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The aim of this paper is to compare the performance of the daily nonlinear support vector machines, 
the new semi-parametric tool for regression estimation, heterogeneous autoregressive (SVM-HAR)-
ARCH type models based on the daily realized volatility (which uses intraday returns) with the 
performance of the classical HAR-ARCH type models by using different innovation distribution when 
the one-day ahead value-at-risk (VaR) is to be computed. The daily realized volatility is calculated using 
5-, 15-min and optimally sampled intraday returns for Nikkei 225 index. This paper shows that the 
particular hybrid SVM-HAR-ARCH type model provides better performance when 15-min intraday 
returns are used. This paper also shows that the models based on a long memory skewed student 
distribution provide the better performance of one-day ahead value-at-risk forecasts.  
 
Key words: Value-at-risk, HAR-RV model, nonlinear support vector machine-HAR-RV model, ARCH type 
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INTRODUCTION 
 
Value-at-Risk (VaR), a measure of how the market value 
of an asset or a portfolio of assets is likely to decrease 
over a specific time period under typical conditions, has 
become the standard tool for measuring and reporting 
financial risk. Due to the recent availability of high-
frequency intraday data for the financial variables (stock 
indexes, exchange rates, bonds etc) most of the financial 
researchers are mainly concerned with modeling and 
forecasting volatility, which is the key input to VaR 
modelling, in asset returns to quantify the risk of financial 
instruments over a particular time period, which is taken 
to be equal to one day in this paper.  

Researches on time varying volatility and risk measure 
using the time series models have been active ever since 
Engle (1982) introduced the ARCH model. The GARCH 
model, generalized by Bollerslev (1986), has been exten-
ded in various directions and these extensions  recognize  
 
 
 
JEL classification: C22, C45, C52, C58, G15, G17. 

(based on the various researcher’s empirical evidences) 
that there may be important nonlinearity, asymmetry, and 
long memory properties in the volatility process. The 
popular extensions can be referred to Nelson’s (1991) 
EGARCH model, Glosten et al.’s (1993) GJR-GARCH 
which both account for the asymmetric relationship 
between stock returns and changes in variance (for e. g. 
Black 1976, the beginning study of the asymmetric effect 
and Engle and Ng 1993 for further discussion). Engle’s 
(1990) AGARCH, Ding et al. (1993) APARCH; Zakoian’s 
(1994) TGARCH; and Sentana’s (1995) QGARCH 
models also have been developed for the flexibility of the 
models. 

The recent literatures suggest the use of realized 
volatility, the square of intraday returns introduced in the 
literature by Taylor and Xu (1997) and Andersen and 
Bollerslev (1998) along with other researchers, as a mea-
sure of actual volatility and have quickly become popular 
after proposing the heterogeneous autoregressive realized 
volatility (HAR-RV) model of Corsi et al. (2001) and Corsi 
(2009)  based  on  the  HARCH  (Heterogeneous  ARCH) 
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model of Müller et al. (1997b). Another recent 
development in the RV literature is the approach due to 
Barndorff-Nielsen and Shephard (2004, 2006), Andersen 

et al. (2003, 2007) of decomposing the RV into the 
contribution of continuous sample path variation and that 
of jumps. Extending the theory of quadratic variation of 
semi martingales, Barndorff-Nielsen et al. (2006) 
provided an asymptotic statistical foundation for this 
decomposition procedure under very general conditions.  

This study is closer to Giot and Laurent (2004) and 
Clements et al. (2008). Giot and Laurent (2004) compare 
an ARCH-type model and a model using realized volatility 
in terms of forecasts of Value-at-Risk. They show better 
performance of Skewed student APARCH model. 
Clements et al. (2008) narrow their study to focus 
exclusively on models based on realized volatility and 
show comparatively better performance of HAR model for 
quantile forecasts. In this paper, the HAR-ARCH type 
models have been considered for one-day ahead Value-
at Risk forecasts. The aim is to compare the performance 
of classical HAR-ARCH type models with the nonlinear 
support vector machine (SVM)-HAR-ARCH type models 
in terms of Value-at-Risk (VaR) forecasts, where the 
SVM is an efficient semi-parametric approach introduced 
by Vepnik, (1995) that guarantees to obtain globally 
optimal solution, (Cristianini and Shawe-Taylor, 2000), 
which solves the problems of multiple local optima in 
which the neural network usually get trapped into. The 
neural network (NN) and the SVM are being applied in 
different financial literatures. For example, Donaldson 
and Kamstra (1997) used neural network to model 
volatility based GJR-GARCH, Bildirici and Ersin (2009) 
fitted neural network based on nine different GARCH 
family models such as NN-GARCH, NN-EGARCH, NN-
TGARCH, NN-GJR-GARCH, NN-SAGARCH, NN-
PGARCH, NN-NGARCH, NN-APGARCH and NN-
NPGARCH to forecast Istanbul stock volatility, McAleer 
and Medeiros (2009) proposed the NN-HAR model and 
estimated with Bayesian regul0061rization (BR) to 
forecast the daily volatility of the S&P 500 and FTSE 100 
indexes, and more recently Dunis et al. (2010) applies 
higher order neural networks for modeling commodity 
Value-at-Risk of the Brent oil and gold bullion series with 
only autoregressive terms as inputs. In the very 
beginning, Müller et al. (1997a) applied SVM for time 

series forecasting to compare the performance of �- 
insensitive loss and Huber’s robust loss function. After 
that, Pẻrez-Perez-Cruz et al. (2003) predicted GARCH 
(1,1) based volatility by SVM, Chen et al. (2008) 
proposed recurrent SVM as a dynamic process to model 
GARCH (1,1) based Volatility, Ou and Wang (2010) 
proposed GARCH-LSSVM, EGARCH-LSSVM and GJR-
LSSVM hybrid models based on modification of Suykens 
and Vandewalle (1999) to forecast the leverage effect 
volatilities of ASEAN stock markets. These indicate that 
the hybrid models can also capture the stylized charac-
teristics of time series. In this paper,  the  nonlinear  SVM 

 
 
 
 
and HAR are combined as nonlinear SVM-HAR model. 
To the author’s knowledge, this paper is the first to apply 
the nonlinear SVM-HAR model to RV literature in the 
daily VaR modelling context. 

When ARCH type models are used, a well established 
result in the financial time series literature is that the 
standardized returns do not have a Gaussian distribution. 
Andersen et al. (2000a, b, 2001, 2003) showed that the 
distribution of the standardized exchange rate series was 
almost Gaussian when the realized volatility (RV) was 
used. Furthermore, the logarithm of the realized 
volatilities was also nearly Gaussian. Other literatures on 
realized volatility can be refer along with many resear-
chers to A t-Sahalia and Mancini (2006), Ghysels and 
Sinko (2006), Ghysels et al. (2006), Corradi et al. (2006). 
According to Giot and Laurent (2004), “the key issue is to 
use a daily ARCH type model that clearly recognizes and 
fully takes into account the key features of the empirical 
data such as high kurtosis and skewness in the observed 
returns.” In this paper, the RiskMetrics, GARCH, GJR, 
EGARCH and APARCH models are being considered 
along with Gaussian, Student’s t and Skewed Student 
distributions to capture the features of the empirical data.  
 
