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Dissolved Gas Analysis (DGA) is a popular method to detect and diagnose different types of faults 
occurring in power transformers. This objective is obtained by employing different interpretations of 
dissolved gases in the mineral oil insulation of such transformers. This paper engages these 
interpretations and applies appropriate Artificial Neural Networks (ANN) to classify the different faults. 
Each interpretation method needs special neural network to determine the occurred fault. Three ANNs 
are applied to this aim. The classification results and some typical examples are presented to validate 
the networks. 
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INTRODUCTION 
 
Faults in power transformers can significantly decline the 
longevity of mineral oil insulation of those transformers. It 
is essential to detect and eliminate the occurred fault very 
soon preventing any jeopardous results. Insulating 
mineral oils under faults release gases which dissolve in 
the oils. The distribution of these gases relates to the 
type of fault. Analysis of the dissolved gases can result in 
very useful information in the maintenance programs. 
The advantages of dissolved gas analysis can be briefly 
stated as (DiGiorgio, 1996): 
 
(i) Advance warning of developing faults. 
(ii) Determining the improper use of units. 
(iii) Status checks on new and repaired units. 
(iv) Convenient scheduling of repairs. 
(v) Monitoring of units under overload. 
 
There are different detection and interpretation methods 
(DiGiorgio,   1996;   Duval,   2006).  IEC  and  ANSI/IEEE  
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standards are among the most prestigious sources for 
the dissolved and free gas interpretations (ANSI/IEEE 
C57.104; IEC 60599). Each interpretation method has its 
own pros and cons. These methods will be shortly 
discussed and evaluated. 

The term of ‘fault gases’ is used to hint the gases which 
are originated through the faults. These fault gases are 
Methane (CH4), Ethane (C2H6), Ethylene (C2H4), 
Acetylene (C2H2), Hydrogen (H2), Carbon monoxide 
(CO), Carbon dioxide (CO2), and the non-fault gases are 
Nitrogen (N2), and Oxygen (O2). 

In addition to the oil, insulating papers also provide 
some gases under faults. The percentage of released 
gases under different faults is stated in Table 1. Corona, 
pyrolysis (over heating), and arcing in the oil and 
pyrolysis in the cellulose are considered as different 
types of faults in Table 1. 

As a result, each of these gases can individually 
represent type fault. Table 2 presents such a conclusion 
(Jakob, 2003; Lewand, 2003). 

There are different methods to measure the value of 
fault gases of the oil. The total combustible gases (TCG) 
and gas blanket analysis are such methods which take a 
sample of the space above the insulating oil in the  power  
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Table 1. Percentage of each released gas under different faults. 
 
Fault type H2 (%) CO2 (%) CO (%) CH4 (%) C2H6 (%) C2H4 (%) C2H2 (%) 
Corona in oil 88 1 1 6 1 0.1 0.2 
Pyrolysis in oil 16 TRACE TRACE 16 6 41 TRACE 
Arcing in oil 39 2 4 10 TRACE 6 35 
Pyrolysis in cellulose 9 25 50 8 TRACE 4 0.3 

 
 
 

Table 2. Interpretation based on a single released gas amount. 
 
Gases Indication 
Hydrogen Partial discharge, heating, arcing 
Methane ,Ethane, Ethylene “Hot metal” gases 
Acetylene Arcing 
Carbon oxides Cellulose insulation degradation 

 
 
 
transformers (DiGiorgio, 1996). TCG has the advantage 
of high speed analysis and continues monitoring but it is 
not able to collect noncombustible gases such as Carbon 
dioxide, Nitrogen, and oxygen. The gas blanket analysis 
is capable of sampling both combustible and 
noncombustible fault gases. 

In general, both of the mentioned methods suffer from 
some disadvantages. Indeed, these methods can not be 
engaged to detect fault gases in transformers which are 
full of oil and do not contain any gas blanket above their 
insulating oil. Furthermore, since the faults are often 
originated from the bottom of the oil, it takes time to the 
released gases to saturate the oil at first and then 
penetrate in the gas blanket. Therefore, the total time of 
the analysis will be significantly augmented. 

Dissolved Gas Analysis (DGA) is the most popular 
informative method to this aim. In this method, a sample 
of oil containing dissolved fault gases is taken from the oil 
of the unit; then the fault gases are detached from the 
sample. Eventually, each gas is separated from the 
others and the value of each gas is derived in part per 
million level (ppm). The main advantage of DGA is the 
quick detection of the gases right after occurrence of a 
fault. All these methods provide the value of fault gases 
in the oil. Now it is required to interpret the attained 
values to determine the type of the occurred fault. 

There are some interpretation methods which classify 
the faults according to the obtained gases values. 
Artificial neural networks are employed to solve these 
pattern classifications for three popular interpretation 
methods in this paper. 
 
