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The Cobb-Douglas model is a common occurrence in econometrics and other areas of research. Earlier 
results show that the consequence is more serious when a multiplicative error plagued data set is fitted 
with an additive error based model than vice-versa. In this study, involving large samples, we 
investigate the impact of multicollinearity in nonlinear econometric models with mis-specified error 
terms. .As it was in small samples, we observe that in large samples the above result and trend also 
hold in the presence of multicollinearity. It is also observed that the effect of multicollinearity is not 
purged by large sample size.  
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INTRODUCTION 
 
As observed by econometricians and scientists in other 
disciplines the p- input variable function: 
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p
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X θθ

=
= ∏                                                          (1.1) 

 
plays a significant role in modeling certain phenomena. In 
economics, for instance, it is widely applied in research 
works on production, demand (including transport 
demand) and cost functions. In biometry, the function 
(1.1) may be used in carrying out leaf rectangularity index 
analysis as in Essi (2005), (2007).  In economics, the 
powers of the X’s are called elasticity’s and their sum is 

interpreted as a measure of returns to scale. Each iθ (i 
=1, 2, . . . . , p) under some conditions gives the factor 

share of the associated input variable X i . 
Econometric model demands the incorporation of an 

error term as well as the specification of its distribution. 
The specification of the error term is a major problem in 
applied econometrics. The functional form f in Equation 
(1.1) cannot be decided in isolation from the specification 
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of the error term. Since economic theory cannot give 
precisely always what the functional should be, as cited 
in Dhyrmes et al.(1972) and Zarembka (1966) this and 
the related problem of error specification may be resolved 
empirically. 
 
 
THEORETICAL FRAMEWORK AND LITERATURE 
REVIEW 
 
Assumption 
 
Let us assume a sequence of real valued responses yt 
with the form 
 

( )t t ty f u= θ + , t = 1, 2,…….T         (2.1) 
 

Where, ( )t tf f X ,= θ  are known continuous functions 

on a compact subset Θ of the Euclidean space IRp and 

the tu  are independently and identically distributed 
errors with zero mean and finite variance 

2 0σ > . The 

values of  θ  and 
2σ are unknown but fixed. tX  is an input 

vector for the period t and is fixed. 



 
 
 
 
Definition 2.1 (least square estimate) 
 

Any vector 
^

θ  in Θ  which minimizes 
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θ = − θ�
                                       (2.2) 

 

is called a least square estimate of   θ  based on the first 

T values of  ty . 
 
 
Theorem 2.1 (minimum mean square error criterion 
(Essi, 2002) 
 
(a)  Let Ho: yt = ft (xt, θ) + uot, t = 1, 2, …T          (2.3) 
 
be the model that is to be used to estimate θ,  where ft 
(Xt, θ) is a known continuous function on a compact 
subset � of a p-dimensional Euclidean space IRp and the 
uot  are identically distributed errors with zero mean and 
finite various σ2 > 0. 
 
(b) Let H1: y= G (Zt,� )                                               (2.4) 
  
be an alternative structure that may be used to explain y 
as well, where G(Zt, � ) embodies both the deterministic 
and stochastic parts of yt and the stochastic disturbance 
term may be additive or multiplicative.  
 
(c) The function ft(X1, θ) and the deterministic part of the 
model H1 may be linear or nonlinear. 
 

(d) Let the estimated adjusted  
2

R  for Ho and H1 be 

respectively  
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implies that 
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R                                                   (2.6)  

 

Then, MSE (
2

0
∧
R ) < MSE ( ).

2
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∧
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on the overage, where MSE (
2

0
∧
R ) is the  mean square 

error of 
2

0
∧
R .  MSE )(

2

1

∧

R  is similarly defined.  
 
 
Proof 
 
The proof can be seen in Essi (2002) and Essi et al. 
(2007).  

