
Journal of Electrical and Electronics Engineering Research Vol. 3(7), pp. 134-142, September, 2011   
Available online at http://www.academicjournals.org/jeeer 
ISSN–2141–2367 ©2011 Academic Journals  

 
 
 
 

Full Length Research Paper 
 

Dependence of second order nonlinear susceptibility and 
efficiency on shape of CdS quantum dot 

 

M. Paul*, P. Bhattacharya, B. Das and S. Rani 

 
Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, 

India. 
 

Accepted 6 September, 2011 
 

This paper deals with the dependence of second order nonlinear susceptibility and second harmonic 
generation (SHG) efficiency on the shape of CdS quantum dot. A relation has been found between the 
electronic structure and second order nonlinear susceptibility. The effective mass approximation has 
been used to find the energy levels. We have considered both intra band and inter band near resonant 
transitions for SHG and theoretically investigated the SHG efficiency for different shapes of CdS 
quantum dot inspired by experiments conducted previously by Aktsipitrov (1995). 
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INTRODUCTION  
 
Quantum dots are a unique class of semiconductors 
composed of periodic groups II-VI, III-V, IV-VI materials. 
Quantum dots can be of various shapes – cubical, 
spherical, ellipsoidal, pyramidal, dome, etc. The size and 
shape of these nanocrystals and the number of electrons 
they contain can be precisely controlled; a quantum dot 
can have anything from a single electron to a collection of 
several thousands. The unique linear and non linear 
optical properties of quantum dots have been attracting 
researchers’ attention for many years. Second harmonic 
generation (SHG) is a nonlinear optical process in which 
photons interacting with nonlinear material are effectively 
combined to form new photons with twice the energy, and 
therefore twice the frequency and half the wavelength of 
the initial photons. SHG is sensitive to the electronic 
structure of the materials since it relies on optically 
induced transitions between electronic states or bands of 
the investigated medium (Ajoy and Lokanathan, 2004). 
The SHG efficiency depends on the second order 
nonlinear susceptibility. Quantum dots appear as 
promising candidates to achieve large non linear 
susceptibilities.The dipole matrix elements associated 
with quantum dot intraband transitions (also called 
intersublevel transitions) can be large (Brunhes et al., 
1999) thus giving a high susceptibility. 
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THEORY 
 
We are basically concerned about the efficiency of the 
nanocrystal. Efficiency depends directly on square of 

second order nonlinear susceptibility, depends 
on the electronic structure of the bulk (Ajoy and 
Lokanathan, 2004). For a quantum dot, assuming that 
there is no E-K dependence and the state occupancy 
factor as (El’)=f(El’’)=0 and f(El)=1, the expression can be 
simplified to: 
 

 
 

Where  is the dipole matrix 
element between states l and l’. It is given as [2] 
 

 
 
The integral is over all space but it can be restricted to the 
region where the initial and final wave functions are non-
negligible.   pi   is  the  dipole  moment  operator  given  by 

χijm�2� ∝  	 MiMjMm �� 1El′ − El −Ћω + iЋγl→l′�El" − El − 2Ћω+ iЋγl"→l � l,l′l"

Mi =< Ψl⃓pi⃓Ψl′ > 

Mi = � Ψ∗piΨ dV 



 
 
 
 

 
 
where the summations are over the position of the 
electrons in the system. Mj and Mm account for the 
transitions for the other electronic levels involved. The 
electronic structure of the material enters through the 
eigen values El which depend on the electron indexed 
state. γl→l′  is the relaxation parameter associated with the 
transitions between the pertinently indexed states. In the 
absence of experimental data, the relaxation parameter 
for different intraband and interband transitions is taken 
constant and equal to 1meV. In the calculation, only the 
transitions from the ground state are considered since 
only the ground level is intentionally populated and hence 
the summation is not considered. 

In order to investigate the second-order nonlinear 
susceptibility associated with the intraband and interband 
transitions, we have used a single-band effective-mass 
calculation to evaluate the energy of the confined levels 
as a function of the quantum dot size. Though the 
effective-mass approach exhibits some significant 
deviation from more sophisticated calculations, previous 
studies have shown that this single-band model provides 
a coherent interpretation of the experimentally observed 
intraband transitions. The inferences for interband 
transition have been drawn on similar lines.The value of 
effective mass of CdS is taken from the literature. We 
underline that the purpose of this paper is to provide a 
guideline to predict the size dependence of the second-
order nonlinear susceptibilities in the cubical, spherical 
and elliptical quantum dots. An accurate description of 
the quantum-dot states and in particular of their energy 
would require a multiband k.p calculation or a 
pseudopotential calculation, which is beyond the scope of 
this paper. 