 
DORNENBURG PLOT 
 
This earlier IEEE method plots two different ratios  in  two 

axes. Three different faults, Thermal, arcing, and corona, 
can be detected by using this method. 

A multilayer perceptron neural network is designed to 
simulate Dornenburg interpretation. Construction of this 
network is presented in Figure 1. This configuration 
contains 10 neurons in the first layer and three neurons in 
the last one. Inputs nodes are ratios of C2H2/C2H4 and 
CH4/H2 and three outputs represent three types of faults. 
Each output node is assigned to a special type of fault 
hence the neuron which is high in its output indicates that 
which fault is occurred. 

Transfer function of all the neurons of the two layers is 
the step function. When the input of a step function is 
negative, the output becomes zero and correspondingly 
the output is unity when the input is at least zero. The first 
layer is designed to make all the decision boundaries and 
the second one plays an OR rule to create three different 
classes of the three faults. Each input is applied to all the 
neurons of the first layer by a weight. All of the neurons 
include biases. Abbreviated notation of this network is 
also presented in Figure 2 (Hagan, 1996) 

Weight and bias matrixes are evaluated as (1) to (4): 
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This network has been simulated in the Matlab software 
and the classification problem has been solved. A large 
amount of random inputs have been applied as inputs 
and Figure 3 has been obtained. Red areas are 
corresponding to  thermal  faults,  green  areas  represent  
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Figure 1. Multilayer perceptron for Dornenburg method. 

 

 

 
 
Figure 2. Configuration of the three layer perceptron. 

 
 
 
arcing faults, and blue areas indicate corona faults. 
 
 
VALIDATION OF THE NETWORK 
 
Some experimental data and the type of fault have been 
presented in (Jakob, 2003). To validate the results of the 
proposed neural network, these data have been 
engaged. All of the values are in ppm. 

The data presented in Table 3 have been obtained by 
the method of DGA under normal operation of the power 
transformer (Jakob, 2003). The proposed neural network 
is  employed  to  judge   about   the   condition.   Figure  4 

indicates that the network correctly selects the normal 
condition. 

One year later, this unit was tested once again. The 
obtained data indicated that the unit was under thermal 
runaway condition. Table 4 represents the data. The 
neural network notices that the unit is under heating fault 
(Figure 4). 

Engineers removed the unit from the power system to 
repair. The unit was tested again after installation. The 
data of Table 5 and Figure 4 prove that the unit was 
under normal condition. 

Red areas are corresponding to thermal faults, green 
areas  represent  arcing  faults,  and  blue  areas  indicate  
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Figure 3. Dornenburg plot attained by two layer perceptron neural network. 

 
 
 

Table 3. Experimental data on February 25, 1993. 
 

Date C2H2 CH4 C2H6 C2H4 H2 CO CO2 
02/25/93 0 5 1 4 34 71 350 
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Figure 4. Three condition plot of the unit; 1, 3: Normal, 2: Thermal fault. 

 
 
 
corona faults. All of the other areas show normal 
condition. Therefore point 1 indicates normal condition. 
Point 2 is situated in red areas hence  the  transformer  is 

operating under overheat condition and it is required to 
remove the transformer and eliminate the occurred fault 
or repair the unit. After repairing the transformer, it should  



 
 
 
 
 
Table 4. Experimental data on February 25, 1994. 
 

Date C2H2 CH4 C2H6 C2H4 H2 CO CO2 
02/25/94 44 1812 576 3143 149 33 645 

 

 
Table 5. Experimental data after repairs on February 27, 1994. 
 

Date C2H2 CH4 C2H6 C2H4 H2 CO CO2 
02/27/94 44 1812 576 3143 149 33 645 

 
 
 

Table 6. C. E.G. B. fault gas ratios developed by Rogers. 
 

Ratio Range Code 

 
CH4/H2 

� 0.1 
> 0.1 < 1 
� 1 < 3 
� 3 

5 
0 
1 
2 

   

C2H6/CH4 
< 1 
� 1 

0 
1 

   

C2H4/C2H6 
< 1 

� 1 < 3 
� 3 

0 
1 
2 

   

C2H2/C2H4 
< 0.5 

� 0.5 < 3 
� 3 

0 
1 
2 

 
 
 
be installed and tested by DGA and related equipments. 
It is done and point 3 proves that the new condition is 
normal and the unit can satisfy the network requirements. 
 
 
ROGERS METHOD 
 
Central Electric Generating Board (CEGB) of Great 
Britain has employed a method developed by Rogers, 
IEEE method (Duval, 2006), in which four ratios of fault 
gases are calculated to generate a four digit code 
presenting in Table 6 and 7. Table 6 illustrates 
circumstance of developing the digits and Table 7 
describes the fault diagnosis assigning to each of the 
digits. 