 
REALIZED VOLATILITY, REALIZED BI-POWER 
VARIATION AND JUMP COMPONENT EXTRACTION 
 

If we consider a simple diffusion process 
     ����� � �����	 
 ���������  
  

where �����	 is the instantaneous log-price, ���� is a 

standard Brownian process and ���� is the standard 

deviation of �����, which may be time-varying but is 

assumed to be independent of �����. Then the volatility 

for day t is defined as the integral of �
��� over the 

interval �	, 	 
 1� that is, � �
��������� , which is known 

as integrated volatility and it is unobserved. Let the 
discretely sampled ∆-period returns be denoted by, ��,∆ � ��	� � ��	 � ∆�. If the process (in our case the 

log of Nikkei 225 index level process) is a continuous 
semimartingale then under mild regularity conditions, 
  ��� � ∑ �����∆,∆�
 ��� ∆�� � � �
����� as ∆$ 0����   

  ���  is the t-th day realized variance since t has the daily 

unit and &�∆' is integer. We will hereafter use the terms 

realized volatility or realized variance interchangeably, or 
their common abbreviation RV.  

Again, if the process is semimartingale with finite-
activity jumps, that is, only a finite number of jumps 
occurring  in  any  finite  time  interval,  such  as   Poisson 



 
 
 
 
jumps, then the realized variance converges to the 
quadratic variation, which can be decomposed as, 
  ��� �� � �
����� 
 ∑ (
��� as ∆$ 0�)*+�������   

  
where k(s) refers to the size of the jump occurring at time 
s. Andersen et al. (2007) proposed microstructure-noise-
robust versions of the bipower variation as 
  ,�� � ��-
�1 � 2Δ�-� ∑ �����∆,∆�������-
�∆,∆�� ∆�� 0   

  

where �� � 12 2�  , holds under mild conditions and 

proposed to use ��� � ,�� �� ∑ (
����)*+���  or 3� � 4567���� � ,���, 08 as an estimator for ∑ (
����)*+��� . 3�  is known to take non-zero, small 
values very frequently due to measurement and possibly 
due to the presence of jumps infinite-activity types.  
 
 
Data description and summary statistics 

 
Calculation of intraday returns and RV measures 
from minute-by-minute Nikkei 225 data 

 
We measure the realized volatility of the Nikkei 225 index 
for the sample of the period 11 March 1996 to 30 
September 2009. Nikkei (Nihon Keizai Shinbun, Inc) 
computes and disseminates the Nikkei 225 index once 
every minute during the trading hours of Tokyo Stock 
Exchange (TSE). In this paper, we contract a “five- 
minute (percentage) returns” series by taking the five-
minute log differences multiplied by hundred from the 
minute-by-minute data. This choice is made to mitigate 
the effect of microstructure related noise and increase the 
precision of volatility measures. (Ishida and Watanabe, 
2009; Watanabe and Yamaguchi, 2007).  

The Tokyo Stock Exchange is open only for 9:00-11:00 
(Morning Session) and 12:30-15:00 (Afternoon Session). 
Our database includes every minute prices of the Nikkei 
225 stock index for both sessions. We first extract prices 
for 9:01, 9:05, 9:10,........,11:00 in the morning session 
and for 12:31, 12:35, 12:40,…….,15:00 in the afternoon 
session. Sometimes, the last transaction price for 
morning (and/or afternoon) session is observed slightly 
after 11:00 (and/or 15:00). In such cases, we use the last 
prices instead of prices at 11:00 (and/or 15:00). Next, by 
using these prices, we calculate the five-minute returns 
as previously mentioned. There are 54 five-minute 
returns for a typical trading day in total, 24 from the 
morning session and 30 from the afternoon session. 

Given the recent literature on the market microstructure 
noise effect on realized volatility estimation, the optimal 
choice of sampling frequency  as  studied  by  Bandi  and  
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Russell (2003, 2008) has been considered here. The 
sampling frequency M

opt
 (the number of observations per 

day) is calculated as (Zhang et al., 2005; Clements et al., 
2008) 
 :;�� � &<=>?@A 'BC

  

 

Where, 
 

 DE � F∑ ∑ GH,IJHKBLIKB MN O

 and P=> � �M ∑ P=�M� � , P=� � NBQ0 ∑ ��,�RNBQ� � . :�S is the 15-min returns and M is the highest frequency 

at which data are available. In our case, it is 1-min 
returns. The 15-min intraday returns are being 
considered to calculate realized volatility as well. 
 

We cannot calculate the 5-min, 15-min and optimally-
sampled returns for the non-trading hours including lunch 
time and overnight period though we can calculate the 
lunch time and overnight returns by considering the last 
price of the morning session and the first prices of the 
afternoon session, and the last price of the afternoon 
session and the first price of the next morning session but 
following Hansen and Lunde (2005), we drop this idea 
and scale the realized volatility as follow, 
  ��� � TU����V�

  
 
Where,  
 

 TU � ∑ ��� � �>�
M� � ∑ ����V�M� �W , where �> � ∑ ��M� � \�  

 

and T is the number of complete trading days. In our 
sample period, the first trading in the second session 
from January 1, 2006 to April 21, 2006 observed at 
13:01. Therefore, we remove these trading days along 
with the sessions from half trading days including the first 
and the last trading days of each year. The remaining 
number of complete trading days, T is 3279. We calculate ��� and 3� by using this 3279 days data for the four 
series. 
 
 
Properties of the realized volatility and related 
measures 
 

The average daily optimal sampling frequency was 

observed 7.828 ( 8), that is, 
�∆ � 8 ^ ∆� 33.75. 30-min 

returns are considered as optimally sampled returns 
here. The value of C

*
 for 5-, 15-min and optimally 

sampled returns were calculated as 2.02977, 1.78022 
and 1.75065, respectively. Summary statistics of daily 
returns series, the daily logarithmic form of RV and jump 
series  are  presented  on  Table  1.  In   addition   to   the  
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Table 1. Summary statistics for Nikkei 225 daily returns, realized volatility and jumps logarithmic series. 
 

Series Mean 
Std. 
dev. 

