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Entomopathogenic nematodes (EPNs) are obligate parasites to insects. They are natural enemies of 
numerous insects, which employ mutually related bacterial symbionts to rapidly kill their insect host. 
They are among the frequently used beneficial biocontrol agents of numerous insect pests in 
agriculture, forestry and health. These EPNs are continuing to constitute a great deal of interest for 
both scientists and industries. This is demonstrated from the breadth of research activities on EPNs in 
many countries throughout the world. More scientists are becoming trained in working with EPNs and 
the number of newly discovered EPN species is increasing. In South Africa (S.A.) although various 
studies have revealed an incredible richness of EPNs fauna with potential use as bio-control agents 
adapted to some soil texture and environmental conditions and underline the value of conducting more 
intensive surveys in natural and different parts of the country, few studies have been done in this area. 
This review gives an overview of the EPNs genera that include the main bio-control agents. The main 
species of EPNs and their symbiotic bacteria, interaction, associated effects on the insects’ host, as 
well as their use and main insects’ hosts range in S.A are described. In addition, their production 
technology is also discussed. 
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INTRODUCTION  
 

Entomopathogenic nematodes (EPNs) are obligate 
parasite to insects (Dillman et al., 2012; Lacey and 
Georgis, 2012; Malan and Ferreira, 2017). They are 
natural enemies of numerous insects, which: 1) employ 
mutually related bacterial symbionts  rapidly; 2) kill their 
insect host, usually within 72 h of infection (Dillman and 
Sternberg, 2012; Dillman et al., 2012; Stubbins et al., 
2016; Malan and Ferreira, 2017); and 3) pass on the 
associated bacteria to future generations (Dillman et al., 
2012).  

Entomopathogenic nematodes are among the beneficial 
bio-control agents that are frequently used for pests 
control in agriculture, forestry and health (Stock, 2005; 
Stock and Hunt, 2005; Lacey and Georgis, 2012; Kalia et 
al., 2014; Devi and Nath, 2017; Edmunds et al., 2017; 
Torrini et al, 2017; Azazy et al., 2018; Saleh et al., 2018). 
As bio-control agents, EPNs possess the advantages of 
having a broad host range (Stubbins et al., 2016) and no 
known negative effect on  both environment and non-
targeted organisms (Hazir et al., 2003; Lacey and Georgis,
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2012). They can search and kill their hosts rapidly, are 
easily massed produced in vivo and in vitro, are 
susceptible to genetic selection of desirable traits and, 
are easily applied using conventional equipment (Hazir et 
al., 2003). In addition, they can be used with many 
chemical or biological pesticides or adjuvants (Rezaei et 
al., 2015); and need little or no registration measures in 
many countries (Lacey and Georgis, 2012).  

In contrast, their disadvantages are that their broad 
host range can possibly include beneficial insects, are 
poorly tolerant to environmental conditions such as soil 
moisture content, UV radiation (Shapiro-Ilan et al., 2015) 
and have limited shelf-life (Lacey and Georgis, 2012). 
Entomopathogenic nematodes were first discovered 
during the 17

th
 century (Nickle, 1984). However, it was 

only in the 1930s that serious consideration was 
assigned to them as controlling agents of insect pests 
(Glaser and Fox, 1930). This was a result from the 
discovery by Glaser and Fox in 1929, of a nematode 
infecting grubs of the Japanese beetle, Popillia japonica, 
at the Tavistock Golf Course in New Jersey; subsequently 
described as Neoaplectana (Steinernema) glaseri 
(Steiner, 1929). Previously, chemical-based pest control 
agents were utilised due to cheap prices and rapid 
effectiveness. However, these were recognised to 
possess negative effects on the environment, human and 
animals, which gradually prompted the need to search for 
biological alternatives (Adams and Nguyen, 2002; Stock, 
2005). In the 1980s, research and use of EPNs as 
biocontrol agents were intensified (Bongers and Ferris, 
1999; Adams and Nguyen, 2002). Thus, from numerous 
publications resulting from the plethora research efforts 
throughout the world and as more scientists are 
becoming trained in working with EPNs (Kaya et al., 
2006) and the number of newly discovered EPN species 
is increasing (Dillman and Sternberg, 2012; Çimen et al., 
2014; Nthenga et al., 2014; Cimen et al., 2015; Odendall 
et al., 2015; Cimen et al., 2016;  Lephoto et al., 2016; 
Malan and Ferreira, 2017), there is an interest to conduct 
further research with these nematodes. Furthermore, 
scientists, apart from EPNs niche markets or greenhouse 
uses, have developed the use of EPNs in outdoor 
environments to control many insect pests in various 
crops, such as vegetable and fruit crops (Hazir et al., 
2003; Stock and Hunt, 2005; Kaya et al., 2006). This is, 
however, restricted by the cost of production of such 
amount of EPNs to satisfy this demand (Spaull, 1992). 
This requires a competitive cost production price, which 
is reportedly met only by the scale-up of the liquid culture 
technology of efficacious isolate strains (Ehlers and 
Shapiro-Ilan, 2005). This review gives an overview of 
EPNs used for insect pest control. Main species of both 
EPNs and their symbiotic bacteria as well as their 
occurrence globally and particularly in South Africa, 
interaction and associated effects on insects’ host are 
described. In addition, their use and production are 
discussed.  