 
 
SPHERICAL QUANTUM DOT 

 
A spherical quantum dot can be approximately described 
by an electron (of a certain effective mass) inside an 
infinitely deep spherically symmetric potential well of 
radius ‘a’ (Ajoy and Lokanathan,2004). The 3 
dimensional time independent Schrödinger equation in 
spherical coordinates is solved under the following 
boundary condition V (r ) = 0 , 0 ≤ r ≤ a 
= ∞ , r > a  
 

to get the energy levels        and the 
normalized wave functions  
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Where  
 
represents the normalization constant. 
 
The near resonant transitions for an input excitation of 
1.05 eV are found out for a 2.3 nm, 3.5 nm and 4 nm 
radius quantum dots. The states involved for 2.3 nm QD 
are 1s, 2s, 2px, for 3.5 nm QD 1s, 2px and 3px and for 4 
nm QD are 1s, 3s and 4s. The interband transitions have 
been found accordingly taking ideas from the work done 
in (Jun et al., 2005). The corresponding transition dipole 
moments are calculated by assuming the QD to contain a 
single electron at a unit distance along each axis. The 
simulations have been done guided by Akhlesh (2004) 
(Figures 1 to 4). 

 
 
CUBICAL QUANTUM DOT 
 
Similarly, a cubical quantum dot can be approximately 
described by an electron (of a certain effective mass) 
inside an infinitely deep potential well inside a cube of 
side L. The boundary condition is given as (Ajoy and 
Lokanathan, 2004): 

 
V(x, y, z) = 0 for 0<x<L, 0<y<L, 0<z<L 
= ∞ everywhere else 

 
The 3 dimensional time independent Schrödinger 
equation in Cartesian coordinates is solved for the above 
boundary condition to get the energy levels as: 

 

 
 
and the normalized wave functions 

 

 
 
For a cubical quantum dot with infinite barriers, optical 
inter-sublevel transitions are only allowed between states 
with odd difference quantum numbers along the same 
axis (Akhlesh, 2004). The near resonant transitions for an 
input excitation of 1.05 eV are found out to be for 5.4, 5.5, 
5.6, 5.7, 5.8 and 6 nm size quantum dots. The states 
involved for 5.4, 5.5, 5.6, 5.7 and 5.8 nm QD are 111, 
114, and 144 and for 6 nm QD are 111, 124, 611 for 5.7 
nm the transitions for the given input excitation are found 
to be closest to resonance. The corresponding Interband 
transitions have been evaluated. The corresponding 
transition dipole moments are calculated by assuming the 
QD to contain a single electron at a unit distance along 
each axis (Figures 5 to 8). 

pi = e 	 xnn 	 ynn 	 znn  
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Figure 1. Susceptibility for a spherical CdS QD for intraband transition. 

 
 
 

 
 
Figure 2. SHG efficiency for a spherical CdS QD for intraband transition. 

 
 
 
ELLIPTICAL QUANTUM DOT 

 
The time dependent Schrodinger Equation for an elliptical 
quantum dot is given by van den Broek and Peeters 
(2001): 

 
-ħ

2
/2m.∇2

ψ(x,y) + V (x,y) ψ(x,y) = E ψ(x,y) 

The energy spectrum has been optimized for simplified 
calculations as follows: 
 
En,l = ħ

2
/2m kn,l

2
(a/b)  

 
The zeroeth value of the Bessel function kn, l are pre- 
determined. The  Energy  Eigen  values  of  the  elliptical
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Figure 3. Susceptibility for a spherical CdS QD for interband transition 

 
 
 

 
 
Figure 4. SHG efficiency for a spherical CdS QD for interband transition. 
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Figure 5. Susceptibility for a cubical CdS QD for Intraband transition. 

 
 
 

 
 
Figure 6. SHG efficiency for a cubical CdS QD for intraband transition. 
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Figure 7. Susceptibility for a cubical CdS QD for interband transition. 

 
 
 

 
 
Figure 8. SHG efficiency for a cubical CdS QD for interband transition. 
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Figure 9. Energy variation of Elliptical quantum dot with a/b. 

 
 
 

 
 
Figure 10. Energy variation of Elliptical quantum dot in 2s orbital. 