A competitive neural network has been developed and 
proposed in the Matlab software to simulate the Rogers 
method. This network is presented at Figure 5. 

Golkhah et al.        5 
 
 
 
Table 7. C. E. G. B. diagnostics developed by Rogers.  
 

Code Diagnosis 
0 0 0 0 Normal 
5 0 0 0 Partial discharge 

1,2 0 0 0 Slight overheating < 150°C 
1,2 1 0 0 Slight overheating 150 - 200°C 
0 1 0 0 Slight overheating 200 - 300°C 
0 0 1 0 General conductor overheating 
1 0 1 0 Winding circulating currents 

1 0 2 0 Core and tank circulating currents, 
overheated joints 

0 0 0 1 Flashover, no power follow through 
0 0 1,2 1,2 Arc, with power follow through 
0 0 2 2 Continuous sparking to floating potential 
5 0 0 1,2 Partial discharge with tracking (note CO) 

CO2 / CO > 11 Higher than normal temperature in 
insulation 

 
 
 

Indeed this type is a Hamming network by two layers. 
The weights of the first layer are desired prototypes. All 
the inputs, the four ratios plus CO2/CO, are compared to 
the first layer weights and the hamming distances are 
calculated. The less is the hamming distance, the more is 
the output of the neuron which has a linear transfer 
function. The outputs of the first layer then become the 
inputs of second layer, competitive layer. The second 
layer contains recurrent neurons in which the outputs 
represent one time less than the inputs. Each output of 
the second layer is back propagated to its input by a 
weight equal to unity however all the other outputs feed 
the input of that neuron by a ”-�” weighted loop. “�” is 

much less than unity and should be less than 
1

1
−S

 

where S is the number of neurons in the first layer. It is 
important to note that the second layer has the same 
number of neurons in the first one. 

After following the outputs of the first layer into the 
second one and passing a few iterations, the neuron 
which has had the biggest initial value wins the 
competition, global winning neuron. The winning neuron 
has unity on its output while all of the other neurons are 
zero on their outputs. As a result an input which is more 
near to one of the weights of the first layer, will take all 
the other inputs, so called winner-takes all (WTA). ‘D’ 
block represents a time delay. To prevent drawing a 
complex diagram, which will nor be readily readable, 
abbreviate notation of this network is only presented. For 
simplification, the second layer can be replaced by a 
competitive layer and since all of the biases are zero and 
the output of a linear transfer function is equal to its input, 
Figure 5 can be redrawn as Figure 6. 
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Figure 5. Hamming network for Rogers method. 

 
 
 

 
 
Figure 6. Hamming network of Figure 5 with a competitive layer. 

 
 
 
This network has been simulated in the Matlab software. 
The weights of the first layer are the codes stated in table 
X hence it is not required to rewrite here. The simulator 
prompts this network while CO2/CO<11. As this ratio 
outmatches 11, the network is interrupted and the output 
is set to a value indicating that the temperature of the 
insulation is higher than the normal value. 
 
 
VALIDATION OF THE NETWORK 
 
A bushing soaked in oil has been tested by DGA (Jakob, 
2003). Table 8 represents the obtained data. John  Stead  

 
Table 8. Bushing overwhelmed on oil under partial discharge. 
 

Gas Value in ppm 
Hydrogen 19132 
Oxygen 4041 
Nitrogen 50767 
Carbon monoxide 537 
Methane 1256 
Carbon dioxide 1459 
Ethylene 11 
Ethane 409 
Acetylene 0.2 

 
 
 
has stated on his presented paper at the 1996 Doble 
Conference that this unit has been under partial 
discharge condition. 

These data were applied to the neural network. The 
network produced codes: [5 0 0 0] which demonstrates 
the correctness of the decision, partial discharge fault. As 
another instance, suppose Table 9 presented in (Lewand, 
2003). The unit is subjected in high temperature 
overheating of the oil. Applying these data to the 
proposed neural network eventuated codes [0 1 2 0] 
which means that the temperature of the insulation is 
higher than normal. 
 
 
DUVAL TRIANGLE 
 
The dual triangle was first developed in 1974 (Duval, 
2006). It uses only three hydrocarbon gases (CH4, C2H2, 
and C2H4). The three sides of the triangle are expressed 
in triangular coordinates (X, Y, Z) representing the 
relative  proportions  of  CH4,  C2H4  and  C2H2,  from  0 to  
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Figure 7. Example of triangular graphical plot. 

 
 
 
Table 9. Value of fault gases under high temperature, McGraw 
Edison Transformer, 400 MVA, 345 KV, 1969. 
 