We   shall  use   this  criterion   later  in  comparing  two 
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competing models. The minimum variance criterion of 
Heben (1983: 90-98) is replaced by minimum mean 
square criterion of Essi in Essi (2002). The Essi criterion, 
which is in terms of the mean squared error (MSE) of the 
adjusted coefficient of determination is more preferred, 
for some obvious reasons, to that of Theil, as a basis for 
comparing estimates of the true and mis-specified 
models, especially where we use simulated models with 
replications. In using Theil minimum variance criterion, 
the response variables in both Ho and H1 must be in the 
same units and the models should be linear. The use of 

MSE ( )
2∧

R   overcomes these drawbacks. We also benefit 

as the ratio of MSE ( )
2∧

R from two competing models, can 
be used to assess the overall relative efficiency of a set 
of one model estimates to that another. 

The consequences of an incorrect form for the 
disturbance term, according to Greene (2003) are bias 
and inconsistency in the least square estimate of the 
parameters. Heben (1983: 25) observes that there is 
trouble with the multiplicative error model (MEM) in that 
one may “encounter severe multicollinearity between K 
and L, especially with cross-section (rather than time – 
series) data and especially if our observations are for 
firms in a fairly homogenous industry”.  This, Heben says, 
is “ because for such an industry, the capital-labour mix is 
fairly uniform across firms, since all use more or less the 
same technique, hence if the K/L ratio is, say, 3, then for 
all observations we would have approximately K = 3L, 
and hence very strong collinearity. “ 

Fabrycy in (Essi, 2000) observes that “using linear least 
squares regressions induce us to adopt functions which 
are linear in parameters. Often this imposes unrealistic-
cally rigid constraints which may create multicollinearity. 
Using more realistic nonlinear forms and nonlinear least 
squares regressions is likely to overcome this problem.” 
The papers (Essi and Iyaniwura, 2007) and (Essi et al., 
2007; 2(1): 41- 48) consider the consequences of mis-
specifying the error term for the Cobb-Douglas production 
model. The articles (Essi and Iyaniwura, 2007) and (Essi 
et al., 2007; 2(1): 41- 48) observe that the  consequence 
is more serious when a multiplicative error plagued data 
set is fitted with an additive error based model than vice-
versa .This trend, it is observed, persists in the presence 
of multicollinearity.  
 
 
METHODOLOGY AND DATA 
 
Two competing models are considered and they are  
 

2 2
1 0AEM : y K L Uθ θ= θ +

                          (3.1) 
 
and  
 

32 1U
1MEM : y K L eθθ= θ

            (3.2) 



118        J. Econ. Int. Financ. 
 
 
 

Table 1. Values of MSE ( )
2∧

R for all the models (  
2
0 0.16,σ =

 T = 20, N = 20). 
 
Model Cor(K, L) = 0.03 Cor(K, L) = 0.24 Cor(K, L) = 0.45 
AED/AEM 3.6E-10 4.36E-10 2.81E-10 

AED/MEM ( 1H ) 43.61E-10 69.64E-10 67.93E-10 

MED/AEM ( 2H ) 0.115188 0.123676 0.109820 

MED/MEM 0.046419 0.050798 0.035785 

Ratio of  MSE( )
2∧

R  in  2H  and  1H  
2.64E07 1.78E07 1.62E07 

 
 
 

Table 2. Values of MSE ( )
2∧

R for all the models (  
2
0 0.16,σ =  T = 40,  N = 20). 

 
Model Cor(K, L) = 0.03 Cor(K, L) = 0.24 Cor(K, L) = 0.45 
AED/AEM 3.40E-10 4.25E-10 2.41E-10 

AED/MEM ( 1H ) 47.53E-10 177.28E-10 64.24E-10 

MED/AEM ( 2H ) 0.1290918 0.146557167 0.1033563 

MED/MEM 0.0546240 0.031281871 0.03304124 

Ratio of  MSE( )
2∧

R  in  2H  and  1H  2.72E07 0.83E07 1.61E07 
 
 
 
when one is held to be true, the other becomes its mis-specification 
and vice-versa. The model (3.2) is intrinsically linear and OLS 
estimation of the Log-transformed version provides estimate for 

