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Technology transition is an essential activity of engineering that bridges the gap between theory and 
reality. Computer engineering, for instance, takes the infinite accuracy of pure mathematics and applies 
it to practical situations. For precision irrigation and the calculation of ETc (estimated crop water use), 
we have the physics and mathematics expressed in the UN’s excellent documentation. A previous 
paper by the author expressed those mathematics in open-source software. The results were tested 
against the UN’s documentation and applied to Teff, a crop grown in Ethiopia. Since weather data had 
to be constructed from what was available, this present paper focuses on sweet corn grown in the USA, 
while using unmodified weather data downloaded from a regional weather station. It also goes into 
detail on determining various parameters required for calculation. An additional stop was to use next-
day rain prediction in an effort to further minimize water use. Next-day rain prediction resulted in a 20% 
decline in water use while the crop would never go more than 24 h without an appropriate amount of 
water being applied. The result also demonstrates the integration of software components with a small 
cigarette-pack sized computer suitable for embedding within irrigation systems. Finally, ETc is 
translated into a volume of irrigation to be applied on a daily basis, taking into account moisture 
already available, ETc, and rain falling during the previous 24 h. Growing-season volume appears large 
at first glance but correlates with other consumption studies. 
 
Key words: Precision irrigation, precision agriculture, distributed systems, water conservation, soil moisture, 
evapotranspiration, adaptive automation, embedded systems 

 
 
INTRODUCTION 
 

An earlier paper by Raeth (2020a), reported on the 
development and testing of open-source software for 
calculating evapotranspiration (ETo) and crop water 
requirement (ETc for a single crop under standard 
conditions. That paper implemented the mathematics 
representing the theory behind a crop’s water use (Allen 
et al., 1998). The testing here was done  using  examples 

in the source document and also parameters for Teff, a 
crop much-grown in Ethiopia, where this research started. 
However, there was an issue with the last experiment 
pertaining to the weather data. Insufficient data was 
available, so a set had to be created from what was 
available. Still, the software was shown to produce 
correct results. 
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In this present paper, the author focuses on sweet corn 
grown in Idaho, USA. Weather data was downloaded 
from a regional weather station and used unmodified 
(NOAA, 2020a). This paper also gives a detailed 
calculation of various parameters as the crop grows, 
which is essential since Allen et al. (1998) is not always 
clear on that matter. 

A final component briefly explores the impact of next-
day rain prediction on the volume of water used for 
irrigation. The result showed that 20% less water was 
used, while the crop would never go more than 24 h 
without adequate irrigation. 

All software for this and the previous paper are 
available as open-source (Raeth, 2020b). The software is 
well-commented and documented. It is written in a 
language often employed within embedded systems 
(C/C++). 

It is important that this technology-transition step be 
taken. In theory, by itself, it cannot be directly applied to 
practical situations. For instance, mathematics that 
describes theory takes place within a sphere of infinite 
accuracy (For Example: 1/3 = 0.333….., not 0.33333). 
Engineering takes into account the inaccuracy of 
mathematical calculations in practice. It also considers 
imperfect devices and the realities of physical 
implementation, including the total cost of purchase, 
installation, operation, and maintenance. 

Levidow et al. (2014) discussed irrigation technology 
development and transition in quite a detailed manner, 
acknowledging the need and taking into cognizance the 
decreasing supplies of water available for crop use. On 
an important issue, besides developing associated 
equipment and methods, they cite the need for farmer 
education and their adoption of improvements. Tolbert et 
al. (2016) found that irrigation methods based on 
evapotranspiration and others based on soil-moisture 
sensing provided essentially equal results. Both were 
statistically beneficial when compared with conventional 
volume/schedule watering. A great deal of additional 
benefit was derived from careful training of farmers. 