 
 
 
 
ENTOMOPATHOGENIC NEMATODES 
 
Nematodes are organisms grouped in the phylum 
Nematoda (Humphreys-Pereira and Elling, 2014; Malan 
and Ferreira, 2017) that is among the most abundant 
groups of invertebrates on the surface layers of the earth, 
rivalling the Arthropoda in biodiversity and species 
abundance (Poinar, 2011; Humphreys-Pereira and Elling, 
2014). Nematodes species range from 100 000 to 10 000 
000 with about 20 000 species described (Poinar, 2011). 
They invade more habitats on land, or in fresh and salt 
water than any other group of multicellular animals due to 
their structure, physiology, diverse reproductive patterns 
and adaptability (Poinar, 2011; Humphreys-Pereira and 
Elling, 2014).   

While most nematodes are free-living microbotrophs, 
numerous can be associated with invertebrates such as 
insects, mites and molluscs, ranging from casual to 
obligate parasitism and pathogenesis (Dillman et al., 
2012; Malan and Ferreira, 2017). Parasitic forms are of 
great economic interest (Stock, 2005). Among these, are 
the entomopathogenic nematodes (EPNs), important 
families, commonly considered as having effective 
biocontrol agents of insects, are the Steinernematidae 
and Heterorhabditidae (Lacey and Georgis, 2012; Malan 
and Ferreira, 2017). They belong to the order Rhabditida 
(Malan and Ferreira, 2017). These families have many 
biological similarities though they are not closely related 
(Stock and Hunt, 2005; Malan and Ferreira, 2017). Their 
life cycle is illustrated in Figure 1. Steinernematidae has 
two genera, viz, Steinernema (with 100 species) and 
Neosteinernema (having only N. longicurvicauda) (Malan 
and Ferreira, 2017). Heterorhabditidae contains only one 
genus, viz, Heterorhabditis, with 20 species (Malan and 
Ferreira, 2017). However, this number is increasing as 
the number of novel species being described is growing 
every year (Malan and Ferreira, 2017).  At the IJ3 stage, 
the nematode infects the host; then develops to J4 and 
G1 (adult 1

st
 generation). Then produce eggs (after 

mating) that will develop to J1. In abundance of food, J1 
will successively molt to J2, J3, J4 and G2 (2

nd
 

generation adult). This process will repeat until G3 
depending on the availability of food. When food is 
limited, J1 will molt to J2, pre-I and IJ3 that will emerge 
from the cadaver to search for a new insect host (Brivio 
and Mastore, 2018).   

The biological efficiency of the Steinernema and 
Heterorhabditis to kill an insect host is associated with 
symbiotic bacteria of the genera Xenorhabdus and 
Photorhabdus, respectively (Hazir et al., 2003; Ciche et 
al., 2006; Dillman et al., 2012). This association is highly 
specific (Hazir et al., 2003), although one bacterial 
species can be found associated with many species of 
EPNs. The best production of nematode occurs with their 
natural symbiont (Hazir et al., 2003). Although other 
nematode species (Oscheius chongmingensis and 
Oscheius   carolinensis)   can   also   be  associated  with 



 
 
 
 
symbiotic bacteria (Serratia spp.) in a parasitic form of 
insect hosts (Dillman et al., 2012), species from the 
genera Steinernema and Heterorhabditis are reportedly 
receiving more attention (Dillman and Sternberg, 2012; 
Lacey and Georgis, 2012; Malan and Ferreira, 2017).  
They have been effectively adapted to soil biological 
control agents of numerous insect pests (Malan and 
Ferreira, 2017).  
 
 
Life cycle of entomopathogenic nematodes   
 
The life cycle of both Steinernema and Heterorhabditis 
species comprises non-feeding, free-living infective 
juvenile (IJ) that infects the insect host in the soil 
environment, and develop into the adult life stage (Ehlers 
and Shapiro-Ilan, 2005; Dillman et al., 2012) as shown in 
Figure 1. The IJ stage is a form resulting from the 
depletion of food resources and adverse environmental 
conditions (Ehlers and Shapiro-Ilan, 2005). This stage is 
the only one that can occur outside of an insect (Dillman 
et al., 2012; Malan and Ferreira, 2017). Stock and Hunt 
(2005) describe Steinernematidae IJs as having 
collapsed stoma. The cuticle is annulated, lateral field 
with 6–8 ridges in middle of its body. Oesophagus and 
intestine collapse. Excretory pore distinct, anterior to 
nerve ring. Tail is conoid or filiform, with variable hyaline 
portion. Phasmids are prominent or inconspicuous. 
Heterorhabditidae IJ cuticle of second-stage juvenile has 
longitudinal ridges throughout most of the body length, 
and a tessellate pattern in anterior most region. It has 
lateral field with two ridges. It has prominent cuticular 
dorsal tooth. Excretory pore is located posterior to basal 
bulb. Tail is short, conoid, tapering to a small spike-like 
tip (Stock and Hunt, 2005).  