Skew. Kurt. Min. Max. 
Jarque-

Bera 
LB(5) LB(10) LB(22) 

Daily return -0.024 1.621 -0.163 8.351 -11.953 12.912 3898.857 13.589 24.305 41.57 

lnRV 

5-min 0.609 0.817 0.030
 

3.719 -2.005 4.087 70.550 7710.639 13667.646 24950.93 

15-min 0.496 0.927 0.117 3.615 -2.614 4.246 58.760 6210.035 11092.093 20348.31 

Optimal 0.385 1.027 0.087 3.635 -3.220 4.706 58.809 4620.977 8306.383 15354.54 

ln(1+Jump) 

5-min 0.792 0.426 1.262 6.220 0.067 3.302 2270.538 6669.961 11674.345 20728.59 

15-min 0.724 0.496 1.558 6.509 0.035 3.631 2988.122 4549.871 7996.372 13955.17 

Optimal 0.673 0.550 1.923 8.672 0.009 4.623 6371.333 3082.669 5473.863 9818.06 
 

The sample of the period 11 March 1996 to 30 September 2009, there are total 3279 daily observations. The 5% critical value for Jarque-Bera (that is, ) is 

5.991 (k = 2) and 5% critical values for LB (k) are 11.070 (5), 18.924 (10) and 33.924 (22), respectively. 

 
 
 

 
 
Figure 1. Log-realized volatility series. The top plot shows the daily log-RV series using 5-min intraday returns, the 
middle plot shows the daily log-RV series using 5-min intraday returns and last plot shows the daily log-RV series using 
5-min intraday returns optimally sampled intraday return data. The sample period is 11 March 1996 to 30 September 
2009. There are 3279 complete trading days. 

 
 
 
sample skewness and kurtosis, the Jarque-Bera (JB) 
statistic for testing normality and the Ljung-Box statistics 
of order 5, 10 and 22 (corresponding to roughly one 
week, two weeks and a month) for testing serial 
correlations up to their  respective  order  are  also  
presented on the Table 1. It was observed that the 
unconditional distribution of the daily return series is 
negatively skewed but highly significantly nonnormal with 
high positive kurtosis. The LB statistics also indicated that  

the series are significantly serially correlated. It was also 
observed that the log transformation of RV’s brings down 
the sample skewness and kurtosis values for all series 
but still significantly nonnormal. The value of skewness 
and kurtosis were close to zero (0.030) and three (3.719) 
for 5-min intraday returns while 0.117, 3.615 for 15-min 
and 0.087, 3.635 for optimally sampled intraday returns. 
All the transformed series remain highly significantly 
serially correlated. Figure  1  shows  the  daily  lnRV  for  



 
 
 
 
three intraday returns series.  
 
 

COMPUTING MODELS 
 
Realized volatility models 
 
Heterogeneous autoregressive realized volatility 
(HAR-RV) model 
 
The HAR-RV class volatility models proposed by Corsi 
(2001, 2009) on the basis of a straightforward extension 
of the so-called heterogeneous ARCH (HARCH) class of 
models is analyzed by Müller et al. (1997). 

To sketch the HAR-RV model, define the multi-period 
realized volatilities by the normalized sum of the one-
period volatilities, 
  ���,��b � c-������� 
 ����
 
 d 
 ����b�  

  
Note that, by definition of the daily volatilities, ���,��� ������. Also, provided the expectations exist, ef���,���g �e������� for all h (Andersen et al., 2003, 2007). Also h = 
5 and = 22 will produce the weekly and monthly 
volatilities, respectively. The daily HAR-RV model of 
Corsi (2001), Corsi (2009) may then be expressed as: 
 ����� � hV 
 hi��� 
 hj���-S,� 
 hN���-

,� 
k���  

 
where 	 � 1, 2, … … … … , \. 
 
Andersen et al. (2003, 2007) included the jump 
component, which has been explained previously, as an 
explanatory variable to the above model and introduced 
the new model as 
  ����� � hV 
 hi��� 
 hj���-S,� 
 hN���-

,�
hm3� 
k���  

  
In this paper the logarithmic form of the above model is 
used as  
 nop������� � hV 
 hinop����� 
 hjnopf���-S,�g
 hNnopf���-

,�g 

  
hmnop�1 
 3�� 
k���  
  
e.g., (Andersen et al., 2003, 2007)  
 
 
The support vector machines (SVMs)-HAR 
 
The support vector machines (SVMs) were introduced by 
Vapnik (1995) based on the statistical learning theory, 
which had been developed over the last three decades 
by Vapnik, Chervonenkis and others (Vapnik, 1982, 
1995) from a nonlinear generalization of the Generalized 
Portrait  algorithm.  SVMs  were  developed  to  solve  the  
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classification problem, but recently they have been 
extended to the domain of regression problems (Vapnik 
et al., 1997). The SVMs usually map data to a high-
dimensional feature space and apply a simple linear 
method to the data in that high-dimensional space 
nonlinearly related to the input space. Moreover, even 
though we can think of SVMs as a linear algorithm in a 
high-dimensional space, in practice, it does not involve 
any computations in that high-dimensional space 
(Karatzoglou and Meyer, 2006). The terminology for 
SVMs can be slightly confusing in the literature. In few 
literatures, SVM refers to both classification and 
regression with support vector methods. In this paper, the 
tern SVM will be used for the nonlinear support vector 
regression (NL-SVR). The mathematical formulation of 
SVM is as follows. 

In the �-insensitive support vector regression of Vapnik 
(1995), our goal is to find a function q�6� that has an � 
deviation from the actually obtained targets r� for all 
training data, and at the same time, is as flat as possible. 
Suppose q�6� takes the following form 

  q�6� � (st, 6u 
 v with t k y, v k z  

  
where X is the space of the input patterns and (s. , . u 
denotes the kernel function. Flatness of the above model 
means need to find the small t. One way to ensure this 
is to minimize the Euclidean norm, that is,{t{
 (Smola, 
1998). By applying the soft margin formulation of Cortes 
and Vapnik (1995), and the Karush-Kuhn-Tucker (KKT) 
conditions (Karush, 1939; Kuhn and Tucker, 1951) one 
can estimate the above model as  
  q�6� � ∑ �D� � D�U�(s6� , 6uM� � 
 v=  

  
where b can be computed as 
  v= � r� � (st, 6�u � � qo� D� k �0, T�  

  v= � r� � (st, 6�u 
 � qo� D�U k �0, T�  

 
where, T | 0 determines the trade-off between the 
flatness of the q�6� and the amount up to which 
derivations larger than � are tolerated and D� , D�U } 0 
(Smola and Schölkopf, 1998). A several numbers 
(Kernlab in R, MATLAB, etc) of statistical software are 
available to handle SVM method.  
 
According to Cortes and Vepnik (1995), any symmetric 
positive semi-definite function that satisfies the Mercer’s 
conditions can be used as a kernel function in the SVMs 
context. The Mercer’s conditions are  

  � � ~�6, r� p�6�p�r��6�r | 0 and � p
�6��6 ��,  

  
where ~�6, r� � ∑ D� ��6��� � ��r�, D� } 0  
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In this paper, the Laplacian kernel function ~�6, r� ��6� &� {�-�{� ' has been considered. 

