7 is
shown in Figure 5. The result is a content

addressable, bidirectional full-step or half-step,
ROM/EPROM/EAROM based, 5-phase, SM
controller.

Multiplexer based stepper-motor controllers

ROM-based design is not the only approach to
stepper-motor controller design. Note that each
SM bit-pattern sequence is comprised of a
number of bit patterns. Each column can be
implemented by means of a multiplexer (MUX) or
data selector. Thus a 4 phase or 4 phase motor
with 4 columns in their bit-pattern sequence will
require 4 multiplexers; a 5-phase SM with 5
multiplexers, and so on.

To implement a column of bit-pattern with a
multiplexer, apply the logic level of each bit in the
pattern to the corresponding multiplexer data input
pin. To obtain the bit pattern for each motor step,
the outputs of all the multiplexers are used
parallelly. Having this in mind, the multiplexer
based on SM controller for a 2 phase or 4 phase
is able to direct the full step sequence (Tables 1 to
4, and Figure 6).

Note that the first multiplexer implements the
first column (column A) of Tables 1 to 4, the
second multiplexer implements column B, the

Chibueze and Chikodi 133

Figure 5. Content addressable bidirectional full step of half step, ROM/EPROM – Based, 5-Phase
stepper motor controller.

third column C and the fourth column D. Note that the bit
pattern under each column in Tables 1 to 4 was applied
as data input to the multiplexer used to implement it. To
feed logic O as data input, the circuit ground is simply
connected to that point. To connect a logic, + 5V is
connected via 1 K2 resistor as shown in Figure 6.

All of the SM controllers mentioned so far can be
similarly implemented, except that the number of
multiplexers used must match the number of columns of
bit patterns, and the height data input pins as there are
bits in a column. If a 1-out-of-4 MUX is not tall enough for
a given SM controller, use a 1-out-of 8 MUX (plus a 3-bit
up/down counter), and if a 1-out-of 8 MUX is not tall
enough, use a 1-out-of 16 MUX for each column (plus a
4-bit up/down counter). In each implementation unused
MUX data input pins are connected to ground in those
cases where all the available data input pins do not have
corresponding bit in the column of bit pattern being
implemented. This happens when the MUX is taller that
the column of bit pattern in terms of the number of data
input pin positions.

THE SOLID-STATE UNIVERSAL SM CONTROLLER

Many applications, for example, Research and
Development (R & D) work, require the use of different
stepper motors of varying number of phased. At a time of
austerity, R & D funding is often slashed and it may not
be possible to acquire separate SM controllers for the
various motors in use. The high capacity of ROMs,
EPROMS, and EAROMs relative to the number of unique
bit-patterns to be generated per stepper motor suggest
the use of a single memory to store the bit pattern
sequence of all the stepper motors in use. The bit-pattern
sequence for any particular stepper motor would then be
reached by supplying address inputs which access only
the portion of memory where it is stored. Such a device is
what is termed a solid state universal stepper motor
controller (USMC).

The USMC would be particularly useful in applications
where only one of the different types of stepper motors is
in use at any given time. One USMC could then be time-
multiplexed among all of them. The USMC idea would

134 J. Eng. Comput. Innov.

+5v

1 of

4

mux

D0

D

D3

D2

D0

D1

D2

D3

D0

D2

D3

D1

D0

D1

D2

D3

1 OF

4
MU

X

1 OF

4

MUX

1 OF

4

MUX

1K

O/P O/P O/P O/P

B

A

CW/CCW

U/D

U/P- UP/DOWN

COUNTER

A B C D TO SM

DRIVE

B A B A B A
B A

Figure 6. Multiplexer-based bidirectional full step 2-Phase/4-Phase SM controller.

also be very useful in stepper-motor-intensive applica-
tions where groups of identical stepper motors can be
formed. All the SM drives in any one group would then be
controlled simultaneously ad the various groups can also
be driven simultaneously be the same USMC in a time-
multiplexed fashion. Alternatively, a USMC may be
dedicated to just one group of stepper motors especially
where not all the motors in one group need to be
operated concurrently. There would then be as many
USMCs as there are groups of stepper motors, a feasible
approach in view of the present low-cost of all the types
of ROMs that may be used.

The use of up/down modulus counters to generate the
next state addresses would be cumbersome in a USMC
approach due to the need to change the counter when its
maximum count is unsuited to the motor to be driven
next. It is therefore preferable to use the current outputs
of the controller as the next-state address inputs, an
approach which necessitates the development of a fully
expanded state transition table for each stepper motor to
be controlled by the USMC.

The advantages associated with the USMC more than
adequately compensate for this extra design effort.
Figure 7 illustrates a solid-state Universal SM controller
capable of generating the following sequences:

(1) Bidirectional half-step/full-step sequences for 2-

phase, 4-phase and 5-phase motors and
(2) Bidirectional full-step sequences for 3-phase, 6-phase
and 8-phase stepper motors.

The control bit-pattern sequences for these motors have
been presented earlier (Tables 1, 2, 3, 5, 6, 7 and 8) with
the exception of the 3-phase SM with control bit-pattern
sequences for the six types of motors listed earlier can be
developed in the same way as for the 5-phase SM
(Multiplexer based stepper-motor controllers). Tables 9 to
11 indicate that the low inputs/outputs of the USMC may
be interpreted for each type of motor provided for. There
is room in the same piece of 2 Kbyete ROM used in this
implementation for three additional types of stepper
motors. The USMC as shown would cost less than ten
pounds sterling to implement. Any desired number of
different stepper motors may be catered for using the
USMC approach, although the size of ROM used may
vary depending on the exact number of motors.