These two families have a similar life cycle, but the 
Heterorhabditis first generation adults are hermaphroditic 
(Stock and Hunt, 2005). The Steinernema IJ second-
stage cuticle can be easily lost, whereas the second-
stage cuticle of the Heterorhabditis IJ is retained till when 
it is about to infect the host or shortly after the bacterial 
cells (200 to 2000 cells) are located in a special vesicle in 
the intestine of the Steinernema. In the Heterorhabditis 
they are located in the intestinal tract (Stock and Hunt, 
2005; Ehlers and Shapiro-Ilan, 2005; Malan and Ferreira, 
2017).  
 
 
Nematode/bacterium interactions with hosts 
 
The IJs locate their hosts by following cues such as 
host’s excreted CO2, or by attaching themselves to the 
host when it passes (Griffin et al., 2005). Infection occurs 
through natural openings, such as spiracles, thin areas of 
the host’s cuticle, mouth or anus (Kaya and Gaugler, 
1993). The IJs use physical force (body thrusting) to pass 
through the cuticle or gut to get into the haemolymph.  
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Also, they can secrete proteolytic enzymes to digest the 
midgut or use an anterior tooth (only present within 
Heterorhabditis spp.) to gain access into the hemocoel 
(Hazir et al., 2003). Once inside the hemocoel, the 
nematode/bacterium duo overcomes the host’s immune 
response (Hazir et al., 2003), as the latter may try to 
resist the infestation by metabolizing antibiotics or by 
initiating the phagocytosis to encapsulate them and thus 
inactivate them (Wang et al., 1995).  

Once the IJs penetrate the host, they release their 
symbiotic bacterial cells through the anus or mouth. The 
released bacterium will multiply exponentially while 
producing toxic secondary metabolites that will kill the 
host (Dillman et al., 2012; Noguez et al., 2012), 
suppressing the growth of microbial competitors and, 
stimulating the macromolecular degradation by producing 
diverse antibiotics and exo-enzymes (Chaston et al., 
2011; Bai et al., 2013). The IJs transform into feeding, a 
stage where they feed on the bacterial cells and host’s 
metabolized tissues, thus eventually developing to one or 
more generations depending on the size of the host 
(Hazir et al., 2003). After the depletion of food resources, 
Steinernema IJs re-associate with their bacteria and 
transform into IJ3 that will emerge into the soil to search 
for new hosts (Dillman et al., 2012) (Figure 1). The 
Heterorhabditis associated bacteria (Photorhabdus spp.) 
inhabit the gut of their nematode host during its 
development and are passed to IJ before it emerges 
(Ciche et al. 2008). 

The EPN-bacterium relationship is mutual; the EPN 
protects the bacterium from external environment, 
vectors it into the host’s haemolymph and inhibits the 
host’s antibacterial proteins. In turn, the bacterium 
produces secondary metabolites that kill the insect host, 
create a suitable environment for the EPN development, 
produce, and serve as food source for the EPN (Dillman 
et al., 2012). 
 
 
SYMBIOTIC BACTERIA 
 
Both Xenorhabdus spp. and Photorhabdus spp. belong to 
the family Enterobacteriaceae. They are gram-negative, 
motile, facultative anaerobic rods and non-spore forming 
(Hazir et al., 2003). Twenty-one Xenorhabdus spp. are 
associated with the Steinernema spp., and three 
Photorhabdus spp. (P. luminescens, P. temperata and P. 
asymbiotica) are associated with Heterorhabditis 
(Thanwisai et al., 2012; Blackburn et al., 2016). 
Commonly, P. luminescens is associated with H. 
georgiana, H. indica and H. bacteriophora; while P. 
temperate with H. bacteriophora, H. downesi, H. 
georgiana, H. marelatus, H. megidis and H. zealandica 
and; P. aymbiotica with H. gerradi (Thanwisai et al., 
2012). Xenorhabdus spp. are associated with numerous 
Steinernema spp. (Thanwisai et al., 2012). More bacterial 
symbionts  from  novel   EPNs   species   are   still   to  be
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Figure 1. The life cycle of entomopathogenic nematode. Characters in red and blue indicate 
various stages of the animal life cycle when food is limited and when food is not limited. M, J 
and G stand for molt, juvenile (stage) and generation.  

 
 
 
Table 1. Status of selected symbiotic bacteria associated with EPNs in South Africa.  
 

Bacterium  
Associate 
Entomopathogenic 
nematode  Status References 

Genus Species Species 

Xenorhabdus spp. 

