
Journal of Economics and International Finance Vol. 3(2), pp. 72-87, February 2011 
Available online at http://www.academicjournals.org/JEIF 
ISSN 2006-9812 ©2011Academic Journals 
 
 
 
 

Review 
 

An evaluation of exchange rate models by carry trade 
 

Ming Li 
 

San Francisco State University, San Francisco, California. E-mail: mingli@sfsu.edu. 
 

Accepted 19 November, 2010 
 

We evaluate the effectiveness of economic fundamentals in enhancing profit of carry trades. We 
simulate carry trades in Japanese yen and Swiss franc against six target currencies based on forecasts 
of exchange rate models of economic fundamentals. The performance results are compared against 
those of the benchmark random walk and AR (1) models. We find that carry trades perform better in 
risk-adjusted returns and produce less downside risk in the exchange rate models of economic 
fundamentals. Particularly, the best improvement in profit to carry trades comes when the economic 
fundamentals are used in a factor-augmented regression framework where the factor is time-varying 
and derived from the fundamentals. The result is robust for different time periods and after controlling 
for transaction costs.  
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INTRODUCTION 
 
Are exchange rate models of economic fundamentals 
useful? The answer to this question had been 
controversial in the field of international finance. Meese 
and Rogoff (1983a, 1983b) first show that the forecasting 
ability of exchange rate models is worse than that of a 
simple random walk process. Since then, there have 
been a large number of papers subsequently docu-
menting success for several economic fundamentals 
based models, but these results are not robust. Some of 
them are good at longer horizon, while others at shorter 
periods. For example, Evans and Lyons (2002: 170-171) 
states, “Macroeconomic models of exchange rates 
perform poorly at frequencies higher than one year. 
Indeed, the explanatory power of these models is 
essentially zero.”  In the words of Frankel and Rose 
(1995: 1704), the negative results has had a “pessimistic 
effect on the field of empirical exchange rate modeling in 
particular and international finance in general.” And this 
pessimistic effect has been around us for 20 years. 

Motivated by Engel and West (2005) who claim that an 
exchange rate model should not be evaluated simply by 
whether it can beat the random walk in the out-of-sample 
forecast because the exchange rates themselves are 
close to the random walk when the discount factor is 
close to one, this study evaluates exchange rate models 
of economic fundamentals from a practitioner’s point of 
view. This practitioner is specializing in one particular 
currency investment: The carry trade. Particularly, we 
focus on economic fundamentals used in the Taylor  rule. 

The Taylor rule specifies how the interest rate responds 
to economic fundamentals. According to Engel and West 
(2005), the Taylor-rule models appear to be the potential 
candidate to “beat the random walk model”. Many studies 
have found improvement in the forecasting ability of the 
exchange rate models when they include the economic 
fundamentals related to the Taylor rule (Chinn and 
Pascual, 2005; Choi et al., 2006; Engel and West, 2005; 
2006; Engel et al., 2007; Molodtsova and Papell, 2008; 
Murray and Papell, 2002; Taylor et al., 2001). In this 
paper, we examine whether these economic funda-
mentals can increase the profitability of carry trades, 
hence, to some extent, clarifying whether exchange rate 
models of fundamentals can beat the random walk in this 
aspect. 

Since the mid-1990s, the carry trade has become one 
of the major currency trading strategies. A plain-vanilla 
carry trade involves borrowing low-interest-rate currency 
and investing in high-interest-rate currency, where the 
low-interest-rate currency is called the funding currency 
and the high-interest-rate currency is called the target 
currency. The funding currency of the carry trade is 
mostly the Japanese yen or Swiss franc. Profit from a 
carry trade is the sum of the interest rate differential 
between the target currency and the funding currency, 
and change in the exchange rate of the target currency 
against the funding currency. According to the uncovered 
interest rate parity (UIRP), the carry trade is not profitable 
on average because the interest rate differential would be  



. 
 
 
 
offset by the relative depreciation of the target currency 
against the funding currency. However, almost all 
empirical studies point to the opposite conclusion (for 
instance, Cheung et al., 2002; Engel, 1996; Mark and 
Sul, 2001; Lewis, 1995; Meese and Rogoff, 1983a, 
1983b). This implies that the carry trader can pocket both 
the interest rate differential and the appreciation of the 
target currency, with zero capital. 

We simulate carry trades in two funding currencies, 
Japanese yen and Swiss franc, separately against the 
following major target currencies: Australian dollar, New 
Zealand dollar, British pound, Canadian dollar, euro, and 
U.S. dollar. Since each funding currency corresponds to 
six target currencies, we have a total of 12 carry trades 
with each involving one target currency and one funding 
currency. For each carry trade, the process follows a go 
or no-go binary decision at a monthly frequency. When 
the forecast return is positive, the carry trade is executed; 
otherwise, the trade is skipped. The out-of-sample return 
from each carry trade is obtained based on forecasts of 
fundamental exchange models. We experimented with 
five different specifications of the exchange rate models 
of fundamentals. Among them, two have a derived factor.  
Two other non-fundamental models, Random Walk and 
AR (1), serve as the benchmark. 

To evaluate exchange rate models, both risk-adjusted 
returns (Sharpe ratios) and measures of downside risk 
are presented. Since a carry trade is highly leveraged 
and is subject to sudden crashes in the target currency, 
return skewness and the maximum drawdown is an 
important indicator of performance as well. 

