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In this paper, adaptive filtering algorithm for control of the vibration force applied on the specimen in 
testing control systems is presented. Application for adaptive filtering especially in time domain is 
associated with a high computational complexity. This complexity is mitigated by using frequency-
domain adaptive filtering scheme. In this paper, adaptive filtering algorithm in association with fast 
fourier transformation (FFT) was proposed. The algorithm was implemented using digital signal 
processor (DSP). The proposed algorithm show significant reduction in computational complexity as 
shown in results and discussion.  
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INTRODUCTION 
 
Vibration design and control, aims either to eliminate or to 
reduce the undesirable vibration effects that may cause 
human discomfort and hazards, structural degradation 
and failure, performance deterioration and malfunction of 
machinery and processes. When a mechanical or 
electronic system is exposed to a vibration force, it 
causes the system to vibrate, producing an output 
response as a result of the vibratory excitation force. The 
control objective, in such a case, is to suppress the 
output response to a level that is acceptable. In an 
adaptive vibration control system, the vibration responses 
are explicitly sensed through transducers. This sensed 
response is fed to the controller producing the force that 
counteracts the effect of the vibration source, 
suppressing vibration at the sensing location. This force 
is applied to the system through the actuator. In this 
paper the electrodynamic shaker, with a permanent 
magnetic field, is used as a vibration exciter and the 
control algorithm adopted is a variant of adaptive control.  

The application of adaptive control for shaker is 
motivated by the fact that some parameters of the shaker 
are time-varying (for example, coil inductance is 
frequency dependent, and the coil resistance may 
change with time as the result of skin effect and 
temperature). Also the specimen or load characteristic is 
usually unknown beforehand and it may be nonlinear. 
The  shaker  control  algorithms proposed in the literature 

(George, 1997; George and Dave, 2001), have been 
derived based on a linear shaker model or on the 
assumption that the load nonlinearity and variation of 
shaker parameters with time can be neglected. The 
performance of these controllers degraded when the 
shaker dynamics are time-varying or the load is highly 
nonlinear. Besides, the frequency domain adaptive 
filtering algorithm studied in IMV Corporation Japan, 2001 
(Frain, 1977) suffers from high computational complexity 
and long time delay resulting from the utilization of the 
block frequency domain method. The limitations of these 
algorithms were addressed in this paper by utilizing a 
time and frequency block partitioning adaptive filtering 
algorithm to reduce the computational complexity, 
convergence time and the time delay. The electro- 
dynamic shaker’s main function is to deliver a force 
proportional to the current applied to its armature coil. 
These devices are used in such diverse activities as 
product evaluation, stress screening, squeak-and-rattle 
testing, and modal analysis.  

The shakers may be driven by sinusoidal, random or 
transient signals, depending on the application. They are 
invariably driven by an audio-frequency power amplifier 
and may be used ‘open loop’ (as in most modal testing) 
or under closed-loop control, where the input to the 
driving amplifier is servo-controlled to achieve a desired 
motion level in  the  device  under  test.  There  are  three  
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Figure 1. Electrodynamic shaker cross-section. 

 
 
 
major shaker types widely used (Hydraulic, Inertial and 
Electrodynamic Shakers) in vibration testing. However, 
electrodynamic shakers have many advantages 
compared to the other types due to their high output 
bandwidth and moderate input power requirements. In 
the vibration control system with the shaker used as an 
exciter, it is essential to characterize the shaker dynamic 
model and to compute the shaker mechanical and 
electrical parameters that will be used in the simulation 
stage. An initial experiment is performed by monitoring 
the voltage input to the power amplifier or the current 
delivered by the power amplifier, and measuring the 
dynamic response of the shaker (accelerometer signal) 
with a bare shaker table, then with a known table load 
(George, 1997; De Silva, 2000).  

The schematic depicted in Figure 1 shows a sectioned 
view of a permanent magnet electrodynamic shaker with 
emphasis on the magnetic circuit and the suspended 
driving table. At the heart of the shaker is a single-layer 
armature coil of copper wire, suspended in a uniform 
radial magnetic field. When a current is passed through 
the coil, a longitudinal force F is produced in proportion to; 
the current I flowing in the coil, the length l of the coil in 
the magnetic field, and the strength B of the field flux. 
This force is transmitted to the table structure to which 
the  device under test is attached. The generated force in 

the armature coil is mathematically expressed as (Frain, 
1977).  
 

