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Alternative forms of solid-state motor controllers have been presented in this paper including the 
effective use of read only memories in stepper motor controller implementations. An innovative low-
cost universal stepper motor controller capable of controlling any kind of stepper motor has also been 
featured. The treatment includes a way of achieving a time-multiplexed control of several stepper 
motors with one universal controller and a method of generating a predetermined sequence of control 
bit-patterns for a dedicated application. 
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INTRODUCTION 
 
The essential features of a steeper motor (SM) control 
system are illustrated in Figure 1. Four main parts are 
discernible, namely: a stepper motor, a stepper motor 
drive (or power circuit), a stepper motor controller, and an 
optional opto-coupler (or opto-isolator) between the drive 
and the controller. 

The solid-state switches comprising the drive are logic 
level operated. A logic 1 control input applied via A, B, C 
or D closes the corresponding switch, allowing current to 
flow through the coil controlled by the switch. A logic zero 
input to any of the switches causes the switch to open, 
thereby interrupting coil-current flow. 

A stepper motor is a device used to achieve 
incremental motion control and which takes one angular 
or linear incremental step depending on the design for 
every valid step command reaching the SM drive from its 
controller (Pickering, 2010). The size of the angular or 
linear incremental step and the direction of stepping 
(clockwise or anticlockwise for rotary motors, forward or 
backward for linear motors) depend on the nature of the 
control bit-pattern sequence generated by the SM 
controller and applied to the drive.  

Tables 1 to 3 show the full-step, half-step, and ¼- step 
control bit-pattern sequences respectively, of a 4-phase 
stepper  motor.  Other   fractional   step   sequences   (for  
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example, 1/8-step, 1/16-step etc.) are also possible. Note 
that a 4-phase SM controller is identical to a 2-phase 
controller but the 4-phase (Unipoar) drive is markedly 
from a 2-phase (bipolar) drive (Smith, 2009). 

The maximum incremental distance for a stepper motor 
is the full step. The half-step is so called because it 
corresponds to a distance equal to the half of a full-step. 
Similarly, a quarter-step implies one quarter of the 
distance covered in a full-step and so on. Typically, the 
smaller the step size, the smoother the movement of the 
motor shaft and hence that of the load coupled to the 
motor shaft. Also, the torque levels the motor which is 
able to develop and increase with decreasing step size. 

For any step size desired, the appropriate control bit-
pattern sequence must be used. The bit-patterns are 
generated one row at a time and applied to the drive as 
step commands. The rate at which one row of bit-patterns 
in a sequence is replaced by the next corresponds to the 
SM stepping rate, as a step is always taken only at the 
point in time when one row of bit-patterns is replaced by 
the next. The clock (or step time) is an external signal 
applied to the SM controller and used to control the 
stepping rate. For every clock pulse, a new row of bit-
patterns is generated. Therefore, the clock frequency 
corresponds to the stepping rate. 

When the rows of a bit-pattern sequence are generated 
(and applied to the SM drive) in a top-to-down order, the 
SM steps in a clockwise or forward direction. In contrast, 
when the rows of the bit-pattern sequence are generated 
and  applied  to the drive in a bottom-up order, a counter- 
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Figure 1. Essential fectures of a stepper motor control system. 

 
 
 

Table 1. 4-Phase full-step sequence.                            
 

Full step 
SM  Coils 

A B  C D 

1 1 0  0 0 

2 1 0  1 0 

3 0 1  1 0 

4 0 1  0 1 
 

1 = Full amplitude coil current, 0 = Zero coil current. 

 
 
 

Table 2. 4-Phase half-step sequence. 

 

Half step 
SM  Coils 

A B  C D 

1 1 0  0 1 

2 1 0  0 1 

3 1 0  1 0 

4 0 0  1 0 

5 0 1  1 0 

6 0 1  0 0 

7 0 1  0 1 

8 0 0  0 1 



Chibueze and Chikodi         127 
 
 
 

Table 3. 4-Phase, 1/4-Step sequence. 
 

