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Due to the resistance of some mosquitoes to pyrethroids insecticides, new synthetic compounds are of 
great interest for the development of new insecticides against vectors of tropical diseases, especially in 
the Amazon region. Our aim was to synthesize and evaluate the larvicidal potential of benzoyl 
thiosemicarbazone and its Ni(II) complex against larvae of Aedes aegypti............ and Anopheles 
darlingi............ The compounds were synthesized from thiosemicarbazide according to the literature, 
and the larvicidal potential was evaluated in triplicate at concentrations of 7 to 500 µg/mL. Benzoyl 
thiosemicarbazone and its Ni(II) complex showed an LC50 of 42.09 and 42.28 µg/mL, respectively, 
against . Ae. aegypti larvae. For .An. darlingi larvae, the LC50 values of benzoyl thiosemicarbazone (4.77 
µg/mL) were lower than its Ni(II) complex (7.33 µg/mL). Benzoyl thiosemicarbazone presented 
satisfactory results against the larvae, and due to the insecticidal potential of this substance, the 
development of new chemical insecticides may be possible. 
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INTRODUCTION 
 
Many pathogens can be transmitted to humans from 
infected mosquitoes such as Aedes aegypti (Linnaeus, 
1762), a species responsible for the transmission of 
dengue fever, yellow fever, Chikungunya and Zika. In 
Brazil, this vector is one of the main public health 
problems, since it is extremely urban, has high population 
growth rates and is difficult to control (Simon et al.,  2008;  

Puccioni-Sohler et al., 2017). 
Anopheles darlingi (Root, 1926) is of great medical 

relevance, as it is the vector responsible for the 
transmission of Malaria in Brazil, where it is basically 
confined to the Amazon region. Among the anopheline 
mosquitoes found in the region, A. darlingi is the species 
that  most  benefits  from   human   modifications   to   the
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environment. It is highly anthropophilic and endophagic 
(Deane, 1986; Tadei et al., 1998; Maciel-de-Freitas et al., 
2012; Sinka et al., 2012). In this case, the control of 
mosquito populations is performed with insecticides, 
which, despite numerous records of resistance and high 
toxicity to nontarget organisms, still provide one of the 
most effective methods for combatting mosquitoes in 
endemic areas (Rivero et al., 2010; WHO, 2017). 

Thiosemicarbazones belong to the thiourea group, an 
important class of N and S donor compounds that have 
high pharmacological potential, and in many cases, the 
mechanism of action of thiosemicarbazone is associated 
with complexed transition metals. From a biological point 
of view, metal complexes are more bioactive than free 
ligands, particularly thiosemicarbazones, which are active 
only when complexed with transition metals (Wasi and 
Singh, 1987; Rosu et al., 2010; Viñuelas-Zahínos et al., 
2011; Netalkar et al., 2015). 

The pharmacological applications of the different 
structural derivatives of thiosemicarbazones and their 
metal complexes include antifungals (Parrilha et al., 
2011), cytotoxics (Rebolledo et al., 2005; Braga et al., 
2016), antibacterials (Despaigne et al., 2010), 
antimalarials (Greenbaum et al., 2004; Chellan et al., 
2010; Nandal and Deep, 2017) and insecticides (Rayms-
Keller et al., 1998; Wang et al., 2010; Silva et al., 2015). 
Metal complexes or even free metal ions are toxic to 
aquatic organisms and may be found available at low 
levels in the environment (Arnold et al., 2005). Thus, due 
to the high incidence of vector mosquitoes in the region, 
the permanent and semi-permanent expressions of 
Aedes and Anopheles mosquitoes in the urban areas of 
cities and control actions on immature forms represent a 
functional alternative for the control of insects (WHO, 
2014). 

The synthesis and biological activity of the 1-benzoyl 
analogue have been reported in the literature (Xue et al., 
2007; Pingaew et al., 2010). In the present study, we 
examined the larvicidal activity of benzoyl 
thiosemicarbazone and its nickel (II) complex in 
bioassays against A. aegypti and A. darlingi, for the 
control of tropical diseases in the Amazon. Our study 
addresses the process for obtaining the substance and 
its nickel complex as well as their larvicidal activity 
against vectors of dengue and malaria in the Amazon 
region not yet described in the literature. 