BlIF                                                              (1) 
 

Where, F, is the armature coil force, (N); B, is the 
magnetic flux density, (T); l, is the length of armature coil 
in the field, (m); l, is the armature coil current, (A). 
 
 

SYSTEM MODELLING OF ELECTRODYNAMIC 
SHAKER 
 

The electrodynamic shaker can be expressed as a 
current driven or voltage, transfer function. In the current 
driven transfer function mode, the acceleration frequency 
response is plotted as current supplied by the power 
amplifier against the shaker acceleration response. In this 
case, the effect of electromagnetic damping is not 
evidenced. The frequency response plot reflects only the 
structural damping terms, those that could be measured 
with external excitation applied to the shaker with its drive 
coil un-terminated. The same low damping factors are 
usually evident when a current amplifier drives the shaker. 
In contrast, the voltage driven transfer function (voltage 
applied to the shaker system against the acceleration, 
reflects the significant  electromagnetic  damping  applied  
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Figure 2. Current driven transfer function of the unloaded electrodynamic shaker. 

 
 
 
by the cross-coupling terms between the electrical and 
mechanical components of the system (George, 1997; 
Haykin, 2002). The force provided by the shaker is given 
by F = BIl. Figures 2 and 3 show, respectively, the 
current–driven and voltage-driven frequency response 
when the swept sine signal of amplitude 0.7 v was 
applied to shaker power amplifier. The shaker 
mechanical model is modelled by assuming the armature 
structure is elastic rather than rigid.  

This gives the shaker mechanical model three degrees-
of-freedom. This is achieved by modelling the coil and 
table as separate masses connected by springs and 
dampers (George, 1997; George and Dave, 2001). In 
order to compute the mechanical and electrical 
parameters of the electrodynamic shaker and the 
associated load, a swept sine test is conducted to 
compute the frequency response function as the ratio 
between the shaker’s output response (accelerometer 
signal), and the input supply voltage (voltage mode). The 
resonance frequencies in the operating range and the 
half-power points are recorded. These are used in 
mathematical formulas (Equation 1), to estimate the 
masses, damping constant, spring stiffness, and 
electrical impedance. Some of the parameters are tuned 
using trail and error during simulation, so that the 
simulated frequency response matches the measured 
frequency response shape. The mathematical equations 
used to deduce the mechanical and electrical parameters 

from the frequency response, are given by IMV 
Corporation Japan (2001). 
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Electrical equivalent model 
 

The electrical model of the electrodynamic shaker 
consists of the coil resistance R and inductance L. The 
electrical  impedance  of   the   shaker   coil   reflects   the  
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Figure 3. Voltage driven transfer functions of the unloaded electrodynamic shaker. 

 
 
 
mechanical motion of the shaker table. When the coil 
moves in the magnetic field, a voltage is generated 
across the coil proportional to the motion velocity (E = Bl 
u= αu). Thus the voltage at the coil terminals may be 
written in terms of the flowing current i and the velocity u 
as: 
 

u
dt

di
LRiv                                                    (3) 

 

Where α = Bl is constant, called the transduction factor. 
The mechanical mobility (velocity/force) of the shaker 
mechanical components may be represented by a 
driving-point frequency response function Hfu, so that 
 

 FHu fu                                        (4) 

 

The coil produces an axial force, acting on the shaker 
mechanical elements, in proportion to the applied current. 
 

iF                                                           (5a) 

Combining equations (3, 4 and 5), yields the impedance 
Z exhibited by the coil. 
  

fuHfLjR
i

v
Z 22                                     (5b) 

 
The minimum coil impedance is determined by the 
differential (dc) resistance, which is real-valued. The coil 
inductance contributes an imaginary (90° phase-shifted) 
ac component that increases in direct proportion to 
frequency. The mechanical mobility contributes 
frequency-dependent terms that exhibit a real maximum 
at each mechanical resonance. These can significantly 
increase the impedance in a narrow frequency band. The 
effective resistance and inductance of the coil can be 
measured by clamping the fixture table (locked rotor test). 
The equivalent circuit is shown in Figure 4 where R1 and 
L1 are the resistance and leakage inductance of the 
moving coil, R2 and L2 are the resistance and leakage 
inductance of the copper pole-plating, and Lm is the 
moving  coil magnetizing inductance. Using current mesh 
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Figure 4. Moving coil T-circuit showing the short-circuit secondary. 