Step 
SM  Coils 

A B  C D 

1 1 0  0 1 

2 1 0  0 ½ 

3 1 0  0 0 

4 1 0  3/2 0 

5 1 0  1 0 

6 3/2 0  1 0 

7 0 0  1 0 

8 0 3/2  1 0 

9 0 1  1 0 

10 0 1  ½ 0 

11 0 1  0 0 

12 0 1  0 ½ 

13 0 1  0 1 

14 0 ½  0 1 

15 0 0  0 1 

16 ½ 0  0 1 

 
 
 

clockwise or backward stepping motion results. The rows 
of a bit-pattern sequence are generated as an endless 
chain. Thus, in the top-down direction the last row is 
immediately followed by the first, while in the bottom-
updirection, the first row is followed by the last. 

The sophistication built into SM controllers differs 
according to need. A controller may cater for just 
clockwise (CW) motion or for counterclockwise (CCW) 
motion. The motion may also be possible in full-steps 
only or in a particular fractional step only, depending on 
the Bit-pattern sequence the controller is designed to 
generate. A versatile SM controller capable of 
bidirectional full-step or fractional-step control can also be 
realized. Technique for achieving this are treated in this 
paper. Also detailed is a method of generating the control 
bit-pattern sequence for any stepper motor (and for any 
desired mode of stepping) from one and the same SM 
controller. 

However, SM drives are not detailed here in view of the 
ready availability of suitable texts on the subject 
(Pickering, 2010; Smith, 2009; Brown and Vranesic, 
2009). 
 
 
ROM-SEQUENCER-BASED SM CONTROLLERS 
 
As SM controller may take one of several alternative logic 
structures, however, the reliability and maintainability of 
the resultant circuit depend on the type of logic system 
employed. 

When a sequential logic system such as that required 
to generate a stepper motor control bit-pattern sequence 
is implemented using discrete logic gates  (such  as AND, 

NAND, OR, NOR, EX-OR, INVRTERS etc.) and memory 
flip flops, what is termed a random logic system results 
(Floyd, 2002). Since such a system involves mostly small 
scale integration components, the component count is 
usually high for a fairly complex circuit. This implies 
several interconnections and many potential sources of 
error. 

Modifications and maintenance are also difficult to 
achieve when either re-designing or fault-finding 
becomes necessary. A random logic system is therefore 
very inflexible. 

Fortunately however, logic systems can be 
implemented in forms more structured than random logic. 
Such systems employ structured logic devices such as 
multiplexers (or data selectors) (Inyiama, 1981),

 
and 

Read-Only-Memories (ROMs) (Floyd, 2002). 
A multiplexer-based SM controller requires as many 

multiplexers as there are columns in the bit-pattern 
sequence to be generated and each of these multiplexers 
must have at least as many data input lines as there are 
rows in the bit-pattern sequence. Thus, if an 8-phase full-
step sequence (which has 8 rows and 8 columns of bit 
patterns) is to be generated by means of multiplexers, a 
total of 64 data input lines would be involved. This is in 
addition to other control inputs and outputs necessary in 
such a system. The rapid proliferation of data input lines 
(and hence potential sources of error) in multiplexer 
based complex sequential logic systems is its main 
disadvantage in such applications. Multiplexers that are 
being structured by logic devices do, however, have a 
considerable advantage over random logic in that errors 
in the design can be corrected simply by altering the logic 
levels  applied  to  their data inputs. For compact, reliable  
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Figure 2. ROM structure. 

 
 
 
and easily maintainable implementation of a complex 
sequential logic ROMs have an edge over multiplexers 
and are usually preferred. 
 
 
The read only memory (ROM) 
 
A read only memory (ROM) consists of 2 main sections: 
the address decoder section and the memory OR-tie 
section (Figure 2). The address decoder is an exhaustive 
AND-logic decoding of the control (now referred to as the 
address) inputs.  

It is exactly the same in function as a conventional 
decoder except that its (active high) outputs are internally 
fed to the OR-tie section. The OR-tie section performs a 
similar function as a conventional OR-gate except that a 
number of OR-gate outputs can be derived from the OR-
tie section of one ROM. Typically, the OR-tie section of a 
ROM is committed to a particular logic function during 
what is termed a programming process. Like the ROM 
decoder section the entire OR-logic circuits are internal to 
the ROM. Only the OR-gate outputs are sticking out on 
the ROM chip. Thus, the only external signals associated 
with a ROM are the control (or address) inputs to the 
decoder section and the OR-gate outputs from the OR-tie 
section (Figure 2). This is an important advantage for the 
ROM as the very few external signal lines imply fewer 
sources of error. Once the OR-tie section of a ROM is 
programmed, the pattern cannot be altered (that is, 
rewritten). It can be read, hence the name Read-Only-
Memory by which this device is known.  