 
 
MATERIALS AND METHODS 
 
Synthesis of Benzoyl thiosemicarbazone (HBzS) and the nickel 
metal complex [Ni(BzS)2] 
 
All reagents were purchased from the Sigma-Aldrich and used 
without further purification. The compounds were synthesized 
(Beraldo et al., 1997 and Pingaew et al., 2010). The benzoyl 
thiosemicarbazone was prepared using 11 mmols of 
thiosemicarbazide for 11 mmol of benzaldeyde. The mixture was 
heated under reflux for 8 h  and  ethanol  as  a  solvent.  The  nickel  

 
 
 
 
metal complex was prepared using 2 mmols of Benzoyl 
thiosemicarbazone for nikel chloride II heated under reflux and 
drops of amonium hidroxide in ethanol. The FT-IR spectra (KBr) 
were recorded on Perkin Elmer 283B (4000–400 cm-1) 
spectrometer. The 1H NMR and 13C NMR were obtained on a 
Unity Inova 500 Varian spectrometer, em DMSO-d6. 
 
 
Synthesis of compounds 
 
HBzS: yellow crystals; yield (%): 70; melting point (°C): 205; IR 
(KBr, cm-1): ν (C=N): 1575; ν (C=S):857; ν (N-H): 3176; ν (N-H2): 
3052. 1H NMR (500 MHz, DMSO-d6) (δ): 8.71 (s, 1H), 7.89 – 7.87 
(dd, 2H, J: 2 Hz), 7.52 – 7.48 (m, 2H J: 5 Hz), 7.45 – 7.40 (m, 1H, J: 
7.5Hz), 6.85 (s, 3H), 3.40 (s, 2H). 13C NMR   (500 MHz, DMSO-d6) 
(δ):184.14; 161.44; 133.78; 131.37; 128.92; 128.36; 125.76; 76.95. 
 
[Ni(BzS)2]: green solid; yield (%): 65; melting point (°C): > 300; IR 
(KBr, cm-1): ν (C=N): 1575; ν (C=S): 751; ν (Ni-N): 497; ν (Ni-S): 
448; ν (N-H): 2950; ν (N-H2): 3052. 1H NMR (500 MHz, DMSO-d6) 
(δ): 8.71 (s, 1H), 7.89 - 7.86 (dd, 3H, J: 2 Hz), 7.52 – 7.48 (m, 2H, J: 
5Hz), 3.34 (s, 2H). 13C NMR (500 MHz, DMSO-d6) (δ): 162.12; 
134.49; 132.05; 129.61; 129.06; 127.98. 
 
The formation of all compounds was confirmed by IR spectroscopy, 
1H NMR and 13C NMR. The IR spectrum of Benzoyl 
thiosemicarbazone showed absorption bands at 3052, 1575 and 
857 cm-1, corresponding to the NH, C=N and C=S groups, 
respectively. The IR spectrum of the nickel metal complex showed 
absorption bands at 3052-2950, 1625, 751, 497 and 448 cm-1, 
corresponding to the NH, C=N, C=S, Ni-N and Ni-S groups, 
respectively. Compounds showed a sharp singlet observed at δ 
8.70 and 8.71, which confirmed the presence of the NH to HBzS 
and [Ni(HBzS)2], H-aromatic rings at δ 7.42 – 7.87 and δ 7.50-7.89, 
respectively. The 13C NMR spectra of compounds showed peaks 
at δ 193.24 and δ 161.33, corresponding to C=S carbon to HBzS 
and [Ni(HBzS)2], respectively. The above values are evident for 
formation of compounds (Figure 1). 
 
 
Study site and period 
 
The study was conducted in 2011 in the city of Manaus, Amazonas 
State, Brazil (-3.096240 latitude, -59.986194 longitude), located in 
the northern region of the country, which comprises the Brazilian 
Amazon region. Manaus has a population of 1,802,014 people 
according to the last census of 2010. 
 
 
Mosquito collection and maintenance 
 
The larvae were obtained from the insectarium of the Laboratory of 
Malaria and Dengue, National Institute of Amazonian Research 
(Instituto Nacional de Pesquisas da Amazônia - INPA), located in 
Manaus. The larvae remained in trays and were fed with TetraMin® 
(fish feed); the adult population was kept in cages with cotton 
soaked in 10% sucrose solution, whereas the females were also 
fed blood every other day for egg development. Plastic cups with 
moistened filter paper strips were provided for oviposition by 
pregnant females. The population was maintained under laboratory 
conditions of 26 ± 2°C and 70-80% relative humidity. 
 