X. khoisanae Steinernema khoisanae New species Ferrerira et al. (2013a) 

X. indica 
Steinernema 
yirgalemense 

New nematode bacteria 
association 

Ferreira et al. (2016b) 

Photorhabdus spp. 

P. luminescence 
subsp. noenieputensis 

Heterorhabditis 
noenieputensis 

- Ferrerira et al. (2013a) 

P. heterorhabditis  
Heterorhabditis 
zealandica 

Interesting association  Ferrerira et al. (2014a) 

 

Source: Adapted from Malan and Ferreira (2017). 

 
 
 
characterized (Malan and Ferreira, 2017). Malan and 
Ferreira (2017) presented symbiotic bacteria (Table 1) 
associated with EPN that occur in SA. Bacteria are 
important in the commercial production of EPN as they 
have various growth phenotypic or phase variations. 
 
 
Phenotypic variant 
 
Phase I variant or primary form is the original bacterium 
phase variant, isolated from EPN. In contrast, Phase II 
variant or secondary form can arise after repeated in vitro 
sub-culturing (Ehlers and Shapiro-Ilan, 2005),  during  the 

bacterial stationary non-growth stage and when 
nematodes emigrate from the cadaver (Hazir et al., 2003; 
Ehlers and Shapiro-Ilan, 2005). This phenomenon of 
phase variation is reversible with the Xenorhabdus and 
has not been reported for Photorhabdus spp. (Han and 
Ehlers, 2001; Hazir et al., 2003; Ehlers and Shapiro-Ilan, 
2005). 

Phase I form is unlike phase II form by producing 
secondary metabolites with antibacterial activity, 
adsorbing certain dyes and by developing large 
intracellular inclusions composed of crystal proteins; 
whereas phase II form does not or weakly produce 
antibacterial   secondary   metabolites,  does  not  adsorb 

 

Host 

J3 to J4  

Feeding 

IJ3  

Infection 

Adults 

(G2)  

Eggs 
M1  M2  M3  

M4  

M1  

M2  M2  

M1  

(♂♀) 

J1  J2  J3  J4  

J1  

J2  

Egg

s 

Pre-1  

Plentiful food Limited food 

Pre-1  

J1  

Adults (G1) 

(♂♀)  

J1  



 
 
 
 
dyes and, inefficiently produces intracellular inclusions 
(Dowds and Peters, 2002; Hazir et al., 2003). The 
primary form is also superior because it supports EPNs 
propagation during in vitro growth (Hazir et al., 2003). 
The complex nematode/symbiont bacterium is essentially 
monoxenic (Hazir et al., 2003). 
 
 
USE OF NEMATODE-BACTERIUM AS BIOCONTROL 
AGENTS 
 
The EPN-bacterium relationship for controlling insect 
pests has been the subject of intense laboratory and 
field-testing since 1930s (Glaser et al., 1940; Klein; 1990; 
Kaya and Gaugler, 1993; Shapiro et al., 2002; Grewal et 
al., 2005; Lewis and Clarke, 2012; Shapiro et al., 2012; 
Dillman and Sternberg, 2012; Rezaei et al., 2015). For 
instance, species such as S. scarabaei, H. bacteriophora 
strain GPS11, H. bacteriophora strain TF, H. zealandica, 
S. yirgalemense and H. zealandica strain X1 have been 
successfully used to control the Japanese beetle, Popillia 
japonica and the vine mealybug, Planococcus ficus 
(Signoret), (Grewal et al., 2005; Koppenhöfer, 2007; Klein 
et al., 2007; le Vieux and Malan, 2013a,b). 
Entomopathogenic nematodes are currently successfully 
used as pesticides worldwide (Dillman and Sternberg, 
2012). For instance, EPNs are used to control invasive 
species of mole crickets, citrus root weevil in orange 
groves, and other damaging crop pests in Florida and 
California (Grewal et al., 2005; Dillman and Sternberg, 
2012). Some, for instance H. bacteriophora and H. 
zealandica are commercially available for grub control 
(Grewal et al., 2005; Dillman and Sternberg, 2012). This 
surge of both scientific and commercial interest is the 
result of advances in mass-production and formulation 
technology of EPNs, compounded with the discovery of 
many efficacious isolate strains capable of reducing the 
use of chemical pesticides (Lacey and Georgis, 2012). 
Both scientists and companies are now focusing to 
improve both cost efficiency and better products to 
position themselves within the market.  
 
 
MASS PRODUCTION 
 
Entomopathogenic nematodes can be cultured easily 
either in vitro or in vivo (Ehlers and Shapiro-Ilan, 2005). 
The in vivo method is suitable method for laboratories, 
scientific expertise or infrastructures with no need of large 
investment. This is for instance to produce EPNs for 
niche markets, grower co-operatives or other commercial 
arenas lacking the capital outlay (Ehlers and Shapiro-
Ilan, 2005). The in vitro method is suitable for EPNs 
production for commercial use (Ehlers and Shapiro-Ilan, 
2005). It has a reasonable cost of production, and can 
supply high quality EPNs (Ehlers and Shapiro-Ilan, 2005), 
although some  studies considered  the  quality  of  EPNs  
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produced in vitro lower than that of EPNs produced in 
vivo (Yang et al., 1997). 
 