During the initial development of a ROM-based logic 
circuit errors may occur in the OR-tie pattern 
programmed into it. Since reprogramming is not possible, 
the old ROM has to be thrown away and a fresh one 
programmed with the correct pattern. This is often 
considered wasteful. To overcome this disadvantage, 
other versions of ROMs which can be programmed, 
erased, and reprogrammed have been introduced. 
Examples of these include the ultra-violet Erasable, 
Programmable Read-Only-Memory (EPROM) and the 
Electrically Alterable Read-Only-Memory (EAROM). 
When all errors have been removed from the ROM 
pattern, the final correct version is usually programmed 
into a non-erasable ROM to guard against accidental 
erasure, a danger to which EPROM- or EAROM- based 
design are exposed. 
 
 
ROM/Counter-based SM controllers 
 
Table 4 shows the control bit-pattern sequence for a 6-
phase SM while its ROM-sequencer based 
implementation is shown in Figure 3. The arrangement 
shown uses six consecutive ROM locations to store the 
six unique bit patterns in the sequence.  

A modulus 6 (that is, divide-by-6) up/down counter (5) 
is used to generate the row address (that is, location) of 
the bit pattern to be output to the SM drive. For example, 
an address input such as C B A-000 selects the first row 
(that is, A2, B1, C1, A2, B2, C2, = 1, 0, 0, 0, 1, 0) and so 
on.  
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Table 4. The 6-Phase sequence. 
 

Full step 
SM Coils 

A1 B1 C1  A2 B2 C2 

1 1 0 0  0 1 0 

2 0 0 1  0 1 0 

3 0 0 1  1 0 0 

4 0 1 0  1 0 0 

5 0 1 0  0 0 1 

6 1 0 0  0 0 1 

 
 
 

A1      B1     C1     A2     B2     C2 

1        0        0        0       1       0     

0        0        1        0       1       0     

0        0        1        1       0       0     

0        1        0        1       0       0            

1        0        0        0       1       1            

0        0        0        0        1      1    

C      B       A 
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Figure 3. ROM-Sequence-based 6 phase stepper motor controller (CW AND CCW). 

 
 
 
The clockwise/counterclockwise (CW/CCW) signal is the 
up-down input to the modulus counter. A logic 1 at the 
CW/CCW input means that the stepper motor is to move 
in a clockwise (or forward) direction while a logic 0 
specifies a counter clockwise (or backward) motion. 
When CW/CCW = 1, the C B A outputs of the modulus 
counter access the ROM locations in the top-down (that 
is, clockwise) order, down to the last row and back to the 
first. When CW/CCW = 0, the ROM locations are 
accessed and output to the drive in the bottom-up (that is, 
counter-clockwise) order, starting from the last row, up to 
the first, and back to the last, in the usual endless-chain 
fashion. The clock or step pulse applied to the clock input 
of the modulus counter is derived from a square wave 
generator. The generator frequency must be chosen to 
correspond with the stepping rate desired as there is 
usually one step per clock pulse.  

A bidirectional bit-pattern sequence generator may be 
similarly implemented for any stepper motor with 
corresponding ease of design.  However,  the  number  of 

ROM locations needed will vary with the number of rows 
in each bit-pattern sequence. The same is true of the 
maximum count required of the up/down counter before it 
restarts form zero.  

Table 5 shows the full-step sequence for an 8-phase 
SM. Its ROM-based implementation is shown in Figure 4. 
Note that the 3-bit ripple up/down. Counter shown in 
Figure 4 is capable of generation eight unique addresses, 
corresponding to the eight ROM locations required to 
store the 8-phase sequence. Any of the ROM versions 
may be used in these implementations but with the 
implications high-lighted earlier (The read only memory 
(ROM)). 
 