We find that exchange rate models of economic 
fundamentals perform better not only in the Sharpe ratio, 
but also in skewness and the maximum drawdown 
unanimously. This result is more prominent under a 
factor-augmented regression framework (FAR) where a 
time-varying factor is derived from the fundamentals and 
is used as an explanatory variable. Such use of 
fundamentals in a FAR is inspired by Engel et al. (2007) 
who indicate that an unobservable factor in the exchange 
rates themselves may contain useful information for 
prediction. Applying the Kalman filtering technique, we 
use a dynamic factor model to extract information in the 
fundamentals. This method is appealing in that the factor 
is derived from the interest rate parity and has economic 
meaning, it approximates the risk premium in exchange 
rates. The factor is then combined with the economic 
fundamental variables to forecast exchange rates in the 
FAR model. The OLS regression is the estimation 
method in the FAR framework.  
 
 
FOREIGN EXCHANGE RATE MODEL AND 
ESTIMATION METHOD 
 
Throughout this paper, we use the following predictive 
regression model of exchange rate 
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ˆ

t F t t ts F z     
where 

 2
1 ~ 0,t NID   (1) 

  
where st is the log exchange rate expressed as units of 
funding (base) currency (yen or Swiss franc) per unit of 
target currency and ∆st+1 =st+1- st. An increase in st 
indicates appreciation of the target currency and 
depreciation of the funding currency, and vice versa. 
 
Depending on the form of zt and the choice of βF , we 
have different specifications of the exchange rate models 
studied in this paper. When we set βF=0, zt =0, the 
regression is the random walk (RW) model. This is the 
standard benchmark in the exchange rate prediction 
literature and practice. By setting βF=0, and zt= α+βs∆st, 
we obtains an AR (1) model. The term zt will include the 
economic fundamentals.    
 

 * *
t t t t tz i i O i i   

                                               (2) 
 
where it is the interest rate of the funding (base) currency 
and it* is the interest rate of the target (foreign) currency. 
 
In this paper, an asterisk denotes variables in the target-

currency country. The term
 *

t tO i i
 is the polynomial of 

higher orders of the interest rate differentials. If 

 *
t tO i i

 is zero, the regression Equation (1) is the 
UIRP. According to the Taylor rule, the interest rate is 
determined by economic growth rate (y), inflation rate (π) 
and one-lag interest rate. Hence, we set the interest rate 
as a linear function of economic variables: 
 

0 1 1t y t t i ti y i        
  

 
for a funding-currency country and 
 

* * * *
1 1t y t t i ti y i      

  
 
for a target-currency country. 
 
Therefore, by the Taylor rule, the interest rate differential 
is  
 

     * * * *
0 1 1 1t t y t t t t i t ti i y y i i              

              
(3) 
 
Since many studies have shown that the exchange rate 
possibly depends on nonlinear terms of fundamentals 
(Chinn 1991, 2008; Taylor et al., 2001; Kilian and Taylor, 
2003; Rossi, 2005), a type of nonlinearity is considered 
as follows: 
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     2 3* * *
2 3t t i t t i t tO i i i i i i     

                   (4)                 
 

The regression equation has a generated regressor t̂F
, 

which is called the factor. The factor is estimated from the 
UIRP, 
 

 *
1 1t t t t ts F i i      

           (5) 
 
The unobservable Ft is the persistent component of risk 
premium of exchange rates. The UIRP simply states that 
the current spot rate is expected to depreciate/appreciate 
by the amount of the interest rate differential ex ante. If 
the UIRP holds, a linear regression of the change in 
exchange rate onto the interest rate differential should 
yield a coefficient of one.  Unfortunately, most empirical 
studies have found the coefficient to be near zero or 
negative. Engel and West (2005) argued that the failure 
of the UIRP has to do with the unobservable component 
Ft and this component contains useful information for 
predicting exchange rates. For this reason, we will apply 
the UIRP to estimating the factor. In addition, most 
studies find that the risk-premium process is persistent 
and time-varying (Engel and West, 2005). By this notion, 
combing the UIRP, we assume that the factor follows the 
dynamic process  
 

*
1 1

1

( )t t t t t

t t t

s i i F

F aF w

 



    

 
                                      (6) 

 
where εt and vt are i.i.d. white noises. The parameter a 
measures the persistence of the factor and is between 0 
and 1. Since the regression Equation (1) contains the 
estimate of such an unobservable factor F, we called the 
type of regression as the factor augmented regression 
(FAR) (Bai and Ng, 2008). 
 
The procedure to estimate the unobservable factor Ft 
involves the Kalman filtering technique and the maximum 
likelihood estimation. The estimation procedure is 
presented in the Appendix. Readers are referred to 
Hamilton (1994) and Green (2003) for standard treatment 
of Equation (6) on estimating the dynamic factor. See Bai 
(2003) and Stock and Watson (2005) for more discussion 
on statistical inference of the dynamic factor model. 

In summary, the following is a complete list of models 
that are evaluated in this paper. They are all derived from 
Equation (1). 
 

Model 1. Random Walk:
 

1=0, F t tz s  
 

 

Model 2. AR(1): 1=0, F t s tz s     
 

                                                                            
 
 
 
Model 3. AR(1) + Taylor rule:  

 *
0=0,     F t y t tz y y       

 

   * *
1 1 1 1t t i t t s ti i s         

  
 
Model 4. Taylor rule: 

     * * *
0 1 1 1=0,     F t y t t t t i t tz y y i i              

 
 
Model 5 Taylor rule + Nonlinear:

 
  * *

0=0,     F t y t t t tz y y          
       2 3* * * *

1 1 1 2 3t i t t i t t i t ti i i i i i         
 

 
Model 6. Factor + Taylor rule: 

     * * *
0 1 1 1t y t t t t i t tz y y i i             

 
 
Model 6. Factor + Taylor rule + Nonlinear:

 
   * *

0 1t y t t t t iz y y           
      2 3* * *

1 1 1 2 3i t t i t t i t ti i i i i i       
 

 
 
Carry trade 
 
In the simulation, a carry trade is a binary trading strategy 
in spot markets that is based on projected return. The 

trading rule is that if 
*
t ti i

>0 and the expected return is 
positive as predicted by the model, there is carry trade 
between a target foreign currency and a funding 
currency. We use c=1 to denote an execution of carry 
trade.  
 