 
In vitro liquid culture  
 
The liquid fermentation method is the one chosen for 
EPNs mass-production in larger companies (especially 
those that have industries supplying multiple products). It 
has economies of scale and has the lowest cost of 
production. This is because its scale decreased labour 
proportion and capital costs (Hazir et al., 2003; Ehlers 
and Shapiro-Ilan, 2005). Liquid culture process involves 
the mixture of fluids, EPNs and symbiotic bacterium in 
bioreactors for up to 3 weeks (Ehlers and Shapiro-Ilan, 
2005). Factors influencing the successful process include 
suitable medium, monoxenic conditions and adequate 
oxygen (Hazir et al., 2003). Typically, a medium 
comprises yeast extract (nitrogen source), carbon source 
(e.g. soy flour, glucose or glycerol), various proteins and 
lipids (of animal and plant origin), and salts (Han et al., 
1995; Surrey and Davies, 1996; Ehlers et al., 1998; Hazir 
et al., 2003; Ehlers and Shapiro-Ilan, 2005). Its osmotic 
strength is not above 600 milliosmoles per kilogram 
(Ehlers and Shapiro-Ilan, 2005).  

Conventional equipment such as bioreactor has been 
successfully used (Surrey and Davies, 1996; Ehlers et 
al., 1998; Hazir et al., 2003; Ehlers and Shapiro-Ilan, 
2005). A configuration of the airlift bioreactor (Spier et al., 
2011), internal loop bioreactors are reported to yield the 
highest IJ concentration (Ehlers and Shapiro-Ilan, 2005). 
The schematic outline of EPNs production process is 
presented in Figure 2. After monoxenic cultures are 
established they are scaled up to a 3000 L internal loop 
bioreactor. After 12 days, Infective juveniles are 
harvested with a separator. The nematode paste is then 
cleaned by passing through centrifugal sifters and 
formulated (Adapted from Ehlers and Shapiro-Ilan, 2005). 

Cultures are always pre-incubated with the specific 
symbiont bacterium (0.5-1%, w/v) for 24-36 h before IJs 
are inoculated (5-10%, v/v of the culture), calculated 
based on optimum number of adults per millilitre (Ehlers 
and Shapiro-Ilan, 2005). Few data have been published 
on the optimum parameters of this process (Hazir et al., 
2003; Ehlers and Shapiro-Ilan, 2005). Many nematode 
species, such as S. carpocapsae, S. feltiae, S. glaseri, S. 
kushidai, S. riobrave, S. scapterisci, H. indica, H. 
bacteriophora and H. megidis can be successfully mass 
produced in 7 to 8 litres liquid media in bioreactors (Hazir 
et al., 2003; Ehlers and Shapiro-Ilan, 2005). Yield 
capacity depends on the nematode species (Hazir et al., 
2003; Ehlers and Shapiro-Ilan, 2005); reportedly, H. 
indica yield capacity of greater than 500,000 IJ/ml has 
been recorded (Ehlers and Shapiro-Ilan, 2005). After, 
nematodes are either bulk stored or formulated 
immediately (Georgis and Kaya, 1998; Grewal, 2000; 
Hazir  et  al., 2003),  and  finally  commercialised  after its  



6          J. Entomol. Nematol. 
 
 
 

 
 

Figure 2. Flow chart of nematode production process.  

 
 
 
quality being controlled (Gaugler and Han, 2002; Grewal, 
2002; Hazir et al., 2003). It is worthwhile to notice that, 
the continuous scale-up of bioreactor volumes together 
with strengthening of the process stability and 
downstream processing, as well as increasing EPN shelf-
life, improving transport logistics and marketing will bring 
along further reduction of production costs (Ehlers and 
Shapiro-Ilan, 2005).  
 
 
EPN OCCURRENCE GLOBALLY AND IN SOUTH 
AFRICA 
 
Entomopathogenic nematodes have been recovered 
worldwide (Hominick, 2002; Kaya et al., 2006). Species 
are likely to be globally distributed and are essentially 
ubiquitous (Hominick, 2002; Kaya et al., 2006). Although 
some species (S. rarum, S. kushidai, S. ritteri and H. 
argentinensis) appear, so far, to be more restricted to 
some regions, some others (S. carpocapsae and S. 
feltiae) are widely distributed in temperate regions, 
tropics and subtropics (H. indica), and some others (H. 
bacteriophora) in regions with continental and 
Mediterranean climates (Hominick, 2002). The research 
activities on the EPN in many countries throughout the 
world clearly demonstrate a great deal of interest. It is 
expected that the amount of published information will 
increase as more scientists are becoming trained in 
working with EPNs (Kaya et al., 2006).  