 
Fully expanded SM control sequences 
 
It is possible to design an SM controller in which the 
present output bit-pattern is used as the address of the 
next  output  patter   in   the   sequence.   This   approach  
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Table 5. 8-Phase full-step sequence. 
 

Full step 
SM Coils 

A1 B1 C1  A2 B2 C2 

1 1 0 0  0 1 0 

2 0 0 1  0 1 0 

3 0 0 1  1 0 0 

4 0 1 0  1 0 0 

5 0 1 0  0 0 1 

6 1 0 0  0 0 1 
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0        1        0        1         0         0        0        1           
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Figure 4. ROM sequencer-based bi-directional b-Phase stepper motor controller. 

 
 
 

Table 6. 5-Phase full-step sequence. 
 

Half 
SM  Coils 

Full-step codes 
A B  C D E 

1 1 0  1 0 1 
1 

2 0 0  1 0 1 

3 0 1  1 0 1 
2 

4 0 1  0 0 1 

5 0 1  0 1 1 
3 

6 0 1  0 1 0 

7 1 1  0 1 0 
4 

8 1 0  0 1 0 

9 1 0  1 1 0 
5 

10 1 0  1 0 0 
 
 
 

obviates the need for modulus up/sown counters but 
requires the use of much more expanded bit-pattern 
sequence table. 

Table 6 shows the half-step bit-pattern sequence for a 
5-Phase stepper motor while Table 7 shows its fully 
expanded version. Table 7 covers four possible modes of 

SM operation and is comprised of four main sections as 
follows: 
 
(a) Section (1): when the bit pattern under the CW/CCW 
and F/H (that is, full-step or half-step) columns are both 
zero   (or   CW/CCW,    F/H    =    0,   0)    signifying    the 
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Table 7. Fully expanded state transition table for a CW/CCW full/half step 5-Phase stepper motor controller. 
 

HEX 
Qualifiers  Present state  Next states  

HEX′ 
CW/CCW F/H  A B C D E  A′ B′ C′ D′ E′  

15 0 0  1 0 1 0 1  1 0 1 0 0  14 

05 0 0  0 0 1 0 1  1 0 1 0 1  15 

00 0 0  0 1 1 0 1  0 0 1 0 1  05 

09 0 0  0 1 0 0 1  0 1 1 0 1  0D 

08 0 0  0 1 0 1 1  0 1 0 0 1  09 

0A 0 0  0 1 0 1 0  0 1 0 1 1  08 

1A 0 0  1 1 0 1 0  0 1 0 1 0  0A 

12 0 0  1 0 0 1 0  1 1 0 1 0  1A 

16 0 0  1 0 1 1 0  1 0 0 1 0  12 

14 0 0  1 0 1 0 0  1 0 1 1 0  16 

                 

35 0 1  1 0 1 0 1  1 0 1 1 0  16 

25 0 1  0 0 1 0 1  1 0 1 0 0  14 

20 0 1  0 1 1 0 1  1 0 1 0 1  15 

29 0 1  0 1 0 0 1  0 0 1 0 1  05 

28 0 1  0 1 0 1 1  0 1 1 0 1  0D 

2A 0 1  0 1 0 1 0  0 1 0 0 1  09 

3A 0 1  1 1 0 1 0  0 1 0 1 1  08 

32 0 1  1 0 0 1 0  0 1 0 1 0  0A 

36 0 1  1 0 1 1 0  1 1 0 1 0  1A 

34 0 1  1 0 1 0 0  1 0 0 1 0  12 

                 

55 1 0  1 0 1 0 1  0 0 1 1 0  05 

45 1 0  0 0 1 0 1  0 1 1 0 0  0D 

40 1 0  0 1 1 0 1  0 1 0 0 1  09 

49 1 0  0 1 0 0 1  0 1 0 0 1  08 

4B 1 0  0 1 0 1 1  0 1 0 0 1  0A 

4A 1 0  0 1 0 1 0  1 1 0 0 1  1A 

5A 1 0  1 1 0 1 0  1 0 0 1 1  12 

52 1 0  1 0 0 1 0  1 0 1 1 0  16 

56 1 0  1 0 1 1 0  1 0 1 1 0  14 

54 1 0  1 0 1 0 0  1 0 1 1 0  15 

                 

75 1 1  1 0 1 0 1  0 1 1 0 1  0D 

65 1 1  0 0 1 0 1  0 1 0 0 1  09 
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Table 7. Contd. 
 