 
 
 

analysis, the mathematical equations for the shaker 
electrical model can be derived from Figure 3 as  
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Mechanical equivalent model 
 

The shaker mechanical system includes a means for 
storing potential energy (spring), a means for storing 
kinetic energy (mass or inertia), and a means by which 
energy is gradually lost (dampers).  The mechanical 
model of the shaker consists of two distinct elements, the 
moving coil and the fixture table. The fixture table is 
suspended by a suspension flexure to the shaker body 
assembly. The fixture table can be modelled as a pair of 

masses 2M  and 3M , with flexure stiffness, 2K  and 

3K , and damping coefficients, 2D  and 3D . The moving 

coil of mass M1 is adhered to the fixture table by an 
adhesive bonding, which also can be characterized by a 

spring with a finite stiffness 1K  and a damping element 

with coefficient D1. Thus Figures 4 and 5 can represent 
the unloaded shaker electrical and mechanical systems, 
respectively. The mechanical system and mathematical 
equations can be expressed as: 
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PARTIALLY HYBRID TIME-FREQUENCY DOMAIN 
ADAPTIVE FILTERING ALGORITHM  
 
In vibration testing control systems, the shock test is 
conducted to simulate the effect of the shock that a 
specimen is expected to be subjected to, during its 
lifetime. To prevent testing damage, it is essential that the 
test be controlled such that the shaker output converges 
smoothly to the intended reference shock pulse. Usually, 
in shaker vibration control, the load dynamics are not well 
defined before hand. Thus, the control algorithm must be 
designed with the following consideration: 
 
(1) The controller should be able to update its parameters 
to cope with load uncertainty. 
(2) The controller must have a fast response, especially 
when the pulse used is a shock pulse; and 
(3) The controller must be robust, such that it can adapt 
to a large range of load variations. 
 
The following give a brief description of inverse adaptive 
filtering, time domain adaptive filtered-x filtering and 
hybrid time-frequency domain adaptive filtering 
algorithms. 
 
 
Inverse adaptive filtering algorithm 
 
For  tracking control or servo-control systems, the inverse 
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Figure 5. Mechanical equivalent circuit of the unloaded electrodynamic shaker. 

 
 
 
of the system dynamics can be employed as a controller 
such that, when the inverse model is cascaded with the 
system dynamics, the overall system output converges to 
the reference input. This configuration of the inverse 
model and system dynamics constitutes a feed-forward 
control system. Adaptive feed forward techniques have 
been used widely in the active control of sound and 
vibration (Olmos et al., 2002; Valoor et al., 2000). The 
application of the shaker inverse model as a controller 
has been reported in Macdonald (1994), where the 
shaker and controller were modelled in the frequency 
domain. Cascading the adaptive filter with the unknown 
system causes the adaptive filter to converge to a 
solution that is the inverse of the unknown system. 
Therefore, inverse modelling is motivated by the fact that, 
when the transfer function of the unknown system is W(z) 
and the adaptive filter transfer function is C(z), then error 
measured between the desired signal and the signal from 
the cascaded system reaches its minimum when the 
product of W(z) and C(z) is 1. 
 

1)()( zCzW  (8)                                              

 

For the previous relation to be true, W(z) must be equal 
[C(z)]

-1
, the inverse of the transfer function of the 

unknown  system. In practice, it is sometimes essential to  

have prior knowledge of the system dynamics, so that an 
accurate inverse of the dynamic system can be obtained. 
For example, if the system under investigation is known 
to be minimum-phase, that is, has all of its zeros inside 
the unit circle in the z-plane, then the inverse will be 
stable with all its poles inside the unit circle. When the 
plant is non-minimum-phase, then some of the poles of 
the inverse will be outside the unit circle and the inverse 
will be unstable. It is also essential to consider the effect 
of transport delay in the system. For instance, when the 
unknown system is cascaded with the filter, the output 
signal from the cascaded system reaches the summation 
points after it has been delayed by a time equal to the 
unknown system delay plus the filter delay.  