 

The models that combines SVM technique, previously 
discussed, and HAR-RV models are known as SVM-
HAR-RV models. 

Now, when ����~��0, �E�
� then �6�������~nop��0, �E�
�, 
thus the conditional realized volatility can be computed 
according to 
  �����|� � �6� &n������ � ��̂�� 
 �
 �E�
'  

  
where ��̂�� and �E�
 are the estimated value and estimated 
variance of k��� respectively by HAR-RV-J model using 
both classical and SVM method separately. To compute 
the one-day ahead Value-at-Risk forecast, the ARCH 
type models will be applied on the conditional realized 
volatility series obtained from the aforementioned 
expression.  
 
 

ARCH type models 
 

An ARCH type model can be define as 
  r� � �� 
 ��  
  �� � ����  
  
 �� � ���|Ω�-��  
  �� � c��|Ω�-��  
 
where ���|Ω�-�� and c��|Ω�-�� are functions of Ω�-�, the 
information set at time 	 � 1 and depend on an unknown 
vector parameters �, �� is a i.i.d. process, independent of 
Ω�-� with e���� � 0 and �5����� � 1. �� and �� are the 
conditional mean and conditional variance respectively. 

 
In this paper, we fit an AR model for the conditional mean 
and five specifications for the conditional variance, which 
have been discussed as follows 

 
 
GARCH model 
 
Bollerslev (1986) proposed the GARCH model. We use 
GARCH (1,1) models as 
  ��
 � t 
 D��-�
 
 h��-�
 , t | 0, D, h } 0  
 
where t, h and D are the parameters, which are 
assumed to be non-negative to guarantee that volatility is 
always positive. This model is able to capture the 
volatility clustering. |h 
 D| � 1, implies that the volatility 
is stationary and the speed for which the shock to 
volatility decays becomes slower as h 
 D approaches  to  

 
 
 
 
one. 
 
 
GJR-GARCH model 
 
Glosten et al. (1993) proposed the GJR-GARCH model to 
capture the asymmetry. In this study, we use the GJR-
GARCH (1,1) model as  
  ��
 � t 
 D��-�
 
 h��-�
 
 ���-�
 ��-�  
  
where ��-�is an indicator function with ��-� � 0 if ��-� } 0 
and with ��-� � 1 if ��-� � 0. t, h, D and � are the 
parameters, which are assumed to be non-negative to 
guarantee that volatility is always positive. 
 
 
EGARCH model 
 
It has already established that the general GARCH model 
cannot capture the well-known volatility asymmetry phe-
nomenon in stock markets. To capture this phenomenon, 
we use the Nelson (1991)’s EGARCH model. Specifically, 
we use the EGARCH (1,0) model as 
  n����
� � t 
 �7n����-�
 � � t8 
 ���-� 
 ��|��-�| �e|��-�|�, |�| � 1  
  

where e|��-�| � 12 2� , since ��-�is assumed to follow 

standard normal distribution. As EGARCH model 
specifies the logarithm of volatility, thus, it does not 
require any non-negativity constraints for the parameters. � � 0, implies the consistency with the volatility 
asymmetry in stock markets. In this model, |�| � 1, 
implies that the volatility is stationary and the speed for 
which the shock to volatility decays becomes slower as � 
approaches to one.  
 
 
APARCH model 
 
The APARCH model is proposed by Ding et al. (1993) as 
an extension of Bollerslev’s (1986) GARCH that nests at 
least seven GARCH specifications. In this paper, we use 
APARCH(1,1) model as 
  �� � �t 
 D��|��-�| � D���-��� 
 h���-�� �B�  
  
where t, D�, D� , h� and � are the parameters to be 
estimated. � | 0, plays the role a Box-Cox transformation 
of ��. D� , ��1 � D� � 1�, refers the so-called leverage 
effect. 

Focusing on the recent studies, we observe that the 
long memory skewed student distribution has frequently 
been used in VaR forecasting, for example Giot and 
Laurent (2003, 2004), Wang and  Hsu  (2006).  Following  



 
 
 
 
Giot and Laurent (2003, 2004) or Giot (2003), the 
standard version of the skewed Student distribution, 
introduced by Fernández and Steel (1998), has been 
used as innovation distribution along with the Gaussian 
and Student t distributions in this paper. According to 
Lambert and Laurent (2001), the innovation process �� is 
said to have (standard) skewed Student distribution if 
  

q���|�, �� � � 
��B  �p7����� 
 4�|¡8 if �� � � £*
��B  �p7����� 
 4�/�|¡8 if �� } � £*
¥  

  
where p�. |¡�, ¡ | 2 is a symmetric (unit variance) 
Student density and � is the asymmetry coefficient. 

Parameters 4 � Γ&¦§B¨ '√ª-
√« Γ&υ¨' &� � ��' and �
 � &�
 
 ��¨ �1' � 4
 are the mean and variance of the 

nonstandardized skewed Student (Lambert and Laurent, 
2001)  
 
 

Assessment of the VaR performance 
 

Here, the application of the volatility models previously 
discussed to the Value-at-Risk application is focused on. 
The framework of VaR forecasts is to apply the classical 
and SVM techniques to the HAR-RV-J models to obtain 
the realized volatility forecast and compute conditional 
realized volatility. Two conditional realized volatility series 
will be found. The ARCH specification is being applied on 
these two series as an AR(2), where the lag was selected 
using AIC, model to estimate the conditional mean along 
with four different models with three innovation 
distributions (Gaussian, student t and skewed Student) to 
estimate the conditional variances, that is, (3×4) = 12 
models for the conditional variance. These results were 
used as inputs to compute one-day ahead VaR.  

When assuming a Gaussian distribution for the innova-
tion process, the VaR for long trading positions (that is, 
the left tail of the returns density distribution) is �� 
 �@�� 
and for short trading positions (that is, the right tail of the 
returns density distribution) is �� 
 ��-@��, where �@ and ��-@ are the left and right quantile respectively at D% for 
the normal distribution. When the innovation distribution 
is Student t, the VaR for long and short trading positions 
are �� 
 	@,ª�� and �� 
 	�-@,ª�� respectively, where 	@,ª 

and 	�-@,ª are the left and right quantile, respectively at D% for the Student t distribution. And finally, for the 
skewed student innovation distribution, the VaR for long 
and short trading positions are respectively �� 
�(�	@,ª,��� and �� 
 �(�	�-@,ª,��� with �(�	@,ª,� and �(�	�-@,ª,�, the left and right quantile respectively at D% 

for the skewed Student distribution. 
The performances of classical HAR and SVM-HAR 

models are tested by using Kupiec’s(1995) likelihood 
ratio  test  and  Engle  and  Manganelli’s  (1999)  dynamic  
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quantile test. Kupiec’s likelihood ratio test is designed on 
computing the failure rate, the number of times realized 
returns exceed (in absolute value) the forecasted VaR, 
for the returns which is also known as the proportion if 
VaR violation (an occurrence of a market returns larger, 
in absolute value, than the forecasted VaR). If the VaR 
model is correctly specified, the failure rate should be 
equal to the prespecified VaR level, D. That is, ­V: q � D 
against ­�: q ¯ D. q, the failure rate, which is estimated 

as q � 1 \ ∑ �fr� � �5���D�gM� �⁄  is the sequence of yes/ 

no observations, where ��. � is an indicator function, r� is 
realized return at time t and �5���D� is the VaR forecast 
at time t and at  % .  