60 1 1  0 1 1 0 1  0 1 0 1 1  08 

69 1 1  0 1 0 0 1  0 1 0 1 0  0A 

6B 1 1  0 1 0 1 1  1 1 0 1 0  1A 

6A 1 1  0 1 0 1 0  1 0 0 1 0  12 

7A 1 1  1 1 0 1 0  1 0 1 1 0  16 

72 1 1  1 0 0 1 0  1 0 1 0 0  14 

76 1 1  1 0 1 1 0  1 0 1 0 1  15 

74 1 1  1 0 1 0 0  0 0 1 0 1  05 

 
 
 
counter-clockwise, half-step mode 
(b) Section (2): when CW/CCW, F/H = 01, 
signifying the counter clockwise, full-step mode 
(c) Section (3): when CW/CCW, F/H = 10, which 
is the clockwise, half-step mode; and 
(d) Section (4): when CW/CCW, F/H = 13, the 
clockwise, full-step mode. 
 
The control bit-pattern sequence for each of the 
four modes of operation appears under the 
column headed by the label “Present States” and 
in the section for that mode.  

The columns of bit patterns under Present 
States are labelled A, B, C, D, and E. Each row of 
bit-patterns under Next States (labeled A

1
, B

1
, C

1
, 

1
 and E

1
) is obtained by determining the next 

appropriate control bit-pattern following that under 
Present States (on the same row) when the mode 
of stepping is as defined by the CW/CW, F/H bit-
pattern. For example, when CW/CCW, F/H -0, 0 
(counter clockwise half-step mode) and the 
present states ABCDE = 10101, The Next States 
A

1
 B

1
 C

1
D 

1
E

1 
=

 
10100. This is because in the 

reverse order of the 5-Phase bit-pattern sequence 
(Table 6) 10101 (top row) is followed by 10100 
(bottom row). Similarly, when CW/CCW, F/H -11 
(clockwise, full-step) and ABCDE = 10101, the 
next states A

1
B

1
C

1
D

1
E

1 
= 01101, which is the next 

bit-pattern in the full-step sequence in a top-down 
direction (Table 6) and so on. 

The preparation of the present states and next 
states table as illustrated in Table 7 is a 
necessary step used first in the realization of a 
versatile SM controller. Such a table is often 
referred to, as a fully expanded state transition 
table (STT) for the particular motor whose bit-
pattern sequence is so expanded. When such 
tables are used in SM controller design, error-free 
transitions between the full-step and half-step 
modes are made possible.  

In ROM-based designs, a fully expanded table 
such as Table 7 can be generated by viewing the 
bit-pattern under CW/CCW, F/H A, B, C, D and E 
as a ROM address, storing each control bit-
pattern under A

1
, B

1
, C

1
, 

1
 and E

1 
in the address 

on the same row as that control bit-pattern and 
using an appropriate number of presentable flip 
flops both to define the first bit-pattern to be 
generated and to transform next states into 
present states when the step command (clock 
pulse)  occurs. Looking back at Table 5, the 
hexadecimal value of each ROM address is 
shown under the column labeled HEX while its 
content is shown on the same row under HEX

1
 A 

suitable  ROM-based implementation of Table 7 is 
shown in Figure 5. The result is a content 

addressable, bidirectional full-step or half-step, 
ROM/EPROM/EAROM based, 5-phase, SM 
controller. 
 
 
Multiplexer based stepper-motor controllers 
 
ROM-based design is not the only approach to 
stepper-motor controller design. Note that each 
SM bit-pattern sequence is comprised of a 
number of bit patterns. Each column can be 
implemented by means of a multiplexer (MUX) or 
data selector.  Thus a 4 phase or 4 phase motor 
with 4 columns in their bit-pattern sequence will 
require 4 multiplexers; a 5-phase SM with 5 
multiplexers, and so on. 