To prevent the adaptive filter from trying to adapt to a 
signal it has not yet seen (equivalent to predicting the 
future), the desired signal is delayed, with the number of 
samples equivalent to half the length of the adaptive filter. 
Figure 6 shows the block diagram for modelling the 
inverse of the electrodynamic shaker using a finite 
impulse response (FIR) filter. Assuming the shaker and 
the payload are linear, then the commutation rule applies, 
such that the controller and plant position can be 
interchanged. Assuming the input signal r(n) is applied to 
the shaker and a payload, the acceleration response 
Output a(n)  will  act  as  the  input  to  the  FIR  filter. The 
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Figure 6. Inverse adaptive modelling block diagram. 

 
 
 
output response of the cascaded system is given by 
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Where L is the number of weights in the FIR filter and ci(n) 
is the i

th
 weight of the adaptive filter at iteration n. The 

error between the delayed input signal and the output of 
the cascaded system is 
 

)()()( nynrne                                                   (10) 

 
Where Δ is the sample delay, equal to L/2. Using the 
Least mean squares (LMS) algorithm, the weights of the 
inverse adaptive filter are updated using the following 
formula 
 

)()()()1( nnenn acc                                             (11) 

 
Where μ is the step-size, and the weight vector c(n) and 
filter regression input vector a(n) are given by equations 
(5a) and (5b), respectively. 
 

 TL ncncncn )(),...,(),()( 110 c                                            (12) 

 

 TLnananan )1(),....,1(),()( a                                   (13) 

 
 
Filtered-x adaptive filtering algorithm 
 
The  filtered-x  algorithm  has  been extensively applied in 

the active control of sound and vibration. The design is 
carried out in two phases. In the first phase, the model of 
the dynamic system to be controlled is computed. In the 
second phase, the controller weights are updated, and 
the optimal values found are implemented to control the 
dynamic system. The main feature of the filtered-x 
algorithm is that the signal used in the controller weights 
adaptation, is produced by filtering the reference input 
signal, via the system model weights. Figure 7 illustrates 
the block diagram of the filtered-x adaptive filtering 
algorithm for the electrodynamic shaker. Assume the 
model of the shaker and the specimen has been 
computed. Let the number of weights in the 
shaker/specimen model and the control filter be Lc and Lp, 
respectively. The output response of the FIR filter 
controller is computed as a convolution of the FIR filter 
weights and the input reference signal. 
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The FIR filter output is applied to the shaker/specimen, 
generating the acceleration output of a(n). The error 
signal is computed as the difference between the delayed 
input signal and the shaker/specimen acceleration output 
response. 
 

)()()( nanrne                                                (15) 

 
Where Δ is the time delay. The input reference signal is 
filtered through the shaker model weights to generate the  
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filtered signal uf(n) given by 
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Using the LMS algorithm, the controller weights are 
updated using  
 

)()()()1( nnenn fucc                                  (17)                                                                                          

 
Where μ is the step-size, c(n) is the controller weight 
vector, and uf(n) is the regression vector. 
The controller weight vector is given by 
 

 TLc
cccn 110 ,.....,,)( c                                             (18) 

 
The regression vector is defined as 
 

 Tpffff Lnununun )1(),....,1(),()( u                                       (19) 

 
 