The Kupiec’s likelihood ratio test statistic to test the 
aforementioned hypothesis is ±� � �2n��DM-²�1 �D�²� 
 2n� F&1 � f� \� g'M-² f� \� g²O, where N is the 

number of VaR violations, and T is the total number of 
observations. This LR test statistic is asymptotically 
distributed as ³
�1�. 

Beside the failure rate, Engel and Manganelli (1999) 

consider the new variables as ­´	��D� � �fr� ��5���D�g � D and ­´	��1 � D� � �fr� | �5���1 � D�g � D 

on the basis of a relevant VaR model should feature a 
sequence of indicator functions that is not serially 

correlated and suggest to test jointly µ1: ef­´	��D�g � 0 

in case of long (ef­´	��1 � D�g � 0 in case of short) 

trading positions and µ2: ­´	��D� (or ­´	��1 � D�) is 
uncorrelated with the variables included in the information 
set. 

Engel and Manganelli (1999) show that testing µ1 � µ2 
can be done using the artificial regression ­´	� � y� 
 ��, 
where X is a \ ¶ ( matrix whose first column is a column 
of one, the next q columns are ­´	�-�, d d , ­´	�-· and ( � ¸ � 1 remaining columns are additional independent 
variables (including the VaR itself). This test is known as 
dynamic quantile test. Under the null µ1 � µ2, Engel and 
Manganelli (1999) show that dynamic quantile test 

statistic is 
¹′º»′»¹º@��-@� , which is asymptotically distributed as ³
�(� . 

 
 
EMPIRICAL RESULTS 
 

In this paper, the computation procedure is conducted in 
two steps. In the first step, the R-2.12.0-win32’s and R 
2.12.0-win32’s Kernlab package for filling the classical 
HAR and SVM-HAR models and computed the 
conditional realized volatility forecasts for both models. In 
the second step, estimation involved in Value-at-Risk 
(VaR) approach is carried out by calling G@RCH 5.0 in 
Ox. The R and Ox code are available upon request. Both 
Kupiec’s likelihood ratio test and dynamic quantile test 
were used to assess the performance of the classical 
HAR and SVM-HAR models through the 12 aforemen-
tioned types of VaR forecasts with  a  level α  that  ranges 
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Table 2. VaR failure rate results for different models using 5-min intraday returns. 
 

α  

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.189 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.522 0.528 0.031 0.000 0.000 0.000 0.000 0.000 0.001 0.089 0.000 

SHAR 0.584 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.019 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.003 0.006 0.000 0.000 0.000 0.000 0.000 0.010 0.020 0.000 0.002 0.086 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.162 0.086 0.000 0.000 0.000 0.000 0.000 
 

SKST 
HAR 0.303 0.027 0.484 0.524 0.806 0.213 0.147 0.199 0.211 0.855 0.367 0.203 0.047 0.304 0.216 0.845 0.057 0.045 0.019 0.000 

SHAR 0.110 0.068 0.090 0.083 0.078 0.078 0.028 0.076 0.027 0.019 0.010 0.031 0.531 0.813 0.216 0.956 0.093 0.206 0.000 0.000 
 

GJR-GARCH- 

Gaussian 
HAR 0.133 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.091 0.934 0.031 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

SHAR 0.875 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.019 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.005 0.008 0.013 0.006 0.030 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.216 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.403 0.433 0.778 0.728 0.522 0.524 0.657 0.423 0.107 0.855 0.825 0.729 0.084 0.304 0.216 0.825 0.402 0.016 0.019 0.000 

SHAR 0.653 0.294 0.059 0.142 0.160 0.812 0.147 0.294 0.211 0.255 0.068 0.147 0.474 0.162 0.470 0.720 0.143 0.045 0.000 0.000 

 

EGARCH- 

Gaussian 
HAR 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.091 0.934 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.159 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.118 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.001 0.015 0.000 0.000 0.000 0.000 0.000 0.019 0.031 0.025 0.015 0.086 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.002 0.216 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.953 0.978 0.778 0.728 0.806 0.890 0.703 0.294 0.211 0.855 0.934 0.470 0.363 0.079 0.086 0.720 0.297 0.045 0.089 0.000 

SHAR 0.402 0.702 0.090 0.083 0.160 0.812 0.467 0.023 0.005 0.019 0.443 0.203 0.085 0.304 0.646 0.934 0.526 0.045 0.000 0.000 

 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

ST-t HAR 0.000 0.000 0.000 0.001 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.014 0.000 0.000 0.000 0.000 0.000 

 
 
 
from   5  to  0.25%  for  three  differently   sampled  intraday returns of Nikkei 225 index. Tables 2 to  4  reported  the  P-values  for  the   Kupiec’s   (1995)  
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Table 2. Contd. 
 

 SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

P-values for the dynamic quantile test statistic 
¹′º»′»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1%, 0.5 and o.25% of 15 previously explained ARCH specifications for classical 

HAR-ARCH and SVM-HAR-ARCH type models.  The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts using 5-min intraday returns of Nikkei 225 index. The 

in-sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , �� . 
 
 

Table 3. VaR failure rate results for different models using 15 min intraday returns. 
 

α 

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.068 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.461 0.116 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.934 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.019 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.013 0.521 0.216 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.003 0.269 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.013 0.162 0.086 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.189 0.150 0.023 0.083 0.160 0.147 0.311 0.199 0.005 0.019 0.019 0.103 0.085 0.521 0.216 0.633 0.143 0.005 0.000 0.000 

SHAR 0.031 0.515 0.623 0.083 0.015 0.009 0.041 0.883 0.047 0.019 0.193 0.020 0.047 0.304 0.216 0.178 0.033 0.005 0.089 0.000 
 

GJR-GARCH- 

Gaussian 
HAR 0.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.118 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.524 0.150 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.367 0.020 0.000 0.000 0.000 0.000 0.000 0.001 0.019 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.006 0.080 0.216 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.002 0.133 0.047 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.003 0.162 0.086 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.799 0.238 0.059 0.524 0.300 0.736 0.558 0.043 0.005 0.091 0.152 0.729 0.363 0.162 0.867 0.737 0.210 0.016 0.000 0.000 

SHAR 0.351 0.978 0.945 0.357 0.035 0.348 0.311 0.199 0.211 0.091 0.193 0.203 0.363 0.521 0.216 0.934 0.142 0.045 0.019 0.000 

 

EGARCH- 

Gaussian 
HAR 0.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.243 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.049 0.089 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.956 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.235 0.521 0.216 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.007 0.023 0.003 0.006 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.047 0.080 0.468 0.000 0.000 0.000 0.000 0.000 
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Table 3. Contd. 
 