This quote from a US congressional hearing shows that 
this present effort is on the right track (United States 
Senate, 2017): 
 

The collection and analysis of data has enabled farmers 
to reduce costs through more efficient applications of 
inputs like fertilizers and pesticides; improve production 
decisions through enhanced recordkeeping and more 
accurate yield predictions; and enhance land stewardship 
and sustainable practices by removing inefficiencies in 
planting, harvesting, water use, and the allocation of 
other resources. With an increasing volume of quality 
data, in tandem with improved data analysis, data-
collection technology has the potential to dramatically 
increase farm productivity and profitability. 
 

Despite being valuable,  in  comparison  with  commercial  

 
 
 
 
efforts, they are proprietary. There is relatively little in the 
way of open-source expressions of the underlying theory. 
This present effort seeks to make open-source software 
and hardware available. This paper speaks of software 
and a bit of hardware (The BeagleBone is open-
hardware), hence it can be said to produce open-source 
software. 

According to Bhalage et al. (2015), this present project 
addresses an important issue in agriculture, believed that 
an estimated 80% of the world’s usable water is applied 
to agriculture, and that in some countries, irrigation 
efficiency is as low as 30%. They also note deficiencies 
due to over irrigation occasioned by non-availability of 
control structures and facilities for volumetric supply of 
irrigation water, as well as lack of awareness among 
farmers about correct irrigation practices. 

Rhodig and Hillyer (2013) call for a flexible approach 
combining optimal irrigation techniques with soil, 
moisture, and weather data in an integrated, easy-to-use 
decision support solution. They also speak to the need 
for high-quality data as a fundamental driver of precision 
techniques. 

As we delve further into this paper’s discussion, the 
software architecture will be discussed and the 
determination of major configuration variables will be 
illustrated. The possible outcome when the system was 
applied to an actual situation is also presented (by 
“applied”, the author means without connection to an 
irrigation system. Real weather data was used, 
connection was made to embeddable computer hardware, 
and a volume of irrigation displayed). Finally, the study 
findings were discussed and future opportunities 
presented. 

 
 
MATERIALS AND METHODS 

 
Beginning with a detailed study of Allen et al. (1998), modular 
software was written in C/C++ to implement the underlying 
mathematics. Modularity and broad usability make up the 
foundation of the system. Figure 1 illustrates the top-level 
components. Each component will be subsequently summarized. 

 
 
Acquire weather data 

 
Archived pre-cleaned weather data was downloaded from a public 
website operated by the US National Oceanic and Atmospheric 
Administration (NOAA, 2020a). Documentation on station codes is 
contained in NOAA (2018). Documentation on the data itself is 
contained in NOAA (2020b). Wigmore (2019) offers a good 
discussion on the use of this data. 

The author chose a station in the USA, Idaho Falls Regional 
Airport as sweet corn is a primary crop in that region of the world 
and high-quality data from that station is available. There are 
configuration variables available in Allen et al. (1998) for that crop 
in that region. Data for the 2019 growing season was extracted 
from that year’s data and formed the dataset driving ETo 
calculations. 
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Figure 1. Top-level software architecture. 

 
 
 
Calculate ETo 
 
The physics and mathematics behind evapotranspiration are well-
explained by Allen et al. (1998). This project developed an 
implementation of their work for a single crop under standard 
conditions (as explained in Part B of their work). Implementation 
was discussed in the previous paper, Raeth (2020a). Careful 
testing against provided examples was used to check for 
correctness. A test against CropWat suggests that the study used a 
tool that records incoming solar radiation instead of the specified 
net solar radiation. So, CropWat’s ETo will always be 3-4% higher. 
The author was unable to get the popular ETo calculator to accept 
greater than three-digit altitude values, so results could not be 
checked against that tool (Also, there was no response to the 
author’s email on this matter). Although the executables for those 
tools are public-access, the author could not find source-code. 
Thus, further verification using those tools was not possible. 