 * *
11         0   and  0

0        otherwise
t t t t t t

t

i i E s i i
c       
 


 
 
Note that under the random walk theory, the change of 

expected exchange rate is zero, that is, 
 1 0t tE s  

, 
so the carry trade decision depends solely on the interest 
rate differential. This type of carry trade is referred as the 
naïve carry trade. The size of the carry trade is the 
amount of borrowed funding currency. The profit to carry 
trade can be scaled by its size. For one unit of borrowed 
funding currency, the return to carry trade is calculated as   
 

*
1     if   1

0                      if   0
t t t t

t

t

i i s c
r

c
    

 


 
 
In periods without a carry trade, the factor model predicts 
relatively large depreciation of  the  target  currency.  This
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Table 1. Basic statistics of target currencies against funding currencies. 
 

  Australia Canada Euro Zone New Zealand United Kingdom U.S. 

Panel A  funding currency: Japanese Yen   
1.∆s -0.003 (0.034) -0.003 (0.031) -0.001 (0.027) -0.003 (0.034) -0.004 (0.029) -0.003 (0.033) 
2.i*-i 0.044  (0.035) 0.036 (0.026) 0.012 (0.026) 0.073 (0.040) 0.035 (0.038) 0.025 (0.030) 
3.∆(y*-y) 0.002(0.018) 0.000 (0.018) 0.000 (0.021)  -0.001 (0.020) 0.000 (0.016) 
4.π*-π   0.002(0.006) -0.001(0.008) 0.003(0.007) 0.001(0.006) 

Panel B funding currency: Swiss Franc    
1.∆s -0.004(0.041) -0.002(0.037) -0.001(0.015) -0.002(0.039) -0.001(0.015) -0.003(0.036) 
2.i*-i 0.054(0.031) 0.044(0.033) 0.022(0.016) 0.076(0.046) 0.045(0.033) 0.034(0.032) 
3.∆(y*-y)  -0.001(0.033) 0.003(0.370) 0.002(0.361)  0.001(0.360) 0.002(0.360) 
4.π*-π   0.002(0.005) 0.000(0.004) 0.003(0.007) 0.002(0.004 

 

The number in parentheses under each variable is the standard deviation of the indicated variable. An asterisk indicates a non-Japan value, 
and the absence of an asterisk indicates a Japan value; ∆s is the percentage change in the yen exchange rate (a higher value indicates 
appreciation against the yen); i is the money market rate or government bond yield; ∆y is the growth rate of the industrial production index; π 
is the rate of inflation. Data are monthly, mostly 1973.1–2010.1. Exceptions include a beginning date of 1975.1 for Canada and 1978.5 for 
New Zealand. Monthly data of CPI for Australia and New Zealand are not available. 

 
 
 

implies that shorting the target currency would generate 
additional profit. We enhance the carry trade by reversing 
the currency trade in the spot market during these 
periods. We term this strategy, the enhanced carry trade 
(ECT). The return to ECT is calculated as 
 

*
1

1

     if   1

              if   0
t t t t

t

t t

i i s c
r

s c




    
 

 

  
 
EMPIRICAL RESULTS 
 
Data 
 
The monthly series of all variables are collected for the 
period of January, 1973 to January, 2010 depending on 
availability. The sample size is 444 (with exception noted 
below), due to the loss of one observation to differencing. 
Monthly exchange rates are sampled from the month-end 
daily exchange rates from the Federal Reserve’s FRED. 
Exchanges rates of the target currency measured in the 
funding currency are computed as cross rates from their 
original dollar values. The six target currencies are 
Australian dollar, Canada dollar, euro, New Zealand 
dollar, the British pound, and the U.S. dollar. The 
International Financial Statistics (IFS) CD-ROM is the 
source for all the fundamental economic variables: 
industrial production as a proxy for economic growth, 
consumer prices for inflations, and interest rates. Since 
CPI and industrial production data for Canada and New 
Zealand are missing for earlier years, data for January, 
1975 to January, 2010 and May, 1978 to January, 2010 
are used, respectively. German exchange rates and 
fundamentals are substituted for those of Euro zone 
before January, 1999. 

The testing of  out-of-sample  performance  starts  from 

January 1999, when the euro became official. At each 
month, we use data only up to the prior month for 
forecasting. Any missing data will be imputed with the 
“cubic spline” method in Matlab. We then estimate the 
unobservable factor. After obtaining the sequence of 
factors, we estimate coefficients of model 6 and model 7 
using the OLS method and forecast exchange rates for 
that month. The forecasting equation is the conditional 
expectation form of Equation (1): 
 

 1
ˆˆ ( )t t F t ts E F z    

. 
 

The out-of-sample forecast is then used to determine the 
value of ct, the decision making of carry trade at time t. 
Performance is computed using realized exchange rates. 
Under each funding currency, the process is performed 
for each of the six nations. The following diagram 
illustrates how data are used at January 1999. The same 
process is repeated as we move on to the next period, 
until January 2010. Therefore, 145 months of trade 
decision take place in total. Since volatility is not 
estimated, we can not construct a mean-variance optimal 
portfolio. Therefore, we present performance of an 
equally-weighted portfolio of the six carry trades in each 
funding currency. 
 