To implement a column of bit-pattern with a 
multiplexer, apply the logic level of each bit in the 
pattern to the corresponding multiplexer data input 
pin. To obtain the bit pattern for each motor step, 
the outputs of all the multiplexers are used 
parallelly. Having this in mind, the multiplexer 
based on SM controller for a 2 phase or 4 phase 
is able to direct the full step sequence (Tables 1 to 
4, and Figure 6). 

Note that the first multiplexer implements the 
first column (column A) of Tables 1 to 4, the 
second  multiplexer  implements  column   B,   the
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Figure 5. Content addressable bidirectional full step of half step, ROM/EPROM – Based, 5-Phase 
stepper motor controller. 

 
 
third column C and the fourth column D. Note that the bit 
pattern under each column in Tables 1 to 4 was applied 
as data input to the multiplexer used to implement it. To 
feed logic O as data input, the circuit ground is simply 
connected to that point. To connect a logic, + 5V is 
connected via 1 K2 resistor as shown in Figure 6. 

All of the SM controllers mentioned so far can be 
similarly implemented, except that the number of 
multiplexers used must match the number of columns of 
bit patterns, and the height data input pins as there are 
bits in a column. If a 1-out-of-4 MUX is not tall enough for 
a given SM controller, use a 1-out-of 8 MUX (plus a 3-bit 
up/down counter), and if a 1-out-of 8 MUX is not tall 
enough, use a 1-out-of 16 MUX for each column (plus a 
4-bit up/down counter). In each implementation unused 
MUX data input pins are connected to ground in those 
cases where all the available data input pins do not have 
corresponding bit in the column of bit pattern being 
implemented. This happens when the MUX is taller that 
the column of bit pattern in terms of the number of data 
input pin positions. 

THE SOLID-STATE UNIVERSAL SM CONTROLLER 
 
Many applications, for example, Research and 
Development (R & D) work, require the use of different 
stepper motors of varying number of phased. At a time of 
austerity, R & D funding is often slashed and it may not 
be possible to acquire separate SM controllers for the 
various motors in use. The high capacity of ROMs, 
EPROMS, and EAROMs relative to the number of unique 
bit-patterns to be generated per stepper motor suggest 
the use of a single memory to store the bit pattern 
sequence of all the stepper motors in use. The bit-pattern 
sequence for any particular stepper motor would then be 
reached by supplying address inputs which access only 
the portion of memory where it is stored. Such a device is 
what is termed a solid state universal stepper motor 
controller (USMC). 

The USMC would be particularly useful in applications 
where only one of the different types of stepper motors is 
in use at any given time. One USMC could then be time-
multiplexed among all of them. The USMC idea would  
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Figure 6. Multiplexer-based bidirectional full step 2-Phase/4-Phase SM controller. 

 
 
 
also be very useful in stepper-motor-intensive applica-
tions where groups of identical stepper motors can be 
formed. All the SM drives in any one group would then be 
controlled simultaneously ad the various groups can also 
be driven simultaneously be the same USMC in a time- 
multiplexed fashion. Alternatively, a USMC may be 
dedicated to just one group of stepper motors especially 
where not all the motors in one group need to be 
operated concurrently. There would then be as many 
USMCs as there are groups of stepper motors, a feasible 
approach in view of the present low-cost of all the types 
of ROMs that may be used.  

The use of up/down modulus counters to generate the 
next state addresses would be cumbersome in a USMC 
approach due to the need to change the counter when its 
maximum count is unsuited to the motor to be driven 
next. It is therefore preferable to use the current outputs 
of the controller as the next-state address inputs, an 
approach which necessitates the development of a fully 
expanded state transition table for each stepper motor to 
be controlled by the USMC. 

The advantages associated with the USMC more than 
adequately compensate for this extra design effort. 
Figure 7 illustrates a solid-state Universal SM controller 
capable    of     generating    the    following    sequences: 
 
(1) Bidirectional   half-step/full-step   sequences    for    2- 

phase, 4-phase and 5-phase motors and  
(2) Bidirectional full-step sequences for 3-phase, 6-phase 
and 8-phase stepper motors. 
 