 
 
Crop-specific configuration tables 
 
Given the modular nature of the software, the system readily adapts 
to changes in configuration values. Thus, values appropriate to the 
location and crop are selected and detailed notes are included with 
the software. 

Altitude, latitude, and longitude are given in the station 
documentation (NOAA, 2018 November). For this particular 
exercise, we focused on Idaho Falls Regional Airport in the USA. 

Kc was developed for sweet corn grown in Idaho. Figure 2 is 
drawn from Allen et al. (1998). The plot is due to linear interpolation 
over the table during the growth period. 

Crop height is illustrated in Figure 3 (Allen et al., 1998, Table 11 
only gives the ending height at harvest (1.5 m)). Due to this, it was 
necessary to draw intermediate heights from another source; hence 
the author chose Tajul et al. (2013, Figure 1). A process of relative 
percentages yielded intermediate plant heights. 

Sunlight data was sourced from WeatherAtlas (2020). It is 
essential  to  differentiate   between   sunlight   and  daylight.  Many 

sources confuse the two and report one as the other. Periods of 
sunlight yield the energy needed to calculate net incoming solar 
radiation. Also, daylight is a longer period of visibility but is not the 
same as sunlight. Figure 4 illustrates the values used in this 
exercise. 
 
 

Data-driven rain prediction 
 
C5.0, RuleQuest (2019), is a well-respected open-source data 
analysis tool which uses well-grounded formal statistics to produce 
classification models. For this exercise, C5.0 was used to create a 
model that generates next-day-rain (yes or no) classifications of 
daily weather data. 

A record for building the model was created by combining three 
contiguous daily records. Each element in the second record was 
subtracted from the corresponding element in the first record. If all 
elements were good numbers, the third record provided a yes/no on 
next-day precipitation. The resulting record was added to those 
used to build the model. If any element in the resulting record was 
not a good number, that record was not added to those used to 
build the model. 

The elements employed are listed in Table 1. (“Diff” refers to the 
difference between a corresponding element in the current record 
and the previous day’s record.) 

For testing the model, data for the crop growing period (planting 
to harvest) during 1998-2018 was gathered. Test data was drawn 
from 2019 and was arranged in exactly the same way as the data 
used to build the model. At this point, C5.0 was employed to build 
and test the model. When used within the total system, C5.0 
employs an evolving model as new data arrives. This is 
accomplished via system calls. 

 
 
Calculate ETc 

 
This is a rather simple matter. Linear interpolation is used to 

calculate a Kc  value  from  the table  inset in Figure 2 based on the
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Figure 2. Kc plotted over the growing period. 
Source: Allen et al. (1998, Tables 11 and 12; Figure 34). 

 
 
 
number of days after planting. That result is then multiplied by ETo 
to get ETc. 
 
 
Determine irrigation volume 
 
ETc is the amount of water used by the crop during the previous 24 
h. Notice that ETc is reported in the same basic units as 
precipitation. 

Four values are used to estimate the irrigation requirement: ETc 
(the crop’s water use), present-day rain, next-day rain prediction, 
and moisture already in the ground. How to initialize moisture 
already in the ground is an issue since that is a configuration 
variable. Initialization can be estimated using an inexpensive 
portable soil-moisture sensor. 

Soil-moisture sensing can be rather involved or rather simple. It 
can also be rather expensive or rather inexpensive. Sharma (2019) 
offers a good discussion. For the purposes of estimating soil-
moisture content at the very beginning of planting, it should not be 
necessary to use complex and expensive equipment; something 
simple and inexpensive should suffice. However, be sure the 
product you employ has instructions for interpreting the readout in 
terms of the crop at hand. In the case of this exercise, the author 
assumed zero moisture in the ground to start. The software readily 
adapts to whatever value is used for initial in-ground moisture. 