 

 1998.12  1999.01

Data used for estimating factor and FAR 

1973.1  
 

1973.1: January, 1973; 1998.12: December, 1998; 1999.01: 
January, 1999. 
 

Table 1 presents some basic statistics of the whole 
sample constructed. The statistics are very much alike 
under each funding currency. Variables are all volatile 
because of their relatively large sample deviations  
compared   to   their  sample  means.  All  countries  have
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Table 2. Unit root tests. 
 

 Australia Canada Euro Zone New Zealand United Kingdom U.S. 

Panel A base currency: Yen 
1.∆s 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 
2.i*-i 0,0,1 1,1,1 1,1,0 0,0,0 1,1,0 0,0,0 
3.∆s-(i*-i) 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 

 
Panel B base currency:  Swiss Franc 

1.∆s 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 
2.i*-i 0,1,0 1,1,0 1,1,1 0,0,0 1,1,0 0,1,0 
3.∆s-(i*-i) 1,1,1 1,1,1 0,1,1 1,1,1 1,1,1 1,1,1 
 

H0=Unit root; 1=Accept; 0=Reject. The first number in a cell indicates the result of the augmented Dickey-Fuller test. The 
second number indicates the result of the Phillips-Perron (PP) test. The third number indicates the result of the Kim-Perron (PP). 

 
 
 
higher interest rates on average than each funding-
currency country.  

Except that the euro zone has a lower average inflation 
rate then Japan, all countries experienced a higher 
inflation rate than the funding-currency country. On 
average, during the period of January, 1973 to 2010, 
most of the target-currency countries experience higher 
industrial growth than both funding-currency countries. 

Table 2 reports the unit-root tests for three time series: 
Change in exchange rates (∆s), interest rate differentials 
(i*-i), and the risk premium (∆s+(i*-i)). The augmented 
Dickey-Fuller (ADF) test was performed as the 
benchmark test. The Phillips-Perron (PP) test (1988) was 
also conducted to increase the robustness of the ADF 
test results. The null hypothesis is that there is unit root in 
the time series. To determine whether a constant or a 
time trend or both exist in the alternative model, we 
visually examine the time series. Figures 1 to 6 plot the 
three variables for each funding currency. All changes in 
exchange rates seem trendless and center on zero so no 
constant and trend present in the alternative model. For 
the risk premium, a constant term is added for every 
target currency for each funding currency; there is no 
trend except the British pound against yen (or Swiss 
franc). Interest rate differentials do show some kind of 
trend for some periods and nonzero mean. So both a 
constant and a trend are added into the alternative 
models. To accommodate possible structural breaks 
during the sample period, we perform a Kim-Perron (KP) 
(2009) unit root test too. For each test, the result is 
reported as either 1 (acceptance) or 0 (rejection). The 
first number in each cell represents result of the ADF test; 
the second number the PP test; the third number the KP 
test. Both ∆s and ∆s-(i*-i) seem to be non-stationary time 
series because we are unable to reject the null of unit 
roots in them from any of the tests. For the interest rate 
differentials, we get some conflicting results from the 
tests. Although the risk premium process ∆s-(i*-i) seems 
to have a unit root, Kalman filtering still fits to estimate 

the dynamic factor because generally the Bayesian 
method is relatively robust to non-stationary data. 
 
 
Performance of carry trades 
 
Table 3 reports performance statistics of the equally- 
weighted portfolio of six carry trades for yen and franc 
separately. One panel is for one funding currency: The 
Japanese yen and Swiss franc. There are seven models 
in simulations. Therefore for each funding currency, we 
compare the performance of the portfolio among these 
seven models. Panel A reports the performance for yen 
carry trades while Panel B is for franc carry trades. 
Performance statistics include the annualized return, 
Sharpe ratio; return skewness and the maximum 
drawdown of returns for the period January, 1999 to 
January, 2010. Models with fundamentals (Models 3 to 7) 
generally outperform the RW model or AR (1) model. 
More importantly, models (6 or 7) with factors (FAR) 
generate better returns uniformly for yen carry trades and 
mostly for franc carry trades. For instance, the Sharpe 
ratio rises to 0.54 (Model 6) or 0.55 (Model 7) from 0.30 
(RW) or 0.25 (AR (1)) for the portfolio of yen carry trades. 

The maximum drawdown and Skewness are also 
important performance statistic. The maximum drawdown 
measures the largest possible loss during the life of the 
portfolio. Large negative skewness implies the high 
probability of large losses such as market crashes. The 
naïve yen carry trade (model 1) has a terrible skewness 
of -1.30 and maximum drawdown of 38%, while the naïve 
franc carry trade has a comparable skewness of -0.98 
and maximum drawdown of 19%. The reason for such a 
large downside risk is simple: There are several episodes 
of target-currency collapses during the simulation period. 
Every crash in a target currency against the funding 
currency significantly increases the downside risk in the 
carry trade. 

We  find that FAR   models  impressively  reduce   the
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Figure 1. Exchange rate returns (based currency: Yen). 

 
 
 

 
 
Figure 2. Interest rate differentials (base currency :Yen). 
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Australian dolar Can adian dollar 

        Euro  New zealand dollar 

  
British pound

    U.S.  dollar 

 
 
Figure 3. Exchange rate risk premium (Based currency: Yen). 