SKST 
HAR 0.875 0.190 0.269 0.728 0.078 0.524 0.467 0.127 0.107 0.019 0.364 0.010 0.104 0.089 0.230 0.001 0.000 0.000 0.000 0.000 

SHAR 0.875 0.605 0.778 0,142 0.035 0.663 0.147 0.294 0.211 0.091 0.193 0.276 0.235 0.521 0.468 0.825 0.018 0.005 0.019 0.000 

 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

P-values for the dynamic quantile test statistic 
¹½º »½»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1%, 0.5 and o.25% of 15 previously explained ARCH 

specifications for classical HAR-ARCH and SVM-HAR-ARCH type models.  The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts 
using 5-min intraday returns of Nikkei 225 index. The in-sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , ��. 

 
 
 

Table 4. VaR failure rate results for different models using optimally sampled intraday returns. 
 

α  

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.890 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.737 0.203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.036 0.086 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.008 0.003 0.015 0.000 0.000 0.000 0.000 0.000 0.007 0.364 0.363 0.521 0.468 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.133 0.294 0.192 0.025 0.035 0.298 0.081 0.043 0.017 0.091 0.118 0.203 0.531 0.162 0.216 0.178 0.093 0.016 0.019 0.000 

SHAR 0.048 0.294 0.269 0.047 0.078 0.009 0.005 0.076 0.017 0.019 0.014 0.048 0.363 0.036 0.216 0.010 0.000 0.000 0.000 0.000 

 

GJR-GARCH- 

Gaussian 
HAR 0.459 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.019 0.443 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.159 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.934 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.079 0.030 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.003 0.015 0.000 0.000 0.000 0.000 0.000 0.007 0.203 0.737 0.848 0.468 0.000 0.000 0.000 0.000 0.000 
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Table 4. Contd. 
 

SKST 
HAR 0.159 0.433 0.090 0.142 0.300 0.890 0.311 0.076 0.107 0.019 0.300 0.203 0.235 0.303 0.216 0.535 0.057 0.045 0.019 0.000 

SHAR 0.519 0.868 0.623 0.357 0.078 0.348 0.028 0.294 0.364 0.522 0.019 0.147 0.145 0.080 0.216 0.100 0.000 0.005 0.000 0.000 

 

EGARCH- 

Gaussian 
HAR 0.403 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.152 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.519 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.737 0.013 0.000 0.000 0.000 0.000 0.000 0.005 0.019 0.230 

 

ST-t 
HAR 0.000 0.000 0.000 0.001 0.006 0.000 0.000 0.000 0.000 0.000 0.242 0.592 0.104 0.252 0.230 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.003 0.025 0.006 0.000 0.000 0.000 0.000 0.000 0.007 0.147 0.786 0.848 0.468 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.653 0.605 0.366 0.524 0.300 0.953 0.193 0.043 0.005 0.019 0.068 0.103 0.145 0.162 0.216 0.135 0.010 0.045 0.019 0.000 

SHAR 0.663 0.247 0.778 0.524 0.015 0.592 0.110 0.199 0.005 0.019 0.118 0.031 0.363 0.304 0.216 0.292 0.000 0.000 0.000 0.000 

 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

P-values for the dynamic quantile test statistic 
¹½º »½»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1, 0.5 and o.25% of 15 previously explained ARCH specifications for 

classical HAR-ARCH and SVM-HAR-ARCH type models. The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts using 5-min intraday returns of Nikkei 225 

index. The in-sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , ��  . 

 
 
 
failure rate test whileTables 5 to 7 reported the P-
values for Engel and Manganelli’s (1999) dynamic 
quantile forecast test with q = 5 and k = 7 (that is, 
the contemporaneous VaR forecast is included as 
additional variable following Giot and Laurent 
(2004). 

For both the tests, each table presented four 
panels successively the results for GARCH, GJR-
GARCH, EGARCH and APARCH models. Each 
panel presented the results successively for 
Gaussian, Student t  (ST-t)  and  skewed  Student 

(SKST) distributions for both the classical HAR 
(HAR) and SVM-HAR (SHAR) models. The left 
part of each table presented the in-sample VaR 
forecasts results while the right part presents the 
out-of-sample VaR forecasts results for both short 
and long trading positions. 
 
DISCUSSION 
 
We first compared the results of GARCH and 
APARCH models for each of  the  Tables,  that  is,  

Tables 2 to 4 and Tables 5 to 7. The empirical 
results showed the same story for all intraday 
sampled returns and innovation distributions 
specifications. Almost all the P-values for both the 
tests are often smaller than 0.05. These three 
classes of models failed to forecast the one-day 
ahead VaR. Though we observe from Giot and 
Laurent (2004) that the Skewed-APARCH specifi-
cation significantly improves the VaR forecasting 
performance where they use ARFIMAX model for 
volatility forecasts. The results for GARCH models 



316 J. Econ. Int. Financ. 
 
 
 

Table 5. VaR quantile regression results for different models using 5-min intraday returns. 
 

α  

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.121 0.785 0.999 0.902 0.365 0.000 0.000 0.000 0.001 0.017 0.292 0.901 0.842 

SHAR 0.989 0.046 0.000 0.000 0.000 0.000 0.000 0.012 0.175 0.729 0.139 0.000 0.000 0.000 0.000 0.001 0.049 0.775 0.725 0.842 
 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.175 0.490 0.079 0.281 0.000 0.014 0.631 0.000 0.001 0.089 0.485 0.842 

SHAR 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.003 0.092 0.490 0.012 0.000 0.012 0.810 0.631 0.001 0.017 0.089 0.485 0.842 
 

SKST 
HAR 0.001 0.006 0.016 0.030 0.000 0.215 0.633 0.923 0.963 0.999 0.851 0.684 0.151 0.948 0.907 0.668 0.530 0.775 0.725 0.842 

SHAR 0.643 0.414 0.385 0.594 0.634 0.091 0.410 0.802 0.629 0.729 0.113 0.102 0.945 0.999 0.907 0.309 0.150 0.956 0.485 0.842 

 

GJR-GARCH- 

Gaussian 
HAR 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.629 0.904 0.714 0.177 0.000 0.000 0.000 0.000 0.017 0.292 0.485 0.842 