( )'
1 2 3, ,θ = θ θ θ

.  The modified Gauss-Newton algorithm is used in 
estimating the intrinsically non-linear model (3.1). The choice of 

model parameters 
( )1 2 3, ,θ θ θ

 is such that 2 3 2 31, 1θ + θ < θ + θ =  

and 2 3 1θ + θ >
 but 2 3 2θ + θ <

 while the value of 1θ
 is 

arbitrary and kept at 10.0θ = . We use as our set of parameters    

( )1 2 3, ,θ θ θ
 = (10.0, 0.45 and 0.50).                                                                                                                           

The input matrixes is made of two variables K (capital) and L 
(Labour) and are randomly generated and normally distributed 
independent variables such that they are typical of data set on 
capital and labour as that of Theil (1957).We adopt the data 
generating process outlined in Essi and Iyaniwura (2007) and (Essi 
et al., 2007;  2(1),41-48). 

The noisy Y’s are obtained according to the relations (3.1) and 
(3.2). The Monte Carlo study uses sample size of 20, 40 and 80 
with each experiment replicated 20 times under three levels of 
collinearity between K and L. The levels of collinearity are furnished 
by simple Pearson correlation coefficient between K and L. We 
denote this coefficient by Cor (K, L) and the values for this work are 
0.03 , 0.24 and 0.45. 

Two correct specifications are used in the work. They are 
AED/AEM and MED/MEM. The specification AED/AEM is the one 
where an additive error-plagued data (AED) is fitted with an additive 
error-based model (AEM). The model MED/MEM is one where a 
multiplicative error-plagued data (MED) is fitted with a multiplicative 
error-based model (MEM). A situation in which the model building 
process is based on a different structure from that used to generate 
the date gives rise to two in-appropriate specifications in the study.  
They are designated as AED/MEM and MED/AEM. AED/MEM is 
the case  in  which  additive  error-based  data  (AED)  is  fitted  with 

multiplicative error model (MEM). MED/AEM is the case in which 
multiplicative error-based data (MED) is fitted with an additive error-
based model (AEM). We shall refer to AED/MEM and MED/AEM 

respectively as first and second mis-specifications or simply as 1H  

and 2H . 
 
 
EMPIRICAL RESULTS 
 
Altogether we estimated 720 equations.  Some of the 
numerical results obtained are summarized and 
presented in Tables 1, 2 and 3. 
The competing models to be considered first are: 
 

32
1 0AED / AEM : Y K L Uθθ= θ +                              (4.1) 

 
and 
 

32 1U
1AED / MEM : Y K L eθθ= θ                                (4.2) 

 

Where, 0U  and 1U  respectively follow ( )2
0N 0,σ

 and 

( )2
1N 0,σ

. Monte Carlo results showing estimates of 

mean square error of 
2∧

R , MSE( )
2∧

R   are presented in 

Table 1. In this table 
2
0 0.16,σ =  � = (10, 0.45, 0.50) with 

sample size T = 20 and  replication  N = 20.  
2
0 0.16,σ =   On 
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Table 3. Values of MSE ( )
2∧

R for all the models (  
2
0 0.16,σ =  T = 80,  N = 20). 

 
Model Cor(K, L) = 0.03 Cor(K, L) = 0.24 Cor(K, L) = 0.45 
AED/AEM 23.29E-10 4.09E-10 2.60E-10 

AED/MEM ( 1H ) 49.30E-10 237.324E-10 60.25E-10 

MED/AEM ( 2H ) 0.126702 0.144621 0.117384 

MED/MEM 0.044565 0.029809 0.032017 

Ratio of  MSE( )
2∧

R  in  2H  and  1H  2.57E07 0.61E07 1.95E07 

 
 
 

Table 4. Ratio of MSE ( )
2∧

R   in  2H  and  1H  for various sample sizes and levels of 
multicollinearity.  
 
Sample size (n ) Cor(K, L) = 0.03 Cor(K, L) = 0.24 Cor(K, L) = 0.45 

20 2.64E07 1.78E07 1.62E07 
40 2.72 E07 0.83E07 1.61E07 
80 2.57E07 0.61E07 1.95E07 

 
 
 
reversing the roles of the models (4.1) and (4.2) we 
obtain respectively. 
 