Partially hybrid time-frequency domain adaptive 
filtering (PHTFDAF) algorithm 
 
Here, partially hybrid time-frequency domain adaptive 
filtering (PHTFDAF) algorithms are described for 
modelling and controller design for the shock control of 
the electrodynamic shaker. The model and inverse model 

of the electrodynamic shaker are modelled by an FIR 
filter. Experimental results show that the model and 
inverse model of the shaker required thousands of FIR 
weights to represent the dynamic system (shaker and 
load attached) effectively. This large number of filter taps 
results in complex computation and implementation and 
in real-time requires large resources, in terms of memory. 
As a result, it is impractical to use time-domain filtering 
methods to find the model and inverse model of the 
electrodynamic shaker and its load. Computational 
complexity and convergence speed of the FIR model’s 
weights to their optimal values was addressed using the 
frequency domain adaptive filtering algorithm studied in 
partially hybrid time-frequency domain adaptive filtering 
(PHTFDAF) algorithm. However, the conventional 
frequency domain adaptive filtering algorithm has a 
drawback of inherent delay between the block input and 
the system output response, especially during the initial 
stages while the input block data collection is processing.  

The problem of the long delay in frequency domain 
adaptive filtering was addressed by splitting the time 
domain filter weights sequentially into non-overlapping 
partitions (Olmos et al., 2002; Valoor et al., 2000). 
Although partitioning of the filter weights results in a small 
input   block size, it does not completely eliminate the 
system time delay. A delay less frequency domain 
adaptive filtering algorithm was proposed in Bendel et al. 
(2001), where the system delay is eliminated by adapting 
the first partition weights using a time domain algorithm 
and adapting the remaining partitions using a frequency 
domain  adaptive filtering algorithm. Although this method   
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Figure 8. Partitioned frequency domain adaptive filtering block diagram. 

 
 
 

eliminates the time delay in adaptation, it increases 
computational complexity due to the use of the time 
domain adaptive filtering method in updating the first 
partition weights. To reduce the computational complexity 
of partitioned frequency domain adaptive filtering, the 
PHTFDAF algorithm was proposed. In the PHTFDAF 
algorithm, the time domain filter weights are sequentially 
divided into non-overlapping partitions. The first partition 
weights are adapted using the time domain only during 
the initial stage. Then these weights are adapted using 
the frequency domain algorithm as well as the other 
partition’s weights.  

This method of partially updating some weights in the 
time domain and then in the frequency domain reduces 
the computational complexity of the whole adaptation 
process, as well as minimising the time delay in the 
adaptation process. The proposed algorithm for adaptive 
control is different from the one reported in Olmos et al. 
(2002), and Bendel et al. (2001). The time domain 
adaptive filtering of the model and its inverse are 
sequentially split into non-overlapping partitions and the 
first partition weights are updated only in the time domain 
during  the  first  block input data collection, then they are  

adapted in the frequency domain in the remaining 
adaptation periods along with the other partitions weights. 
 
 

PBFDAF algorithm 
 

The computational complexity and long time-delay 
problems, associated with the conventional frequency 
domain adaptive filtering algorithm, can be minimized by 
using the partitioned block frequency domain adaptive 
method, in which the weights of the FIR filter are 
sequentially split into non-overlapping partitions. Then the 
frequency domain adaptive algorithm is applied to each 
partition. The main advantage of PBFDAF over the non-
partitioned algorithm is that a small processing block size 
is required; consequently, the delay of the PBFDAF is 
small. Figure 8 shows the PBFDAF block diagram. To 
derive the equations that govern the PBFADF algorithm, 
assume that the FIR filter has M weights, divided into P 
partitions, each partition containing N weights. Therefore 
the output of the blocks of N samples is given by 
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Where )(kA is an NxN matrix whose i,j element is given 

by 
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The output of each partition is a circular convolution of 
the partition input with the weight vector of the partition at 
the k
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 time, where for example, the input of the partition 

(overlap-save) and weight vector per partition are, 
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Thus the input and partition weight vector in the 
frequency domain are defined as 
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Where F denotes the discrete Fourier transform (DFT) 
operator of order 2N. For the overlap-save method of the 
block sectioning, the adaptive filter output in the time 
domain is 
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where ]0[ NN I is Nx2N, is the output projection matrix 

used to force the first element of the output vector to zero 
as a result of the application of the overlap-save 
sectioning on the input block. The weight update of each 
partition is defined as 
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Where )(kE is the error vector in the frequency domain 

and is defined as 
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EXPERIMENTAL SETUP 
  