 
 
 

Australian dollar  Canadian dollar 

 Euro  New Zealand dollar 

British pound U.S. dollar  

 
 
Figure 4. Exchange rate returns (Based currency: Swiss franc).
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Figure 5. Interest rate differentials  (based currency:Swiss Fran). 

 
 
 

Australian dolar Canadiandollar 

        Euro  New zealand dollar  

 British pound 
 U.S. dollar 

 
 
Figure 6. Exchange rate risk premium (Base currency: Swiss Frans). 
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Table 3. Performance statistics of carry trade. 
 

Model 1 2 3 4 5 6 7 

Panel A Funding Currency: Yen 
Mean return 0.03 0.02 0.03 0.03 0.03 0.04 0.04 
Sharpe ratio 0.30 0.25 0.34 0.37 0.32 0.54 0.55 
Skewness -1.30 -0.75 -1.47 -1.45 -1.88 -0.11 -0.11 
Max drawdown 0.38 0.24 0.30 0.31 0.30 0.13 0.13 

 
Panel B Funding Currency: Swiss Franc 
Mean return 0.02 0.00 0.03 0.02 0.03 0.02 0.02 
Sharpe ratio 0.23 0.06 0.47 0.40 0.52 0.33 0.35 
Skewness -0.98 -1.43 -1.12 -1.02 -1.05 -0.65 -0.53 
Max drawdown 0.19 0.15 0.14 0.16 0.12 0.12 0.12 

 

All returns are annualized. The Sharpe ratio is defined as the ratio of mean excess return to the standard deviation. 
 
 
 

Table 4. Performance Statistics of Enhanced Carry Trades. 
 

Model 1 2 3 4 5 6 7 

Panel A Funding Currency: Yen 

Mean Return 0.03 0.01 0.03 0.04 0.03 0.06 0.06 
Sharpe Ratio 0.30 0.19 0.45 0.52 0.45 0.55 0.56 
Skewness -1.30 -0.91 -1.05 -1.18 -1.37 1.47 1.52 
Max Drawdown 0.38 0.19 0.23 0.22 0.22 0.14 0.14 
 
Panel B Funding Currency: Swiss Franc 
Mean Return 0.02 0.00 0.04 0.03 0.04 0.02 0.02 
Sharpe Ratio 0.23 -0.07 0.67 0.54 0.83 0.42 0.48 
Skewness -0.98 0.22 -0.95 -0.85 -0.41 -0.32 0.22 
Max Drawdown 0.19 0.19 0.10 0.15 0.09 0.09 0.08 

 
 
 

downside risk. In the yen carry trades, the FAR models (6 
or 7) improve the skewness to -0.11 and lower the 
maximum drawdown to 0.13. In the franc carry trades, 
similar improvement in the downside risk can be seen: 
Skewness rises to -0.65 and the maximum drawdown 
drops to 0.12 in either model 6 or 7. 

Enhanced carry trades (ECTs) are generally better than 
the non-enhanced carry trades by any measure; hence 
certainly better than the naïve or AR (1) carry trades. The 
results are shown in Table 4. The results tell a similar 
story as in Table 3, but with much better performance for 
the FAR models. For yen carry trades, the FAR models 
generate a Sharpe ratio of 0.55 (Model 6) or 0.56 (Model 
7), and a greatly improved skewness of 1.47 (model 6) or 
1.52 (model 7) for the portfolio. The maximum drawdown 
is reduced to only 14% (model 6 and 7). For franc carry 
trades, the improvement is similar. The nonlinear terms in 
Models 5 or 7 does help the corresponding carry trades 
outperform their counterparts sometimes, but not 
significantly. A couple of reasons may cause this. First, 
the factor had already absorbed all relevant information 
that otherwise is contained in the nonlinear terms. 

Second, the specification of nonlinearity may not hold up  
well simply because of lack of knowledge. We did not try 
other forms of nonlinearity, since we fear the arbitrary 
nature of such attempts.  
 
 
Transaction cost 

 
Transaction cost may change the decision making of 
carry trades that rely on fundamentals, so it will be helpful 
to see what its effect is. A typical transaction cost per 
foreign exchange trade is between 2 to 40 base points 
(Burnside et al., 2006). Using model 6 only, we simulate 
our carry trades for a transaction cost ranging from 2 to 
40 bps per carry trade. For each target currency, we 
show the return to the equally weighted portfolio of six 
carry trades. The result in Table 5 indicates that 
transaction cost does not change the notion that carry 
trades based on FAR (model 6) outperforms those based 
on RW or AR (1) models. This is true for both yen and 
franc carry trades. 
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Table 5. Returns to carry trade portfolio with transaction costs. 
 

Transaction cost (bps per month) 2 5 10 20 30 40 

Panel A funding currency: Yen 
   Random walk    
Mean return 0.03 0.03 0.02 0.01 0.00 -0.01 
Sharpe ratio 0.28 0.25 0.19 0.09 -0.01 -0.12 
Skewness -1.30 -1.30 -1.30 -1.30 -1.30 -1.30 
Max drawdown 0.39 0.39 0.40 0.41 0.42 0.43 
       

    Carry trade portfolio    
Mean return 0.04 0.03 0.03 0.02 0.01 0.01 
Sharpe ratio 0.52 0.47 0.40 0.31 0.19 0.16 
Skewness -0.11 -0.30 -0.29 -0.01 -0.04 0.06 
Max drawdown 0.13 0.13 0.13 0.13 0.12 0.10 
       