When it rains on a particular day, that amount of water is added 
to in-ground moisture before ETc is subtracted. If the total amount 
of water (present-day-rain + in-ground-moisture – ETc) is less than 
ETc, then water is added if no-rain is predicted for the next day. 
The amount of water added is sufficient to bring the in-ground 
moisture to the level of present-day ETc on the assumption that 
next-day ETc will be close to that amount. This is a reasonable 
assumption since weather conditions rarely change greatly from 
day to day. Figure 5 shows the general logic for this process. 

The calculation to estimate additional irrigation volume takes into 
consideration that ETc is in the same basic units as  is  the  amount 

of rain measured for a particular day. It is therefore possible to 
estimate the volume of water needed for irrigation. The formula for 
volume is length × width × height. The area covered by the crop 
comprises the length x width component. Our units of ETc and rain 
are in millimeters (mm) per day. We can take mm water loss as the 
height. Thus, volume of water needed each day to maintain ETc 
over the field can be estimated. 

For example: Consider a field covering one hectare 
 
1 ha = 10,000 m

2 

 
1 m

2
 = 1,000,000 mm

2
 

 
Thus, if ETc = 5 mm, 
 
Volume of water needed = 10,000 × 1,000,000 × 5 = 
50,000,000,000 mm

3
 

 
But, 

 
1 mm

3
 = 0.000001 L 

 
Thus, the requirement for water for that day is 50,000,000,000 × 
0.000001 = 50,000 L. 

 
1 L = 0.26417205 gallons. 
 
Thus, 

 
Required water in US terms = 50,000 × 0.26417205 = 13208.6025 
gallons. 

 
If one takes that as the average volume of irrigation per day, it is 
possible to decide if that amount of water is available so that a 
viable crop can be grown. 
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Figure 3. Crop height plotted over the growing period. 
 
 
 

Activate irrigation system 
 

The size of the irrigated field leads to the volume of water required 
to satisfy ETc. The volume per period of time delivered by the 
pumping system determines the length of time to operate the pump. 
In our case, a signal was sent from the computer operating the 
software to a BeagleBone-Black Industrial single-board embeddable 
computer (beagleboard.org, 2020 July, 22). This popular open-
hardware computer is quite small, about the size of a cigarette 
pack. 

The BeagleBone-Black is pictured in Figure 6. Circled are LEDs 
that are turned on to represent the length of time required to deliver 
a specific volume of water. Power for the board and communication 
with the board was provided through a USB cable. The computer 
sends a signal to the embeddable computer and the software in the 
computer triggers the LED. Details are given in Raeth (2020b). 
Modules for battery power and wireless communication are 
available for this board, as are means of interfacing with other 
hardware. 

For this transition phase, the author did not have access to an 
irrigation system. In truth, an embeddable computer is not needed 
for this present exercise. One could simply display the volume of 
water required. However, this procedure was followed to briefly 
explore standard networking modules for such a connection. This 
proved easy to do as a means of representing a networked pump 
controller. If the drip irrigation system is assumed to distribute water 
evenly across the field, then the field can be said to be adequately 
watered. 
 
 

RESULTS AND DISCUSSION 
 

The process described in this paper, the calculation and 
application of ETo and ETc, and their  translation to  daily 

volume for drip-irrigation is data driven. Like all data-
driven processes, the first requirement is good data: data 
that is accurate, reliable, and complete. It makes little 
sense to establish a data-gathering process, in this case 
a weather station, unless good data is collected, made 
accessible, and archived. Similar thoughts apply to 
methods of data analysis and their implementation. 
Analysis of mathematics must be appropriate to the goal. 
Implementation must correctly reflect the mathematics. 
The author hopes this project is an encouragement 
toward producing good weather data coupled with correct 
analysis tools [This project’s source-code is available in 
Raeth (2020b) for public testing, verification, and 
expansion]. 