 
 
 

quantum dots as a function of the a/b that is, the semi 
major to semi minor axis ratio is calculated and a graph 
plotted (Figures 9 and 10) (Table 1). 

ANALYSIS 
 
On analysis of the approximate values of  SHG  efficiency
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Table 1. Energy eigen values (in eV) of elliptical quantum dot w.r.t a/b. 
 

           a/b ratio 

Orbitals 
2 4 6 8 10 

1s 1.6951e
-018 

8.4755e
-020 

5.6503e
-020 

4.2378e
-020 

3.3902e
-020 

2s 8.931e
-019 

4.4657e
-019 

2.9771e
-019 

2.2328e
-019 

1.7863e
-019 

2p 1.4426e
-018 

7.2132e
-019 

4.8088e
-019 

3.6066e
-019 

2.8853e
-019 

3p 3.0337e
-018 

1.5168e
-018 

1.0112e
-018 

7.5842e
-019 

6.0673e
-019 

3d 3.9575e
-018 

1.9788e
-018 

1.3192e
-018 

9.8938e
-019 

7.9151e
-019 

4s 4.0754e
-018 

2.0377e
-018 

1.3585e
-018 

1.0188e
-018 

8.1507e
-019 

4p 5.2033e
-018 

2.6016e
-018 

1.7344e
-018 

1.3008e
-018 

1.0407e
-018 

4d 6.416e
-018 

3.2084e
-018 

2.1389e
-018 

1.6042e
-018 

1.2834e
-018 

 
 
 
obtained for spherical and cubical CdS quantum dot for 
the given input excitation, it is found that the cubical 
quantum dot has a higher efficiency than the spherical 
one. This may be accounted due to the greater electron 
confinement in a Cubical quantum dot. The Interband 
transition is found to exhibit a higher efficiency as 
compared to intraband. No conclusion can be made 
definitely for elliptical quantum dots under the given 
assumptions. But it is seen from the graphs obtained that 
the energy (in ev) increase with the increase in the (a/b) 
ratio. 
 
 
DISCUSSION 
 
The enhancement of the quadratic response ( efficiency) 
upon decrease in the particle size amounts to 6 orders for 
metal particles (taking Silver) and 5 orders for semi 
conductor (taking CdSe) (Aktsipitrov et al., 1995).This 
experiment has laid the foundation for this theoretical 
work. However we have proposed to incorporate the 
effect of crystal sizes and shapes. For a cubical quantum 
dot with infinite barriers, inter-sublevel transitions are only 
allowed between states with odd difference quantum 
numbers along the same axes. So the near resonant 
transitions are only obtained for a small range of sizes. 
This is unlike the case of spherical quantum dot where 
near resonant transitions can be obtained for a wider 
range.  

 The volume confinement for a cubical quantum dot is 
more than that for a spherical quantum dot. Thus for the 
same size the transition dipole moment for a cubical 
nanocrystal is greater than that for a spherical quantum 
dot. This gives a higher susceptibility and efficiency from 
a cubical quantum dot. The elliptical dots show an 
increase in the energy with an increase in the (a/b) ratio. 
However, in the absence of concrete experimental data, 
no comparison could be made between the elliptical with 
the cubical or spherical. The interband transitions have 
been found to be more efficient than the corresponding 
intraband transition. This may  be  accounted  due  to  the 

greater amount of energy released during emission when 
the particle makes an interband transition. 

We have only compared the susceptibility and SHG 
efficiency values for quantum dots of different shapes. No 
exact values have been found. More certain parameter 
values will be required for finding the exact values of 
susceptibility and efficiency. Also during interband 
transitions losses and scattering phenomenon have been 
neglected. Only ideal conditions have been assumed 
where the quantum dot emits out the same energy as it 
has absorbed during a transition. 
 
 
NOMENCLATURE 
 
χ: Second order nonlinear susceptibilty 
η: Efficiency of SHG 
l: Index for ground state 
l’: Index for first excited state  
l’’: Index for second excited state 
Mi: Transition dipole moment between states l and l’ 
Mj: Transition dipole moment between states l’ and l’’  
Mm: Transition dipole moment between states l’’ and l 
f(El): State occupancy factor (suffix denotes the state) 
γ l-l’: Relaxation parameter(suffix denotes the transition 
states) 
El: Energy value of ground state 
Ћω: Input excitation energy (eV) 
jl: Spherical Bessel function 
gl,n: Zeros of spherical Bessel function 
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