SHAR 0.828 0.084 0.000 0.000 0.000 0.000 0.000 0.012 0.0175 0.490 0.178 0.000 0.000 0.000 0.000 0.000 0.030 0.620 0.725 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.175 0.490 0.031 0.076 0.074 0.051 0.289 0.000 0.001 0.089 0.485 0.842 

SHAR 0.001 0.000 0.000 0.001 0.005 0.000 0.000 0.001 0.092 0.490 0.001 0.000 0.011 0.014 0.907 0.000 0.001 0.089 0.485 0.842 

 

SKST 
HAR 0.088 0.333 0.023 0.020 0.000 0.535 0.862 0.522 0.899 0.999 0.669 0.909 0.451 0.948 0.907 0.073 0.009 0.620 0.725 0.842 

 0.719 0.648 0.277 0.760 0.847 0.699 0.742 0.435 0.963 0.982 0.228 0.317 0.151 0.810 0.994 0.262 0.554 0.001 0.485 0.842 

 

EGARCH- 

Gaussian 
HAR 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.043 0.299 0.904 0.660 0.165 0.000 0.000 0.000 0.000 0.017 0.089 0.485 0.842 

SHAR 0.594 0.003 0.000 0.000 0.000 0.000 0.000 0.006 0.175 0.490 0.353 0.018 0.000 0.000 0.000 0.002 0.030 0.292 0.485 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.175 0.490 0.158 0.177 0.155 0.147 0.631 0.000 0.001 0.089 0.485 0.842 

SHAR 0.000 0.000 0.000 0.001 0.005 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.025 0.000 0.907 0.000 0.000 0.089 0.485 0.842 

 

SKST 
HAR 0.165 0.813 0.007 0.020 0.000 0.289 0.484 0.955 0.963 0.999 0.704 0.890 0.904 0.578 0.631 0.819 0.059 0.775 0.901 0.842 

SHAR 0.930 0.485 0.385 0.594 0.847 0.779 0.560 0.602 0.457 0.729 0.286 0.788 0.216 0.948 0.999 0.011 0.874 0.001 0.485 0.842 

 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 
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Table 5. Contd. 
 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.485 0.842 
 

P-values for the dynamic quantile test statistic 
¹½º »½»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1, 0.5 and o.25% of 15 previously explained ARCH specifications for classical 

HAR-ARCH and SVM-HAR-ARCH type models. The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts using 5-min intraday returns of Nikkei 225 index. The in-

sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , ��  . 

 
 
Table 6. VaR quantile regression results for different models using 15-min intraday returns. 
 

α  

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.043 0.175 0.729 0.005 0.006 0.000 0.000 0.000 0.000 0.009 0.089 0.490 0.842 

SHAR 0.801 0.174 0.020 0.000 0.000 0.000 0.000 0.006 0.092 0.490 0.213 0.016 0.000 0.000 0.000 0.000 0.001 0.292 0.725 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.092 0.490 0.000 0.081 0.074 0.993 0.907 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.001 0.733 0.417 0.001 0.000 0.003 0.006 0.092 0.490 0.000 0.014 0.053 0.810 0.630 0.017 0.005 0.089 0.490 0.842 

 

SKST 
HAR 0.006 0.334 0.011 0.001 0.847 0.165 0.559 0.923 0.457 0.729 0.023 0.696 0.451 0.993 0.907 0.381 0.745 0.449 0.490 0.842 

SHAR 0.170 0.363 0.935 0.594 0.187 0.033 0.399 0.983 0.785 0.729 0.312 0.067 0.283 0.948 0.907 0.381 0.307 0.449 0.901 0.842 

 

GJR-GARCH- 

Gaussian 
HAR 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.006 0.092 0.490 0.048 0.003 0.000 0.000 0.000 0.000 0.002 0.089 0.490 0.842 

SHAR 0.862 0.188 0.004 0.000 0.000 0.000 0.000 0.012 0.299 0.490 0.164 0.146 0.000 0.000 0.000 0.000 0.005 0.292 0.725 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.138 0.031 0.578 0.907 0.000 0.000 0.089 0.490 0.842 

SHAR 0.002 0.029 0.505 0.417 0.005 0.000 0.000 0.006 0.092 0.490 0.001 0.010 0.011 0.810 0.631 0.004 0.005 0.089 0.490 0.842 

 

SKST 
HAR 0.182 0.702 0.017 0.030 0.963 0.147 0.702 0.108 0.457 0.904 0.108 0.540 0.904 0.810 0.999 0.268 0.638 0.620 0.490 0.842 

SHAR 0.963 0.783 0.976 0.957 0.386 0.292 0.314 0.343 0.963 0.904 0.043 0.407 0.904 0.993 0.907 0.881 0.610 0.775 0.725 0.842 
 

EGARCH- 

Gaussian 
HAR 0.064 0.008 0.000 0.000 0.000 0.000 0.000 0.003 0.092 0.490 0.035 0.001 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.581 0.554 0.000 0.000 0.000 0.000 0.000 0.024 0.175 0.490 0.361 0.046 0.000 0.000 0.000 0.000 0.002 0.170 0.725 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.081 0.792 0.993 0.907 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.096 0.127 0.030 0.072 0.000 0.000 0.001 0.092 0.490 0.000 0.002 0.065 0.578 0.994 0.003 0.002 0.089 0.490 0.842 
 

SKST 
HAR 0.294 0.608 0.017 0.000 0.000 0.054 0.708 0.873 0.899 0.729 0.180 0.396 0.889 0.901 0.982 0.040 0.001 0.089 0.490 0.842 

SHAR 0.875 0.980 0.962 0.760 0.386 0.561 0.591 0.955 0.963 0.903 0.223 0.710 0.328 0.993 0.994 0.480 0.338 0.449 0.725 0.842 
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Table 6. Contd. 
 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 
 

P-values for the dynamic quantile test statistic 
¹½º »½»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1%, 0.5 and 0.25% of 15 previously explained ARCH specifications for 

classical HAR-ARCH and SVM-HAR-ARCH type models.  The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts using 5-minute intraday returns of Nikkei 

225 index. The in-sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , ��  . 

 
 
 
Table 7. VaR quantile regression results for different models using optimally sampled intraday returns. 
 