 

Larvicidal activity assays 
 

Benzoyl thiosemicarbazone and its Ni(II) complex were synthesized 
and characterized according to Beraldo et al. (1997) and Pingaew 
et  al.  (2010).  In  the  assays,  the  compounds  were  dissolved  in
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Figure 1. Benzoyl thiosemicarbazones (A) and Nickel complex II (B) structure. 

 
 
 

Table 1. Larvicidal bioassays of benzoyl thiosemicarbazone (1) and nickel (II) complex (2) against A. aegypti larvae. 
 

A. aegypti 

Substances Regression equation LC50 µg/mL (95% CI) 24 h Number of larvae χ2 

Benzoyl thiosemicarbazone y = -1.73 + 4.14 * log x 42.09 (25.94, 66.05) 50 5.97 s 

Nickel complex (II) y = 0.54 + 2.74 * log x 42.28 (23.83, 66.48) 50 4.91 s 
     

Substances Regression equation LC50 µg/mL (95% CI) 48 h Number of larvae χ2 

Benzoyl thiosemicarbazone y = -1.73 + 4.24 * log x 38.49 (24.02, 60.08) 50 5.82 s 

Nickel complex (II) y = 0.28 + 3.03 * log x 35.84 (28.52, 44.02) 50 2.16 s 
 

x: concentration; y: probability of mortality; s = significant; χ
2 
= chi-square; CI: confidence interval. 

 
 
 
dimethyl sulfoxide (DMSO) and evaluated at concentrations of 15.6 
to 500 µg/mL against A. aegypti larvae and from 7.8 to 250 g/L 
against A. darlingi larvae. The assays were performed in triplicate in 
plastic cups containing 10 mL of distilled water, 10 larvae, feed and 
100 μL of the evaluated concentration. Control was performed with 
DMSO. After 24 and 48 h, the number of dead larvae was recorded, 
and the median lethal concentration (LC50) was calculated 
(Dulmage et al., 1990; WHO, 2005). 
 

 
Statistical analysis 
 
The results were considered acceptable when the control mortality 
was less than 10%, and the number of dead larvae in the control 
was adjusted using the Abbott formula (Abbott, 1925). Mortality 
data were assessed by probit analysis (Finney, 1971). According to 
the regression equation, the probability of mortality value 
corresponds to the y-axis, whereas the tested concentration 
corresponds to the x-axis. To obtain the LC50, we selected the 
concentrations that presented larval mortality above 50%. We used 
the Polo Plus software (Robertson et al., 2003) and a 95% 
confidence interval (CI); results with p<0.05 were considered 
significant. 

 
 
RESULTS 
 
The larvae of both species tested were sensitive to 
benzoyl thiosemicarbazone and to the metal nickel 
complex after 24 and 48 h of exposure. Table 1 shows 

that A. aegypti larvae were more susceptible to the 
benzoyl thiosemicarbazone than the nickel complex. The 
LC50 for the benzoyl thiosemicarbazone was 42.09 
µg/mL, whereas for the nickel complex, it was 42.28 
µg/mL. However, after 48 h, the metal complex showed 
the highest toxicity, with an LC50 of 35.84 µg/mL. In this 
case, the benzoyl thiosemicarbazone presented an LC50 
of 38.49 g/L. 

A. darlingi larvae were more susceptible than A. 
aegypti larvae for the compounds tested. LC50 values for 
A. darlingi were lower at both the 24 and 48 h intervals 
(Table 2). Benzoyl thiosemicarbazone showed an LC50 of 
4.77 µg/mL, whereas the nickel complex showed an LC50 
of 7.33 µg/mL, both after 24 h. After 48 h, the LC50 of the 
metal complex was lower (2.68 µg/mL) than the LC50 of 
benzoyl thiosemicarbazone (2.72 µg/mL). The substance 
benzoyl thiosemicarbazone presented higher toxicity for 
both species tested after 24 h. Due to the sensitivity of 
the larvae, A. darlingi was more susceptible than A. 
aegypti larvae. 
 
 

DISCUSSION 
 

The present study addresses the larvicidal activity of a 
thiosemicarbazone derivative and its Ni complex against 
A.  aegypti  and  A. darlingi,  species  responsible  for  the
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Table 2. Larvicidal bioassays of benzoyl thiosemicarbazone (1) and nickel (II) complex (2) against A. darlingi larvae. 
 