3 02 U
1MED / MEM : Y K L eθθ= θ         (4.3) 

 
and 
 

32
1 1MED / AEM : Y K L Uθθ= θ +         (4.4) 

 
as competing models.  We still use 

2
0 0.16,σ =  � = (10, 0.45, 

0.50), T = 20, N =20 to obtain required estimates.   
One wonders why many decimal places are allowed in 

the computations.  The outstanding reason is that while 
the MSE (values for two different models are small, the 
size of their ratios could be very high. For instance, when 
the level of collinearity between the inputs K and L is 

0.03, MSE ( )
2∧

R  values for MED/AEM and AED/MEM are 
respectively 0.115188 and 43.61E-10. (Recall that we 
refer to AED/MEM and MED/AEM respectively as first 

and second mis-specifications or simply as 1H  and 2H ). 
The ratio of these values is 2.64E07. This is high. 
(Table1). 

The results of Monte Carlo experiments for samples of 
sizes 40 and 80 are seen in Tables 2 and 3. 
 
 
DISCUSSION 
 
We want to focus on the mis-specified models and the 
mean   square  error  (MSE)  of  the  estimated  gives  the  

magnitude of the impact of mis-specification in the 
presence of multicollinearity. The correlation coefficient 
Cor(K, L), between the inputs K and L gives the level of 
multicollinearity between K and L. Consider Table 1 
(Sample size T= 20) and multicollinearity level Cor(K, L) 
= 0.03. The value of MSE in model 2H  is higher than MSE 

in 1H . The trend is the same for Cor(K,L)=0.24 and 
Cor(K,L)=0.45. When we go to higher sample sizes in 

Tables 2 and 3, 2H  still has higher MSE than 1H . In Table 

4, the ratio of MSE in 2H to that in 1H  is far greater than 
unity irrespective of sample size and level of multi-
collinearity. The models are brought together in Table 5. 

In each of the entries, 2H  has higher MSE than 1H .  
 
 
Conclusion 
 
We, from the beginning do not focus on the detection of 
multicoliinearity as attempted by Fabrycy (1975) but 
rather investigate the consequences and the seriousness 
of the consequences of mis-specifying the error term in 
the presence of multicollinearity. Earlier results, stated in 
Essi (2002), Essi and Iyaniwura (2007), Essi et al. (2007; 
2(1), 41- 48) and Essi (2000) that the consequence is 
more serious when a multiplicative error plagued data set 
is fitted with an additive error based model than vice-
versa. This result and trend also hold in the presence of 
multicollinearity in this work. That is, the adverse effect of 

misspecification in  2H  is worse than the adverse effect of 

mis-specification 1H . The higher values of mean square 

error in 2H  attest to  this,  that  however,  as  the  level  of  
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Table 5. Values of MSE ( )
2∧

R   in  2H  and  1H  for various sample sizes and levels  of   multicollinearity.  
 

Sample size (T ) Cor(K, L) = 0.03 Cor(K, L) = 0.24 Cor(K, L) = 0.45 

20 
43.61E-10 ( 1H ) 

0.115188 ( 2H ) 

0.69.64E-10 ( 1H ) 

0.123676( 2H ) 

67.93E-10 ( 1H ) 

0.109820( 2H ) 

    

40 
47.53E-10 ( 1H ) 

0.1290918( 2H ) 

177.28E-10 ( 1H ) 

0.14655716( 2H ) 

64.24E-10 ( 1H ) 

0.1033563( 2H ) 
    

80 
49.30E-10 ( 1H ) 

0.126702( 2H ) 

37.324E-10 ( 1H ) 

0.144621( 2H ) 

60.25E-10 ( 1H ) 

0.117384( 2H ) 
 
 
 
multicollinearity between the inputs rises, the relative 

efficiency of the estimates of 2H  to that of 1H  follows 
ambiguous trend and at best said to be oscillating for 
large samples (Table 4). We therefore submit that the 

robustness of the mis-specification  2H  relative to that of 
1H  depends not only on returns to scale, as was earlier 

advanced in Essi and Iyaniwura (2007) but on 
multicollinearity of the inputs also. We also observe that 
effect of multicollinearity is not purged by large sample 
size in mis-pecified models. These results should be 
taken into consideration when we encounter studies 
involving production functions, and leaf rectangularity 
index analysis, among others. 
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