In South Africa (S.A.),  hundreds  of  invertebrate  pests 

infest the agricultural industry (Hatting et al., 2018). To 
reduce this, the more than 500 pesticides actually 
allowed by the Act 36 of 1947 under the Fertilizers, Farm 
Feeds, Agricultural Remedies and Stock Remedies 
continue to pose a risk on humans, animals and the 
environment (AVCASA, 2018; Hatting et al., 2018). Their 
risk awareness has been increasing; since late 1970s, 
several insecticides including monocrotophos, 
chlorpyrifos, endosulfan, aldicarb and methyl bromide 
have been eliminated (or restricted) by the South African 
government (Hatting et al., 2018). This has encouraged 
the establishment of a "South African National Bio-
Economy Strategy" (DST, 2013) and the use of 
alternatives biological pest control agents (Hatting et al., 
2018). These have been further compounded by a 
synergetic effect of biological agents to chemical 
insecticide (by extending their active-life through reduced 
selection pressure), and by increasing regulatory (on 
chemical pesticides) and market pressures on industries 
to supply the newly discovered markets from the west 
(Hatting et al., 2018; Malan et al., 2018). Thus, 
agricultural industries have been compelled towards 
using biological pesticides and over the past few years, 
multinational agricultural chemical companies have been 
actively purchasing biopesticide companies (Moore et al., 
2015). This had led to a dramatic growth of the 
biopesticide market (Hatting et al., 2018). For instance, 
from the year 2000 to 2010, a 20-fold growth of the global 
market of biopesticides was estimated (Ravensberg, 
2011;  Glare  et  al.,  2012)  and,  this  growth  is  likely  to 



 
 
 
 
continue (Hatting et al., 2018). 

Entomopathogens pest control agents in S.A. were first 
used in the late 1800s (Hatting et al., 2018). The first 
attempts involved the use of an entomopathogenic fungi 
Entomophaga grylli (Entomophthorales: 
entomophthoraceae) against the red locust, Nomadacris 
septemfasciata (Orthoptera: Acrididae) (Hatting et al., 
2018). Report on EPNs were first recorded in the Eastern 
Cape Province in early 1950s; these were collected in a 
maize field from the black maize beetle, Heteronychus 
sanctae-helenae (Coleoptera: Scarabaeidae) (Harington, 
1953; Hatting et al., 2018). Since then, few studies have 
been done in the effectiveness of endemic South African 
EPN species against insect pests (Kaya et al., 2006; le 
Vieux and Malan, 2013b; Malan and Ferreira, 2017). This 
is important because of strict regulations preventing the 
import of exotic organisms (amendment of Act 18 of 1989 
under the Agricultural Pest Act, No, 36 1947) (Malan et 
al., 2006; Malan et al., 2011). Therefore, research on 
EPNs in SA is mainly focused on endemic South African 
strains against key insect pests such as Cydia pomonella 
(Lepidoptera: Tortricidae), Thaumatotibia leucotreta 
(Lepidoptera: Tortricidae) and Eldana saccharina 
(Lepidoptera: Pyralidae) (Malan and Hatting, 2015; Malan 
et al., 2018; Odendaal et al., 2016a,b; Hatting and Malan, 
2017; Malan and Ferreira, 2017, Steyn et al., 2017). This 
is because of the economic damage that they may cause 
to agricultural industries. 