α  

In-sample Out-of-sample 

VaR for short positions VaR for long positions VaR for short positions VaR for long positions 

5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 5% 2.5% 1% 0.5% 0.25% 

GARCH- 

Gaussian 
HAR 0.564 0.071 0.000 0.000 0.000 0.000 0.000 0.006 0.092 0.490 0.121 0.003 0.000 0.000 0.000 0.000 0.002 0.170 0.490 0.842 

SHAR 0.173 0.003 0.000 0.000 0.000 0.000 0.000 0.024 0.175 0.729 0.389 0.480 0.000 0.000 0.000 0.000 0.001 0.089 0.490 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.001 0.052 0.330 0.631 0.000 0.001 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.004 0.187 0.000 0.000 0.003 0.092 0.490 0.002 0.625 0.904 0.993 0.994 0.000 0.000 0.089 0.490 0.842 

 

SKST 
HAR 0.039 0.663 0.016 0.001 0.000 0.405 0.562 0.710 0.629 0.904 0.118 0.304 0.965 0.810 0.907 0.595 0.612 0.620 0.725 0.842 

SHAR 0.010 0.158 0.014 0.032 0.634 0.164 0.172 0.802 0.629 0.729 0.007 0.167 0.904 0.330 0.907 0.125 0.049 0.089 0.490 0.842 

 

GJR-GARCH- 

Gaussian 
HAR 0.295 0.289 0.000 0.000 0.000 0.000 0.000 0.003 0.092 0.490 0.556 0.014 0.000 0.000 0.000 0,000 0.002 0.089 0.490 0.842 

SHAR 0.330 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.457 0.729 0.212 0.049 0.000 0.000 0.000 0.000 0.001 0.170 0.490 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.386 0.000 0.000 0.001 0.092 0.490 0.002 0.000 0.150 0.578 0.289 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.001 0.000 0.000 0.187 0.000 0.000 0.003 0.092 0.490 0.001 0.339 0.989 0.999 0.994 0.000 0.000 0.089 0.490 0.842 

 

SKST 
HAR 0.167 0.844 0.253 0.044 0.962 0.061 0.581 0.171 0.899 0.729 0.549 0.593 0.793 0.948 0.907 0.668 0.636 0.775 0.725 0.842 

SHAR 0.649 0.380 0.275 0.957 0.634 0.647 0.189 0.426 0.000 0.000 0.006 0.101 0.632 0.578 0.907 0.559 0.041 0.449 0.490 0.842 
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Table 7. Contd. 
 

EGARCH- 

Gaussian 
HAR 0.433 0.002 0.000 0.000 0.000 0.000 0.000 0.003 0.092 0.490 0.215 0.086 0.000 0.000 0.000 0.000 0.001 0.089 0.490 0.842 

SHAR 0.403 0.023 0.000 0.000 0.000 0.000 0.000 0.012 0.175 0.729 0.790 0.207 0.000 0.000 0.000 0.000 0.005 0.449 0.725 0.982 

 

ST-t 
HAR 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.410 0.431 0.889 0.981 0.982 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.005 0.022 0.072 0.000 0.000 0.001 0.092 0.490 0.000 0.143 0.998 0.999 0.004 0.000 0.000 0.089 0.490 0.842 

 

SKST 
HAR 0.790 0.849 0.012 0.000 0.000 0.221 0.636 0.108 0.457 0.729 0.078 0.310 0.632 0.810 0.907 0.250 0.396 0.775 0.725 0.842 

SHAR 0.793 0.082 0.724 0.989 0.187 0.108 0.170 0.336 0.000 0.729 0.000 0.019 0.904 0.948 0.907 0.920 0.119 0.170 0.490 0.842 

 

APARCH- 

Gaussian 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

 

ST-t 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

 

SKST 
HAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 

SHAR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.092 0.490 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.089 0.490 0.842 
 

P-values for the dynamic quantile test statistic 
¹½º »½»¹º@��-@� ~³
�7� both for long and short trading with D is successively equal to 5, 2.5, 1, 0.5 and o.25% of 15 previously explained ARCH specifications for 

classical HAR-ARCH and SVM-HAR-ARCH type models.  The left part presenting the results for in-sample forecasts while the right part, the out-of-sample forecasts using 5-minute intraday returns of Nikkei 

225 index. The in-sample period is 11 March 1996 to 29 December 2004 and the out-of-sample period is 5 January 2005 to 30 September 2009.  r� � �� 
 ¼�
���|�-� , ��  . 

 
 
 

go with the results of Ebens (1999), where he 
concluded that the GARCH model underperforms 
(when volatility must be forecasted) with respect 
to the model based on the daily realized volatility. 
We then compared the results for GJR-GARCH 
and EGARCH models for each Table. All the 
Tables showed almost similar empirical results. 
The skewed Student distribution specification 
produced better forecasts for both the classical 
HAR and SMN-HAR models while the Gaussian 
and Student t specifications failed to forecast one 
day ahead VaR. We observed that the optimally 
sampled intraday returns could not compute with 
5 and 15 min intraday returns to estimate the daily 
realized  volatility  for  both  the   skewed   Student  

HAR and skewed Student SVM-HAR models. 
Finally, we consider the empirical results from 15-
min intraday returns. We observed for the SVM-
HAR-RV models that for the dynamic quantile 
test, all the P-values are greater than 0.05 for the 
SKST- EGARCH model and only one P-value is 
smaller than 0.05 for SKST- GJR-GARCH model 
out of 20 P-values (10 for in-sample and 10 for 
out-of-sample forecasts). Almost similar results 
were observed when 5-min intraday returns were 
used. The results for classical HAR-RV forecasts 
were also satisfactory but failed to compete with 
the SVM-HAR. The failure rate test results of 
SKST-GJR- GARCH and SKST-EGARCH were 
also satisfactory  for  both  the  classical  HAR-RV  

and SVM-HAR-RV forecasts. Maximum of the P-
values were greater than 0.05. Comparing all the 
results, we can conclude that the SVM-HAR-RV 
model performs better to forecast one day ahead 
VaR. 
 
 
CONCLUDING REMARKS 
 

In this paper, the Support Vector Machine (SVM) 
regression was combined with Heterogeneous 
Autoregressive (HAR) model as a hybrid (SMV-
HAR) model to improve the VaR forecasting 
ability. We examined the VaR forecasting ability of 
the realized volatility based models for Nikkei  225
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stock returns. The empirical results presented here are 
suggestive for several interesting extensions. First, we 

set the values T � 1 and � � 0.1 for the SVM-HAR-RV 
class models and observed better forecasting ability. The 

appropriate choice of the value T and � could be helpful 
to improve the forecasting ability.  

Second, we consider only the Laplacian kernel for the 
SVMs and observe better performances. The choice of 
other existing kernels in SVM literature or an appropriate 
new kernel could improve the forecasting ability. 

Third, 5- and 15-min intraday returns were considered 
along with optimally sampled intraday returns to estimate 
daily realized volatility. The optimally sampled intraday 
returns as studied by Bandi and Russell (2003, 2008) 
were considered to mitigate the market microstructure 
noise but it failed to produce better VaR forecasting 
performance compared to 5- and 15-min intraday returns. 
It would be interesting to consider the two- scale 
estimators of Zhang et al. (2005) and kernel estimator of 
Barndorff-Nielsen et al. (2009a, b). 

Fourth, since the long memory skewed Student 
distribution produces better performance, therefore, the 
long memory ARCH type model for conditional variance 
could be interesting. 
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