The control bit-pattern sequences for these motors have 
been presented earlier (Tables 1, 2, 3, 5, 6, 7 and 8) with 
the exception of the 3-phase SM with control bit-pattern 
sequences for the six types of motors listed earlier can be 
developed in the same way as for the 5-phase SM 
(Multiplexer based stepper-motor controllers). Tables 9 to 
11 indicate that the low inputs/outputs of the USMC may 
be interpreted for each type of motor provided for. There 
is room in the same piece of 2 Kbyete ROM used in this 
implementation for three additional types of stepper 
motors. The USMC as shown would cost less than ten 
pounds sterling to implement. Any desired number of 
different stepper motors may be catered for using the 
USMC approach, although the size of ROM used may 
vary depending on the exact number of motors. 

In some applications, the stepper motor may be 
required to do a definite sequence of clockwise and 
counter-clockwise combinations of full-steps or half-steps 
or both. This pre-determined sequence is usually 
activated by means of a start command, and once the 
sequence is completed, the SM controller waits for 
another start command before repeating the sequence. 
ROM,  EPROM or EAROM based designs are very useful 
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Figure 7. The universal hardwired stepper motor controller. 

 
 
 

Table 8. 3-Phase full step sequence. 

 

Full step 
SM  Coils 

A  B C 

1 1  0 0 

2 0  0 1 

3 0  1 0 
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Table 9. Address and present-input programming. 
 

Address inputs Number of 

phases 

Preset inputs 

A10 A9 A8 P5 P4 P3 P2 P1 P0 

0 0 0 2 or 4 0 0 1 0 0 1 

0 0 1 3 0 0 0 1 0 0 

0 1 0 5 0 1 0 1 0 1 

0 1 1 6 1 0 0 0 1 0 

1 0 0 8 0 0 1 1 1 1 

1 0 1 
Available for expansion 

1 1 1 

 
 
 

Table 10. Interpretation of mode inputs. 

 

M1 = CW/CCW, M2 = F/H Meaning of mode inputs 

0 0 Counter clockwise, half step 

0 1 Counter clockwise, full step 

1 0 Clockwise, half step 

1 1 Clockwise, full step 

 
 
 

Table 11. Connections of USMC outputs to motor-drive inputs. 
 

z A5 A4 A3 A2 A1 A0 A3 A2 A1 A0 

2 or 4   A2 A1 B1 B2     

3    A B C     

5  A B C D E     

6 A1 B1 C1 A2 B2 C2     

8   A1 B1 C1 D1 A2 B2 C2 D1 

 
 
 
to such applications since the entire bidirectional 
combinations of full-step and/or half-step control bit-
patterns can be stored in consecutive memory locations 
in the order required. 

The present outputs of the memory device in use may 
be used as address inputs for the next bit-pattern to be 
generated. With this approach the memory location 
corresponding to the last code in the sequence may be 
made to contain another copy of the last code. The last 
SM controller outputs bit-pattern is thus retained and the 
controlled SM will remain in its current position. 

The arrangement should be such that when a start 
signal is added to the last control bit-pattern, the address 
of the first code in the sequence is obtained and the 
stepping sequence restarts. It should be remembered 
that the clock frequency ought to be doubled for the half-
step bit-pattern if the motor speed is to be maintained. 
Otherwise, the motor speed will drop by a factor of two 
during half-steps. 

SUMMARY AND CONCLUSIONS 
 
The basic operating principles of a stepper motor 
including the implications of full-step and fractional-step 
control-bit-pattern sequences have been explored. The 
usefulness in SM controller implementations of various 
forms of logic devices has been reviewed leading to a 
preference for ROM-based SM controllers. 

The relative ease with which various types of ROMs 
can be combined with modulus counters to realize 
effective SM controllers has been demonstrated. Also 
highlighted are the design steps leading to the realization 
of an innovative, low cost, solid-state, universal SM 
controller, a unit which can be used to control any type of 
stepper motor and which is capable of bidirectional 
(incremental) motion control in either full steps or 
fractional steps. 

The ever increasing automation in the world of today 
underlines  the  need  for   control   engineers  and   allied  



 
 
 
 
professionals to become conversant with automatic 
control devices. The ease of design coupled with the low-
cost feature of versatile SM controllers recommend the 
study of SM-based control as a convenient starting point 
in the quest for a master of the vast field of automation. 
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