Cydia pomonella is a key pest of apples and pears 
orchards (Addison, 2005). South Africa is considered as 
one of the biggest deciduous fruit producers in the 
Southern hemisphere due to its production area of 24156 
and 1265 hectare (ha) of apples and pears, respectively 
(Addison 2005; Hortgro 2017). In 2017, it was ranked 
sixteenth and sixth in world apple and pear production; 
respectively (metric ton), and is considered among the 
top ten fresh apple and pear exporters in the world 
(Hortgro 2017). The main producing areas include the 
district of Ceres, Wolseley/Tulbagh, (pears only) 
Groenland, Villiersdorp/Vyebom and Langkloof East in 
the Eastern Cape Province (Hortgro 2017); representing 
approximately 88 and 84% of the country’s production 
area of apples and pears, respectively (Hortgro 2017). T. 
leucotreta (false codling moth) is indigenous to S.A 
(Newton, 1998). It is also an agent of potential economic 
damage on several citrus, deciduous subtropical fruit and 
vegetable crops in most production areas (Prinsloo and 
Uys, 2015). South Africa is considered as the second 
largest exporter of citrus worldwide, with a total 
production area of 77708 ha located in all provinces 
(CGA, 2018). Its citrus oriented industry constitutes an 
important source of job creation and foreign income 
(CGA, 2018). In 2017, more than 40% of deciduous fruits 
produced were exported to Western Europe and UK, 
25% to Asia, 20% to the Middle East, 9% to the Eastern 
Europe and 7% to the Northern America; with total export 
earnings of R17.7 billion (CGA, 2018). Eldana  saccharina 
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Walker is indigenous to South Africa; it was first reported 
in 1939 (Hatting et al., 2018). It is widespread in wetland 
sedges and indigenous grasses from KwaZulu-Natal and 
Mpumalanga Provinces, and it is the number one pest of 
South African sugarcane (Horton et al., 2002; Webster et 
al., 2006; Assefa et al., 2009). A 0.1% sucrose loss 
occurs per every 1% of sugarcane stalks damaged due to 
larval feeding; and a South African sugarcane damage of 
about US$10 million per annum has been estimated due 
to E. saccharina; (Black et al., 1995; Horton et al., 2002). 
Other important pests include the citrus mealybug P. citri 
(Hemiptera: Pseudococcidae), citrus codling moth 
Thawnatotibia leuxotreta (Lepidoptera: Tortricidae) 
(Malan et al., 2011), obscure mealybug Pseudococcus 
viburni (Hemiptera: Pseudococcidae), vine mealybug P. 
ficus (Hemiptera: Pseudococcidae) (Stokwe and Malan, 
2016; Stokwe and Malan, 2017), white grubs from the 
family Scarabaeidae (Coleoptera) (Abate et al., 2017) 
and the woodwasp Sirex noctilio (Hymenoptera: 
Siricidae) (Tribe, 1995; Ismail et al., 2010). Other pests of 
interest include fruit flies Ceratitis rosa and C. capitata 
(Diptera: Tephritidae) (Malan and Manrakhan, 2009; 
James et al., 2018), stable flies, Stomoxys calcitrans 
(Diptera: Muschidae) (hatting and Malan, 2017), the 
banded fruit weevil Phyctinus callosus (Coleoptera: 
Curculionidae) (Ferreira and Malan, 2014), African 
bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) 
(Malan and hatting, 2015), and the fungus gnats, 
Bradysia spp. (Diptera: Sciaridae) (Katumanyane et al., 
2018). 

Increasing numbers of EPN species with biocontrol 
potential are being discovered, such as Heterorhabditis 
zealandica, H. Noenieputensis, H. zealandica, H. 
bacteriophora, H. safricana (Malan et al., 2006; Malan et 
al., 2008; Hatting et al., 2009; de Waal et al., 2011; Malan 
et al., 2011; Malan et al., 2014; Malan et al., 2016), and 
Steinernema citrae, S. khoisanae, S. yirgalemense, S. 
biddulphi, S. jeffreyense, S. sacchari, S. innovation,  S. 
tophus (Malan et al., 2006; Nguyen et al., 2006; Hatting 
et al., 2009; de Waal et al., 2011; Malan et al., 2011; 
Stokwe et al., 2011; Nthenga et al., 2014; Çimen et al., 
2014 ; Cimen et al., 2015; Cimen et al., 2016; Malan  et 
al., 2016), and Oscheius sp. (TEL-2014), Oscheius 
safricana (Lephoto et al., 2016; Serepa-Dlamini and 
Gray, 2018). From surveys on indigenous EPN species 
(Hatting et al., 2009), such as a systematic survey 
throughout five provinces (Gauteng, Free State, 
KwaZulu-Natal, Mpumalanga and Western Cape) of S.A, 
with typical soil forms ranging from very sandy to sandy 
clay loam texture (Hatting et al., 2009), species were 
varied and adapted to various soil texture and 
environmental conditions (Hatting et al., 2009). Also, the 
authors have revealed an incredible richness of EPNs 
fauna with potential use as biocontrol agents and that the 
country is unexplored in terms of EPN diversity (Hatting 
et al., 2009; Hatting et al., 2018). Malan and Ferreira 
(2017)  presented  a  Table  (Table  2)  of a chronological
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Table 2. Table of a chronological timeline of EPN (Steinernematidae and Heterorhabditidae) research in SA.  
 

Year Nematode/bacteria  Target insect pest Nematodes tested  

1953 
First mention of EPN from the maize beetle 
(Heteronychus arator) in the Eastern Cape 
province  

- - 

1988-1992 
Rist survey and isolation of EPN from 
KwaZulu-Natal Province in sugarcane 

Surgarcane borer (Eldana 
saccharina) 

Heterorhabditis spp., 
Steinernema spp. 