    Enhanced carry trade portfolio    
Mean return 0.05 0.05 0.05 0.04 0.03 0.03 
Sharpe ratio 0.53 0.49 0.45 0.41 0.34 0.31 
Skewness 1.50 1.48 1.52 1.75 1.58 1.85 
Max drawdown 0.14 0.14 0.15 0.15 0.14 0.12 

 

Panel B funding currency: Swiss Franc 
    Random walk    
Mean return 0.02 0.02 0.01 0.00 -0.01 -0.03 
Sharpe ratio 0.28 0.23 0.14 -0.02 -0.19 -0.36 
Skewness -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 
Max drawdown 0.19 0.20 0.20 0.21 0.28 0.35 
       

    Carry trade portfolio    
Mean return 0.02 0.02 0.01 0.00 0.00 0.00 
Sharpe ratio 0.35 0.32 0.28 0.11 -0.06 -0.09 
Skewness -0.38 -0.34 -0.19 -0.25 -0.32 -0.47 
Max drawdown 0.12 0.12 0.12 0.11 0.14 0.14 
       

    Enhanced carry trade portfolio    
Mean return 0.02 0.02 0.02 0.01 0.00 0.00 
Sharpe ratio 0.44 0.40 0.35 0.15 0.01 -0.05 
Skewness 0.11 0.01 0.22 0.11 -0.08 0.06 
Max drawdown 0.08 0.09 0.09 0.09 0.11 0.13 

 

All returns are annualized. The Sharpe ratio is defined as the ratio of mean.  

 
 
 
Alternative periods of carry trade 
 
FAR-based carry trades are also tested in two other 
periods, January, 1996 to January, 2010 and January, 
2006 to 2010. We test a non-FAR fundamental model 3 
and a FAR model 6 only. Table 6 reports the result for 
both periods. 

Panel A reports the performance statistics for January, 
1991 to January, 2010 and Panel B reports those for 
January, 2006 to 2010. Again, performance statistics in 
Table 6 tell a similar story to those in Tables 3 and 4: 
Fundamental or FAR model-based carry trade 
outperforms naïve or AR (1) carry trades.  

Why the factor helps 
 
Why does factor help in the carry trades? We may find a 
little clue in the statistics about the factor. Table 7 list 
some of the statistics related to the estimated dynamic 
factor for each funding currency. In Table 7 (a) using yen 
as the base currency, Panel A reports the 
contemporaneous correlations between the factor and 
relevant variables. Panel B reports the correlation 
between time t-1 factor and time t variables. Table 7 (b) 
reports similar number for the franc as the base currency. 
One thing stands out: the factor that is correlated to the 
exchange rate changes in both ways with a high degree 
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Table 6. Returns to carry trades in different periods. 
 

Model 1 3 6 6 (ECT) 

Panel A 1996.1-2010.1 
Funding currency: Yen 
Mean return 0.04 0.03 0.04 0.05 
Sharpe ratio 0.32 0.35 0.49 0.49 
Skewness -1.45 -1.74 -0.50 1.13 
Max drawdown 0.38 0.31 0.20 0.16 

    

Funding currency: Swiss Franc    
Mean return 0.03 0.03 0.02 0.03 
Sharpe ratio 0.38 0.52 0.47 0.54 
Skewness -0.49 -0.66 -0.08 0.32 
Max drawdown 0.25 0.16 0.13 0.10 
 

Panel B 2006.1-2010.1 
Funding currency: Yen 

Mean return -0.01 0.00 0.02 0.06 
Sharpe ratio -0.06 0.04 0.27 0.47 
Skewness -1.43 -1.56 -0.18 1.65 
Max drawdown 0.38 0.31 0.16 0.18 

 

Funding currency: Swiss Franc 
Mean return 0.00 0.00 0.00 0.00 
Sharpe ratio -0.02 0.04 0.06 0.04 
Skewness -1.10 -1.56 -1.18 -0.42 
Max drawdown 0.19 0.31 0.16 0.15 

 

All returns are annualized. The Sharpe ratio is defined as the ratio of mean excess return 
to the standard deviation. 

 
 
 

of statistical significance. This is probably the reason that 
the factor has strong predictive power in carry trades. 
Another fact is that the factor is very persistent, since its 
autocorrelation does not die to zero, even at a time lag of 
10. Bartholomew (1999), Diebold and Nerlove (1989), 
and Rossi (2005) show that a persistent factor has a 
strong predictive power if it is highly correlated with other 
variables.  
 
 

REALITY CHECK 
 

PowerShares DB G10 currency harvest (Ticker: DBV) is 
an exchange traded fund (ETF) that has a naïve carry 
trade strategy of longing currencies with high interest 
rates and shorting the three countries with the lowest 
interest rates. Since its inception in October 2006 until 
January 2010, PowerShares’ average return is -2.10% 
and its Sharpe ratio is -15.6%, with an unpleasant 
skewness of -170%. The performance is no better than to 
that of naïve carry trades in yen or franc (Table 8 under 
the Yen RW or Swiss Franc RW). The FAR -based 
(Model 6) carry trade would have a better average return 
of 5.25% in the enhanced yen carry trade and -0.57% in 
the enhanced franc carry trade. Their corresponding 
Sharpe ratios are 35.24 and -8.57%, respectively. 
Considering the -15.6% Sharpe  ratio  in  DBV  and  -20% 

Sharpe ratio in the S&P500 during the same period, we 
see this as a stunning performance. The skewness of 
155.37% in yen carry trades suggests the FAR model 6 
has helped avoid some major crashes in foreign 
exchange rates. The cumulative return from the 
comparison group is also plotted in Figure 7. Note that 
the S&P500 has a worse return than any of the trading 
strategies for the same period. 
 