In this paper, the loaded shaker was characterized using a swept 
sine signal, generated from the HP 3562A Dynamic Signal Analyzer 
Figure 15. The signal, swept from 10 Hz to 10 kHz, was applied to 
the shaker/specimen via the power amplifier. The acceleration 
output response was measured via a charge amplifier, whose 
output  was  connected  to  the  2nd  channel  of the Dynamic Signal 

 
 
 
 
Analyzer. The frequency response was computed as the ratio 
between output acceleration measured by charge amplifier and the 
input swept sine signal of 0.7 v rms amplitude. The charge amplifier 
sensitivity and scale values were set to 80 pC/g and 5 g/V, 
respectively. From the measured transfer function of the unloaded 
shaker (Figure 9a), the upper resonance frequency occurs at 6.38 
kHz and low resonance at 54.32 Hz. The resonance frequency 
values from Figure 9a and the half-power values were used to 
compute masses, and springs and damper constants of the 
mechanical system. Some electrical components were measured. 
The remaining electrical and mechanical parameters were 
approximated using trail-and-error, by tuning the simulation 
program till the frequency response matched the measured 
frequency response. The frequency response of the unloaded 
shaker model is shown in Figure 9b. 

 
 
RESULTS AND DISCUSSION 
 
The shaker model represented by the FIR adaptive filter 
is identified using the partially hybrid frequency domain 
adaptive filtering algorithm described in partially hybrid 
time-frequency domain adaptive filtering algorithm. The 
FIR filter representing the model has 1024 weights. The 
time-domain weights are divided into two partitions, each 
of 512 taps, as is explained in the previous sections. The 
weights of the first partition are adapted using the non-
block time domain filtering algorithm only in the first block 

input stage )511,...,1,0( n . In subsequence block input 

iterations, the weights in the first partition and the weights 
of the other partitions are updated using the frequency 
domain adaptive filtering algorithm. After the shaker 
model is computed, the model weights are used in the 
PHTFDAF FIR controller model, such that when the 
resultant FIR controller is connected in cascade with the 
shaker, the shaker output tracks the reference input 
signal. That is, the control objective can be stated as: 
given the desired input reference signal and the shaker 
model, it is required to compute the FIR controller model 
such that when cascaded with the shaker, the output of 
the shaker tracks the reference input signal (Figure 10). 
The transition of the shaker controlled output response to 
the input reference signal should occur in a short time 
(due to the shock pulse width, usually 2 to 20 ms) and 
converge smoothly (no overshoot). The control model is 
represented by an FIR filter of 1024 weights. The weights 
are divided into two partitions, each of 512 weights, as in 
the case of the system identification of the shaker model. 
Using the filtered-x method in the time and frequency 
domains, the shaker output tracks the reference signal. 
The adaptation process converges to the optimal values 
after 20 block input iterations. The input reference signal 
and shaker controlled output responses are shown in 
Figures 11 and 12, respectively. From comparison of the 
desired input reference signal (Figure 11) and the shaker- 
controlled output (Figure 12), it is seen that the shaker 
output tracks the input reference signal. The control 
algorithm implementation results in a reduction in the 
ringing  of  the shaker output response. The rise time and 
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Figure 9. Frequency response of the unloaded shaker: (a) practical and (b) 
simulation. 
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Figure 10. Shaker input reference and shaker output response. 

 
 
 

 

 
 

Figure 11. Input reference. 
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Figure 12. Shaker controlled output (with PHTFDAF). 

 
 
 

 

 
 

Figure 13. Controller output (Shaker input- (with PHTFDAF). 

 
 
 
settling time achieved are 0.05 and 0.85 ms, respectively. 
The  controller  output  signal  (shaker input)  is  shown in 

Figure 5. Figures 13 to 15 shows the shaker performance 
with    conventional    adaptive    time  domain   Filtered-x 
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Figure 14. Shaker controlled output (with Filtered-X). 

 
 
 

 
 

Figure 15. Controller output (shaker input-with Filtered-x). 



 
 
 
 
algorithm used to implement control design for shaker 
system. During simulation it is found that the PHTFDAF 
algorithm converges to the desired signal faster than 
with the conventional frequency domain adaptive 
filtering (FDAF) method.  
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