A. darlingi 

Substances Regression equation LC50 µg/mL (95% CI) 24 h Number of larvae χ2 

Benzoyl thiosemicarbazone y = 3.44 + 2.30 * log x 4.77 (2.76, 6.79) 30 1.55 s 

Nickel complex (II) y = 3.40 +1.85 * log x 7.33 (4.42, 10.66) 30 5.75 s 

     

Substances Regression equation LC50 µg/mL (95% CI) 48 h Number of larvae χ2 

Benzoyl thiosemicarbazone y = 3.73 +2.22 * log x 2.72 (0.61, 4.61) 30 1.78 s 

Nickel complex (II) y = 3.83 +1.78 * log x 2.68 (0.60, 4.48) 30 6.78 s 
 

x: concentration; y: probability of mortality; s = significant; χ
2 
= chi-square; CI: confidence interval. 

 
 
 

transmission of dengue and malaria, respectively, in the 
Amazon region. Although the biological properties of the 
metal complexes of thiosemicarbazones have high 
toxicity associated with the free ligand (Mendes et al., 
2006; Netalkar et al., 2015), we observed that after 24 h, 
the metal nickel complex was less toxic; that is, this 
complex displayed a higher lethal concentration against 
A. aegypti (LC50 42.28 µg/L) and A. darlingi (7.33 µg/L) 
than benzoyl thiosemicarbazone, which displayed an 
LC50 of 42.09 and 4.77 µg/mL, respectively. 

After 48 h, however, the nickel complex showed better 
toxicity results, with an LC50 of 35.84 µg/mL for A. Aegypti 
and 2.68 µg/mL for A. darlingi. After the same period, 
benzoyl thiosemicarbazone presented an LC50 of 38.49 
µg/mL for the first species and 2.72 µg/mL for the 
second. 

Gopinathan and Arumugham (2015) evaluated the 
larvicidal activity of four Cu(II) metal complexes against 
Culex quinquefasciatus (LC50 0.61 to 2.09 mg/L) and 
Anopheles subpictus (LC50 0.89 to 1.88 mg/L). Although 
all complexes showed high toxicity, urea and thiourea 
complexed with copper presented the best larvicidal 
activity results when compared to thiosemicarbazide and 
semicarbazide. Thiosemicarbazide derivatives showed a 
broad spectrum of larvicidal activity at different 
concentrations. 

Rayms-Keller et al. (1998) showed that metal ions were 
highly toxic to A. aegypti. For example, copper edetate in 
nanostructures and chitosan microcapsules showed 
efficacy against A. aegypti larvae, with an LC90 of 60 and 
20 mg/L, respectively, because nanostructures and 
microcapsules favour the slow and continuous release of 
the active ingredient to the environment. Thus, when 
complexed to the nickel, thiosemicarbazone derivative 
tested here against A. aegypti and A. darling showed 
high toxicity. However, the results of this study indicate 
that the metal-ligand bond did not significantly favour 
larvicidal activity at all reading ranges, as observed for 
the assays against A. darlingi (Table 2); that is, the metal 
complex did not directly affect the simultaneous ion 
exchange in the biological system due to the reactivity 
and  especially  the  redox  effect   caused   by   transition 

metals in biological systems (Stohs and Bagchi, 1995; 
Nguyen et al., 2000).  

Beraldo and Gambino (2004) and Al-Amiery et al. 
(2012) described a series of thiosemicarbazone 
derivatives and metal complexes with different chemical 
and biological properties and highlighted the high 
biological potential of the metal complex relative to the 
free ligand. The compounds synthesized and evaluated 
against mosquito larvae in the present study need to be 
evaluated for toxicity against nontarget insects and 
especially regarding the accumulation of heavy metals in 
the environment, which requires special treatment for 
their removal (Mireji et al., 2010). The search for new 
active compounds is challenging because of the many 
cases of insects resistant to the insecticides currently 
used in vector control campaigns (Rose, 2001). 
Integrated mosquito management programmes targeting 
larvae and mosquitoes serve as one of the most effective 
ways to control insect populations and consequently 
reduce the number of vector-borne diseases in endemic 
areas. 
 
 

Conclusions 
 
Benzoyl thiosemicarbazone and its Ni(II) complex 
showed larvicidal activity against the larvae of A. aegypti 
and A. darlingi, indicating that the thiosemicarbazone 
metal complex has insecticidal potential. However, 
elucidating the mode of action of these compounds in 
larvae and developing new compounds with 
pharmacological potential are necessary. 
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