 

Conclusion 
 

In this paper, exchange rate models with Taylor-rule 
fundamental are evaluated by the profitability of carry 
trades. The results confirm that carry trades based on 
predictions of pure fundamental models or FAR models 
would indeed perform better than those based on random 
walk or AR (1) models. 

But the FAR models generate much better results in 
the performance of carry trades. This implies that the 
virtue of the fundamentals is mainly in the form of the 
derived factors. A brief examination of factors shows that 
the unobservable factor contains very useful information 
for forecasting future exchange rates. It is highly 
persistent and correlated with future exchange rates. 
Given that we do not have a fully working model of 
exchange rate for prediction,  these  attributes  make  the
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Table 7. Statistics about the estimated factors (a) Yen (b) Swiss Franc. 
 

  Australia Canada Eurozone  New Zealand  United Kingdom  U.S. 

(a) Yen 

Correlation with factor 
∆s 0.39 (0.00) 0.42 (0.00) 0.46 (0.00) 0.38 (0.00) 0.48 (0.00) 0.44 (0.00) 
i*-i 0.11 (0.02) 0.39 (0.00) 0.20 (0.00) 0.24 (0.00) 0.31 (0.00) 0.41 (0.00) 

∆(y*-y)  -0.17 (0.00) -0.03 (0.54)  -0.12 (0.01) -0.04 (0.43) 
π*-π  0.03 (0.59)   0.11 (0.02) 0.10 (0.03) 

 
Correlation with one-lag factor (t-1) 

∆s 0.21 (0.00) 0.34 (0.00) 0.31 (0.00) 0.31 (0.00) 0.30 (0.00) 0.27 (0.00) 
i*-i 0.10 (0.04) 0.38 (0.00) 0.18 (0.00) 0.24 (0.00) 0.32 (0.00) 0.38 (0.00) 

∆(y*-y)  -0.19 (0.00) -0.03 (0.58)  -0.17 (0.00) -0.06 (0.22) 
π*-π  0.00 (0.94)   0.11 (0.02) 0.07 (0.12) 

     
Lags Autocorrelation of factor    

1 0.74 0.97 0.90 0.98 0.87 0.87 
2 0.46 0.90 0.73 0.93 0.67 0.70 
3 0.22 0.82 0.55 0.87 0.47 0.54 
4 0.06 0.73 0.38 0.79 0.32 0.40 
5 -0.03 0.64 0.26 0.72 0.21 0.29 
6 -0.04 0.56 0.18 0.65 0.14 0.22 
7 0.02 0.49 0.14 0.58 0.14 0.18 
8 0.05 0.43 0.10 0.52 0.16 0.17 
9 0.08 0.38 0.07 0.46 0.17 0.15 

10 0.09 0.32 0.02 0.40 0.16 0.14 
 

(b) Swiss Franc 
Correlation with factor 

∆s 0.03 (0.54) 0.35 (0.00) 0.09 (0.05) 0.22 (0.00) 0.10 (0.03) 0.39 (0.00) 
i*-i 0.01 (0.87) 0.33 (0.00) 0.08 (0.10) 0.10 (0.06) 0.23(0.00) 0.32 (0.00) 

∆(y*-y)  0.01 (0.89) 0.01 (0.78)  0.02 (0.72) -0.01 (0.77) 
π*-π  -0.03 (0.59)   -0.02 (0.65) -0.03 (0.50) 

 
Correlation with one-lag factor 

∆s 0.07 (0.14) 0.30 (0.00) 0.02 (0.74) 0.07 (0.16) 0.03 (0.54) 0.23 (0.00) 
i*-i 0.00 (0.94) 0.33 (0.00) 0.07 (0.13) 0.10 (0.06) 0.20 (0.00) 0.30 (0.00) 

∆(y*-y)  0.01 (0.91) 0.01 (0.76)  0.01 (0.76) -0.01 (0.76) 
π*-π  -0.04 (0.46)   0.04 (0.42) -0.04 (0.46) 

  
Lags Autocorrelation of factor 

1 0.03 0.99 0.10 0.48 0.13 0.86 
2 0.07 0.95 0.02 0.19 0.07 0.71 
3 -0.02 0.91 0.01 0.02 0.06 0.58 
4 -0.08 0.85 -0.01 -0.07 0.03 0.46 
5 -0.01 0.79 -0.10 -0.07 -0.06 0.36 
6 -0.07 0.73 -0.05 -0.10 -0.01 0.28 
7 0.07 0.67 0.07 -0.02 0.10 0.22 
8 -0.02 0.60 -0.04 -0.01 -0.01 0.19 
9 0.08 0.54 0.01 0.03 0.05 0.16 

10 0.00 0.47 -0.03 -0.01 0.01 0.14 
 

Numbers in parentheses are the statistical p-value. A lower p-value indicates the correlation coefficient is more significantly    different 
from zero. 
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Table 8. Performance compared to G10 ETF since October 2006.  
 

 G10 (%) Yen RW (%) Yen ECT (%) Swiss Franc RW (%) Swiss Franc ECT (%) 

Mean return -2.10 -3.19 5.25 -0.23 -0.57 
Sharpe ratio -15.60 -19.72 35.24 -2.59 -8.57 
Skewness -170.00 -126.45 155.37 -108.63 -39.09 
Max drawdown 23.55 38.32 18.71 19.06 15.07 

 

Monthly returns are annualized. G10’s return data is obtained from finance.yahoo.com. 
 