The method used here for next-day rain prediction 
evolves as new data becomes available. The oldest 
record is deleted and the newest record is added as new 
data arrives. All data from ten years was used to initialize 
the model. Data from the eleventh year was used to test 
the model. In the training set, there were 3197 instances 
of next-day precipitation and 4468 instances when 
precipitation did not occur the next day, for a total of 7665 
test records. C5.0 arrived at the importance of data 
elements shown in Table 2. The percentages are an 
indication of importance. 

Test results are shown in Table 3. Clearly, 
classifications for next-day rain were no better than 
flipping a coin. But, classifying the case of no next-day 
rain were fairly accurate. 
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Table 1. Weather data elements used in building the next-day rain/no-rain 
classification model. 
 

Element Description 

Precipitation Yes/No, the target element 

TEMP 

TEMP_Diff 
Mean temperature 

DEWP 

DEWP_Diff 
Mean dew point 

SLP 

SLP_Diff  
Mean sea level pressure 

STP 

STP_Diff 
Mean station pressure 

VISIB 

VISIB_Diff 
Mean visibility 

WDSP 

WDSP_Diff 
Mean wind speed 

MXSPD 

MXSPD_Diff 
Maximum sustained wind speed 

MAX 

MAX_Diff  
Maximum temperature 

MIN 

MIN_Diff 
Minimum temperature 

 
 
 

 
 

Figure 4. Average hours of daylight. 
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Figure 5. General logic for estimating required irrigation. 

 
 
 

 
 

Figure 6. BeagleBone-Black industrial embeddable computer. 

 
 
 
There are many approaches to data-driven rain 
prediction. An example is given by Namitha et  al. (2015). 

Hirani and Mishra (2016) produced an excellent survey of 
techniques. As  regards  various  techniques, it should be
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Table 2. Relative importance of weather-data elements within next-
day rain prediction using the C5.0 classification tool. 
 

Weather-data element Precipitation (%) 

STP_Diff 96 

MXSPD 68 

VISIB 66 

DEWP_Diff 43 

SLP 41 

MAX_Diff 32 

MAX 16 

MIN_Diff 12 

VISIB_Diff 10 

TEMP 9 

WDSP_Diff 6 

MXSPD_Diff 5 

 
 
 

Table 3. Next-day rain classification results. 
 

Classification Precipitation (%) 

Overall misclassification 28.6 

False positives 46.8 

False negatives 15.5 

 
 
 
noted that some do not have known construction times. 
Others do not have construction architectures and 
initializations that can be determined ahead of time. C5.0 
uses a technique where construction time is directly 
related to the amount of data employed. It determines the 
architecture and initialization via bounded statistical 
analysis. 

Applying next-day rain prediction within the described 
irrigation estimation process had a positive impact. Over 
the 100-day growing period, 278 mm water total was 
estimated for irrigation use when next-day rain prediction 
was not employed. When employed, 223 mm water-use 
was estimated. 

Taking into consideration the volume of water 
represented by 223 mm; during that same growing 
season, 122 mm rain was measured. Thus, the total 
water applied was 345 mm. Assuming we are working 
with one hectare of plantable area and that rain and 
irrigation are evenly applied, Brouwer et al. (1985) 
explained how to convert millimeters of water to a 
volume: 
 
1 ha = 10,000 m

2
 

 
345 mm = 0.345 m 
 
10,000 × 0.345 = 3,450,000 m

3
 

1 m
3
 = 1,000 L 

 
4,000.3 × 1,000 = 3,450,000,000 L 
 
That is the volume of water used in this exercise for a 
crop of corn. In US terms, 
 
1 L = 0.2641720524 gallons 
 
3,450,000,000 × 0.2641720524 = 911,393,581 gallons of 
water consumed in growing 1 ha of corn. 
 
That does appear to be a great deal of water. However, 
Trout et al. (2011) has determined that it takes 600,000 
gallons of water to grow one acre of corn. One hectare is 
equivalent to 2.471 acres. Thus, our one hectare would 
need 2.471 x 600,000 = 1,482,600 gallons of water. 
Thus, for the specified corn crop, the exercise falls within 
the broad range. 