In some applications, the stepper motor may be
required to do a definite sequence of clockwise and
counter-clockwise combinations of full-steps or half-steps
or both. This pre-determined sequence is usually
activated by means of a start command, and once the
sequence is completed, the SM controller waits for
another start command before repeating the sequence.
ROM, EPROM or EAROM based designs are very useful

Chibueze and Chikodi 135

MODE

INPUTS

POWER-UP

ONE SHOT

ASTABLE
CLOCK

GENERATOR

GND +5

V

2 KBYTES OF ROM/EROM

D0

D

D2

D3

PRESETABLE
HEX D-TYPE

FLIP FLOPS

CLOCK

PRESET

D4

D5

D0 D5 D4 D3 D2

3

D

1

A1

A 0

A2

A0 A10 A9 A8

A7

A6

A5

A4 A3

A2 A1

P1 P0

Q0

P2

P3

P4

P5

P3

Q5

Q4

Q2 P1 P0

Q3

P2 P4

Q2

Q4

Q1

Q0

Q3

Q5

Q1

TO
MOTOR

DRIVES

1K ROM

MOTOR

SELECT INPUT

PRESET INPUT
SELECTED FROM

IK ROM

ROM WITH

PRESET INPUTS

Figure 7. The universal hardwired stepper motor controller.

Table 8. 3-Phase full step sequence.

Full step
SM Coils

A B C

1 1 0 0

2 0 0 1

3 0 1 0

136 J. Eng. Comput. Innov.

Table 9. Address and present-input programming.

Address inputs Number of

phases

Preset inputs

A10 A9 A8 P5 P4 P3 P2 P1 P0

0 0 0 2 or 4 0 0 1 0 0 1

0 0 1 3 0 0 0 1 0 0

0 1 0 5 0 1 0 1 0 1

0 1 1 6 1 0 0 0 1 0

1 0 0 8 0 0 1 1 1 1

1 0 1
Available for expansion

1 1 1

Table 10. Interpretation of mode inputs.

M1 = CW/CCW, M2 = F/H Meaning of mode inputs

0 0 Counter clockwise, half step

0 1 Counter clockwise, full step

1 0 Clockwise, half step

1 1 Clockwise, full step

Table 11. Connections of USMC outputs to motor-drive inputs.

z A5 A4 A3 A2 A1 A0 A3 A2 A1 A0

2 or 4 A2 A1 B1 B2

3 A B C

5 A B C D E

6 A1 B1 C1 A2 B2 C2

8 A1 B1 C1 D1 A2 B2 C2 D1

to such applications since the entire bidirectional
combinations of full-step and/or half-step control bit-
patterns can be stored in consecutive memory locations
in the order required.

The present outputs of the memory device in use may
be used as address inputs for the next bit-pattern to be
generated. With this approach the memory location
corresponding to the last code in the sequence may be
made to contain another copy of the last code. The last
SM controller outputs bit-pattern is thus retained and the
controlled SM will remain in its current position.

The arrangement should be such that when a start
signal is added to the last control bit-pattern, the address
of the first code in the sequence is obtained and the
stepping sequence restarts. It should be remembered
that the clock frequency ought to be doubled for the half-
step bit-pattern if the motor speed is to be maintained.
Otherwise, the motor speed will drop by a factor of two
during half-steps.

SUMMARY AND CONCLUSIONS

The basic operating principles of a stepper motor
including the implications of full-step and fractional-step
control-bit-pattern sequences have been explored. The
usefulness in SM controller implementations of various
forms of logic devices has been reviewed leading to a
preference for ROM-based SM controllers.

The relative ease with which various types of ROMs
can be combined with modulus counters to realize
effective SM controllers has been demonstrated. Also
highlighted are the design steps leading to the realization
of an innovative, low cost, solid-state, universal SM
controller, a unit which can be used to control any type of
stepper motor and which is capable of bidirectional
(incremental) motion control in either full steps or
fractional steps.

The ever increasing automation in the world of today
underlines the need for control engineers and allied

professionals to become conversant with automatic
control devices. The ease of design coupled with the low-
cost feature of versatile SM controllers recommend the
study of SM-based control as a convenient starting point
in the quest for a master of the vast field of automation.

REFERENCES

Pickering A (2010). The Cybernetic Brain: Sketches of Another Future

University Of Chicago Press.
Brown S, Vranesic Z (2009). Fundamentals of Digital Logic with VHDL

Design. 3rd ed. New York, N.Y.: Mc Graw Hill.
Floyd TL (2002). Digital Fundamentals, 8th edition (Prentice Hall); ISBN

978-0130942005
http://books.google.co.uk/books?id=TxKynbyaIAMC&dq=Instrument+En

gineers%27+Handbook&pg=PP1&ots=jvrdPR7wxJ&sig=1hOUpQQD
QH_8drYjW1yPVocJSYI&hl=en&sa=X&oi=book_result&resnum=1&ct
=result.

Chibueze and Chikodi 137

Inyiama HC (1981). Stepper Motor Control Handbook”, A technical

report prepared for the Faculty of Technology, University of
Manchester Institute of Science and Technology (UMIST), England,
pp. 1-100.

Smith AO (2009). The AC's and DC's of Electric Motors (PDF).
http://www.aosmithmotors.com/uploadedFiles/AC-
DC%20manual.pdf. Retrieved 2009-12-07.