 
 

 
 
Figure 7. Cumulative returns to carry trades in recent financial crisis. 

 
 
 
FAR model the attractive alternative for exchange rate 
predictability. We hope this study will contribute in this 
direction. 

This study contributes a novel method to evaluate the 
exchange rate models too. It provides another angle to 
“beating” the random walk model. In recent years, many 
have found improvement in the forecasting ability of the 
exchange rate models when they incorporate the Taylor 
rule (Choiet al., 2006; Gali and Monacelli, 2005; Engel 
and West, 2006; Engel et al., 2007; MacDonald and 
Taylor, 1994; Mark, 1995; Murray and Papell, 2002; 
Taylor et al., 2001). But the improvement mostly shows 
up in the long-term forecasting in the mean root squared 
prediction errors (MRSPE). In this paper, fundamentals in 
the Taylor rule appear to boost the profits of carry trade in 
a monthly frequency over the naïve carry trade based on 
non-fundamentals forecasts. It suggests that fundamental 
models of exchange rates are superior in the forecasts  of 

carry trading. It is indispensable for better investment 
performance for practitioners. 
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APPENDIX: ALGORITHM FOR ESTIMATING THE 
DYNAMIC FACTOR 
 
The Kalman filtering and the maximum likelihood (ML) 
method estimate the time-varying factor through two 
steps: (1) Construct an approximate estimate of the factor 
using the Kalman filtering. (2) The approximate factor is 
substituted into the likelihood function to estimate 
unknown parameters using the ML estimation. These two 
steps are repeated until the estimates of parameters 
converge. This algorithm is also called the expectation-
maximization (EM) algorithm. Because the algorithm 
utilizes the Kalman filtering, we briefly introduce the 
Kalman filtering first. 
 
 
Kalman filtering 
 
The Kalman filtering is a set of mathematical equations 
that provides an efficient computational (recursive) 
solution to estimating unobservable factors. Readers are 
referred to Hamilton (1994). Hamilton (1994) gave an 
extensive discussion on the Kalman filtering for time 
series. 

The Kalman filtering addresses the general problem of 

estimating the hidden factor  F R   of a discrete-time 
process that is governed by the linear stochastic 
difference equation  
 

1t t tF aF w 
 

 
where a belongs to the interval of (0,1). The observed 

risk premium
*( )y s i i     follows 

 

t t ty F v 
 

 
where a belongs to the interval of (0,1). The observed 

risk premium
*( )y s i i     follows 

 

t t ty F v 
 

 

The random variables  tw
 and tv

 represent the process 
and observation noise respectively. They are assumed to 
be independent of each other, Gaussian and with 
probability distribution:  
 

 ~ 0,w N Q
, 

 ~ 0,v N R
  

The factor F is assumed to start with the initial 

value
 0 0 0~ ,F N V

. 

 
 
 
 
Suppose we have already observed a sequence of y at 
time t, denoted by yt={y1,…,yt}. The best estimate of the 
factor Ft at time t is its conditional expectation on yt, that 

is, t̂F
=E(Ft|y

t). Because noises are Gaussian, the 
conditional expectation is the same as the generalized 

least-squares estimate. Calculating t̂F
 for each t is 

tedious if we apply the conditional expectation every time 
period. The Kalman filtering provides a very efficient way 

to calculate t̂F
 by a set of recursive equations. The 

recursive formula is shown below.  
 

1 1
ˆ ˆ ˆ( )t t t t tF aF K y F   

 
 

    1
2 2

1 1t t tK a P Q a P Q R


 
       

  

  2
1t t tP I K a P Q  

  

with the initial values P0=V0 and  0̂F
=π0. 

 
 
Maximum likelihood estimation 
 
Here we explain how the parameters are estimated. 
Assume we have observed a sample yT. Let  f(y,F|F0) 
denote the joint density of the observable yT ={y1,…,yT} 
and unobservable factors FT={F1,F2,…,FT} so that 
 

 0 0 1 1, | ( ) { ( | ) ( | )}T
t t t t tf y F F f F f y F f F F  

  
Where,  

 
     2 1/211

2| exp 2t t t tf y F y F R R   

  
and 
 

     2 1/211
1 12| exp 2 .t t t tf F F F aF Q Q 
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Then the log-likelihood function is given by  
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The parameters to be estimated are  

 0 0, , , ,a Q R V 
  . Since F

T are not observable, the 

maximum likelihood method  is  practically  impossible.  A  



 
 
 
 
way to get around this problem is to replace the factor 

with the Kalman filtering estimates t̂F
. 

The maximum likelihood estimation of ξ is carried out 
recursively. At iteration l, an estimate ξ (l) is obtained from 
the previous estimate ξ (l-1). The iterative process will stop 
until the new estimate cannot improve the log-likelihood. 
The following steps illustrate the iteration process. 
 
Step 1: Set l=0 and choose ξ (0) with a good guess. 
Step 2: Set ξ= ξ (l). Calculate the conditional expectation 
of the log-likelihood lnL on yT, E(lnL|yT). It involves 
calculating E(Ft|y

T), E(Ft
2|yT) and E(FtFt-1|y

T). They are  
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computed using the factor estimates 
ˆ

tF , which are 
conveniently computed from the Kalman filtering. 
Step 3: Maximize the log-likelihood function E(lnL|yT) to 
obtain a new estimate ξ (l+1) .  In this step, we use the first 
order necessary condition or the generalized least 
squared to estimate the parameters ξ (l+1). 
Step 4: Repeat Steps 2 and 3 until a stopping criterion is 
satisfied. 
 
 
 