Gas Value in ppm 
Hydrogen 7040 
Methane 17700 
Ethane 4200 
Ethylene 21700 
Acetylene 165 
Carbon Monoxide 67 
Carbon Dioxide 1040 

 
 
 
100% for each gas.  

In order to display a DGA result in the triangle, one 
must start with the concentrations of the three gases, 
(CH4) =A, (C2H4) =B, and (C2H2) =C, in ppm.  

First calculate the sum of these three values: 
(CH4+C2H4+C2H2) =S, in ppm, then calculate the relative 
proportion of the three gases, in %:  
 
X=%CH4=100(A/S), Y=%C2H4=100(B/S), 
Z=%C2H2=100(C/S).  
 
X, Y and Z are necessarily between 0 and 100%, and 
(X+Y+Z) should always 100%. Plotting X, Y and Z in the 
triangle provide only one point in the triangle.  

Table 10. Faults detectable by Duval triangle. 
 

Symbol Fault 
PD Partial discharge 
D1 Discharges of low energy 
D2 Discharges of high energy 
T1 Thermal fault, T <300°C 
T2 Thermal fault, 300<T<700°C 
T3 Thermal fault, T>700°C 
DT Mixtures of electrical and thermal faults  

 
 
 
For example, if the DGA results are A=B=C=100 ppm, 
X=Y=Z=33.3%, which corresponds to only one point in 
the centre of the triangle, as indicated in Figure 7. Duval 
triangle can diagnose the fault types of Table 10. These 
faults are shown in Figure 8. 

Michel Duval found his proposed method the most 
suitable. He has presented Table 11 to demonstrate his 
claim.  

A three layer perceptron has been proposed here to 
simulate Duval triangle. This network is presented in 
Figure 9. 

This neural network has been simulated in the Matlab 
software. Many random inputs have been applied to the 
network to indicate its performance. Figure 10 presents 
the results. 
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Figure 8. Fault dispersal on Duval triangle. 

 
 
 

Table 11. Comparing faults of diagnostic methods by Duval. 
 

Diagnostic method % Unresolved diagnoses % Wrong diagnoses %Total 
Key gases 0 58 58 
Rogers 33 5 38 
Dornenburg 26 3 29 
IEC 15 8 23 
Triangle 0 4 4 

 
 
 

 
 
Figure 9. Three layer neural network for Duval triangle. 
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Figure 10. Duval triangle plot obtained by the three layer perceptron neural network. 

 
 
 

Table 12. Examples of DGA cases (concentrations in percent). 
 

Fault CH4 C2H4 C2H2 
PD 99 1 0 
D1 38 12 50 
D2 15 50 35 
T2 69 30 1 
T3 20 75 5 

 
 
 

It is comprehended from Figure 10 that the proposed 
neural network can successfully classify the seven 
faults of Duval method. It is important to note that the 
input is three dimensional and a conversion has been 
applied to a two dimensional plot. For instance, When 
C2H2=CH4= C2H4=%33, X (horizontal axis) will be equal 
to: 
 

�
�
�
�

�

	










�

�

+−=
)

3
tan(

%100 22 π
Y

HCX
 

 
Correspondingly, Y (vertical axis) will be: 
 

)
6

cos(% 4
π×= CHY    (6)  

VALIDATION OF THE NETWORK 
 
Michel Duval has engaged some experimental data of 
DGA to indicate the correctness of his triangle (Duval, 
2006). These data are presented in Table 12. 

All of the cases in Table 12 have been presented to the 
proposed neural network and Figure 11 indicates the 
results. All the five points corresponding to the faults of 
Table 12 have been plotted in Figure 11. Circumstance of 
drawing the points on such a plot is also shown by thin 
lines connected to the points. By a glance on the figure, it 
can be understood that the faults are correctly classified. 
 
 
CONCLUSION 
 
Appropriate design of artificial neural networks can help 
simulate the interpretation methods of fault diagnoses in 
power transformers. Three well-known methods were 
engaged and a neural network was designed for each of 
them in this paper. Validation results for the proposed 
networks prove that they can predict the occurred faults 
correctly.  

As a matter of fact, interpretation methods of fault 
gases are theoretic and it is required to employ artificial 
intelligences such as neural networks to realize them. 
Therefore, once DGA detects the value of all the fault 
gases in  the  insulating  mineral  oil  of  a  transformer,  a 
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Figure 11. Decision making about the faults of table XV by the neural network. 

 
 
 
neural network allocating to a desired interpretation 
method is selected. Eventually, the designed neural 
network can be employed to real-time decision making of 
any fault resulting in continues monitoring of that unit. 
Each neural network has its own characteristics and it is 
not possible to make comparisons in most cases; hence, 
for each type of the fault interpretation method, an 
appropriate network can be previously defined. 
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