It must be taken into account that “corn” is a very 
general term. Hence, there are many varieties of corn 
and some are drought-resistant. Also, location and 
ambient conditions during the growing season are 
important factors. The variety of corn used in this 
exercise is of no specific variety but is an average of 
several varieties. Trout et al. (2011) conducted their 
research  in  an  entirely  different part of the country than  



 

 

 
 
 
 
assumed by this exercise, plus they did not specify the 
variety of corn they used. Another factor is the length of 
the growing season. The author used a 100-day period. 
However, other varieties have longer growing periods. 
For example, the study by Tajul et al. (2013) used a 120-
day growing period. So, the author is willing to accept the 
volume produced in this exercise. 
 
 
Conclusion 
 
This exercise demonstrates and publishes modular 
software that calculates single-crop ETc under standard 
conditions. it is flexible with the selected crop, location, 
and weather conditions.  

Rain prediction proved helpful, resulting in an estimated 
20% water savings. At no time was irrigation delayed 
more than 24 h. Estimated water volume correlates with 
other studies. 

It is not clear if the estimation of a crop’s water use 
leads to water savings when compared to scheduled 
irrigation. That would very much depend on how much 
water the schedule provides as a farmer-selected 
volume. Savings may be expected if the schedule tends 
to over-water the crop. Still, the use of ETc estimations 
can help prevent over and under-watering and therefore, 
potentially aid in an effort to produce the best crop yield. 

Cost is another factor to consider. Providing accurate, 
reliable, and accessible weather data for ETc calculations 
is not cheap. Some nations do have such capability. But, 
even in that case, the further one gets from the weather 
station, the less applicable are the observations to a 
specific farm. Cost is a factor as well with soil-moisture 
sensors. In both cases, a reliable but relatively 
inexpensive computer is needed, even if automated 
irrigation is not employed. One must determine where the 
cost-tradeoffs occur. For example, is regaining yield-loss 
worth the added expense of precision irrigation? At what 
planting area does the volume of crop make the added 
expense worthwhile? What are the purchase, installation, 
and recurring costs of an irrigation system? The mere 
saving of water or the improvement of crop yield may not, 
in and of themselves, be worth the cost and effort. 
 
 
Future opportunities 
 
It is possible that an improved rain-prediction method 
may enable even less irrigation volume. In particular, a 
method could be researched that predicts accurately 
whether or not rain will occur (instead of just when rain 
will not occur). And also, if rain is predicted to occur, an 
accurate prediction of how much rain may fall would be 
very useful. National weather forecasts may not be 
sufficiently accurate nor even possible, depending on the 
reliability,  accuracy,   and   completeness   of   the   data\ 
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collected. So, a farmer-owned or cooperative-owned 
weather station may be necessary. 

If the work of Tiwari et al. (2019) is examined, it can be 
realized that there could be considerable advantage to 
the combination of weather and soil-moisture data. 
Although there may be scalability of networked data 
gathering, communicating, processing, results delivery, 
and archival issues. In the author’s experience, this 
should be possible using respected open-source 
software. Multiple tools would be involved but the system 
would be capable of integrating loosely-coupled 
geographically-dispersed processes that are language 
agnostic. This would be more easily done with Linux 
systems, but it is possible that Windows systems could 
be included. 

It would be possible to push into greater detail with the 
present project. For instance, including the calculations 
for non-standard conditions would take the project deeper 
into the existing proof-of-concept. 

A table of results could be generated by calibrating the 
software for additional crops grown in different parts of 
the world. This may be valuable in circumstances where 
technology insertion is being explored. 

Given the number of parameters needed to calibrate 
the software, a data-entry GUI is an obvious need, 
especially if real-time user-selectable crop phase were to 
be entered during system operation. That would be an 
excellent transition step to take if the software were to be 
employed during a field study. 
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