1993-1994 - 
Use of imported EPN against 
the banded fruit weevil 
(Phyctinus callosus) 

Imported: H. megidis and S. 
carpocapsae  

2006 
S. khoisanae: First new Steinernema 

described from SA 
- - 

2008 
H. safricana: First new heterorhabditis 
described from SA 

- - 

2009 - 
Mediterranean fruit fly 
(Ceratitis capitata): Natal fruit 
fly (C. rosa) 

H. bacteriophora, S. khoisanae, 
S. yirgalemense 

2010 - Coding moth H. zealandica 

2011 S. citrae 
Codling moth; false codling 
moth (Thaumatotibia 
leucotreta) 

H. bacteriophora, H. 
zealandica, S. citrae, S. 
jellreyense, S. khoisanae, S. 
yirgalemense 

2012 - 
Citrus mealybug 
(Planccoccus citri) 

H. bacteriophora, H. safricana, 
H. zealandica, S. khoisanae, s. 
citrae, S. yirgalemense 

2013 
First description of Xenorhabdus and 
Photorhabdus from SA: P. luminescens subsp. 
Noenieputensis, X. khoisanae 

Codling moth; banded fruit 
weevil, vine mealybug 
(Planccoccus ficus), citrus 
mealybug  

H. bacteriophora,H. 
noenieputensis, H. zealandica, 
S. citrae, S. khoisanae, S. 
yirgalemense 

2014 
H. noenieputensis, S. innovation, S. sacchari, 
P. zealandica 

Citrus mealybug, mealybug 
ladybird (Cryptolacmus 
montrouzien) 

H. zealandica, S. yirgalemense 

2015 S. jeffreyense, S. tophus, P. zealandica 
Obscure (P. vibumi), citrus 

and vine mealybug 

H. bacteriophora, H. 
zealandica, S. yirgalemense, S. 
feltiae (imported) 

2016 S. fabii, S. khuyeni, X. indica Codling moth 
H. bacteriophora, H. 
zealandica, S. feltiae 
(imported), S. yirgalemense 

 

Source: Adapted from Malan and Ferreira (2017). 

 
 
 
timeline of EPN research in SA up to  2016.  

Among the 12 Steinernema species (spp.) recovered 
(Malan et al., 2006; Hatting et al., 2009; Malan et al. 
2011), only S. yirgalemense is not novel (Hatting and 
Malan, 2017); and among the 7 Heterorhabditis spp. 
recovered, two are novel H. safricana and H. 
noenieputensis (Malan and Ferreira, 2017). These were 
recovered more likely in citrus orchards (17% recovery 
rate) than in deciduous fruit orchards (5–7%) (Malan and 
Ferreira, 2017). From their tests in controlling insect pest 
(Hatting et al., 2009; Hazir, 2009; Stokwe, 2009; Stokwe 
and Malan, 2010; de Waal et al., 2011; Van Niekerk and 
Malan, 2012; Odendall et al., 2015; Malan and Ferreira, 
2017), they showed promising results to control T. 
leucotreta  and  B.  impatient   (Diptera:   Sciaridae)  (only 

tested in laboratory) in both laboratory and field plots 
under optimized conditions (Malan et al., 2011; Malan 
and Moore, 2016; Katumanyane et al., 2018). There are 
excellent results in C. pomonella in laboratories, but 
variable results in the field. This is due to  suboptimal 
environmental conditions such as cryptic habitats (bark 
and pruning wounds on apple trees), low relative humidity 
and temperatures, wind and unpredictable rainfall in the 
Mediterranean climate of the Western Cape Province (De 
Waal et al., 2010; De Waal et al., 2011; Odendaal et al., 
2016a,b; De Waal et al., 2018). There were unsuccessful 
against woolly apple aphid Eriosoma lanigerum 
(Hemiptera:Aphididae) due to their  inability to develop in 
the soil stage insect’s haemolymph (Stokwe and Malan, 
2017).  



 
 
 
 
Researches on the optimisation of EPNs hostile field 
conditions have been conducted. These include the 
application of irrigation system for EPNs application 
(Mason et al., 1999); the development of low-volume 
spray application system, such as the spinning disc spray 
application system (Mason et al., 1999) and its improved 
version in terms of IJs carriage in droplets presenting a 
better deposition of IJs per cm

2
 (Piggott et al., 2003); the 

use of appropriate adjuvants for the spray application to 
facilitate the infectivity (mortality and intensity of infection) 
of IJs; for instance, a spinning disc spray Micron Ulva and 
the adjuvant Micron Herbaflex significantly increased the 
IJs deposition (IJs/cm

2
) (Mason et al., 1998)  and also 

studies on EPNs (Rhabditida: Steinernematidae and 
Heterorhabditidae) water loss and survival to desiccation 
(Patel et al., 1997; Mason and Wright, 1997; Spence et 
al., 2011). Some species, such as S. carpocapsue have a 
slow rate of water lost among the Steinernema spp. and 
can survive up to 20 min (min) at a relative humidity of 
0% (Patel et al., 1997). But Heterorhabditis spp. were 
reportedly the most promising species to be used in 
condition of desiccation (Mason and Wright, 1997). 

Only flask-cultures of H. zealandica (Ferreira et al., 
2014), S. innovationi (Ramakuwela et al., 2016) and S. 
yirgalemense (Ferreira et al., 2015) have been obtained 
despite several attempts for in vitro mass culturing 
(Hatting et al., 2018). Currently, only an imported 
formulation based on H. bacteriophora is produced and 
commercialized under the name Cryptonem® (Hatting et 
al., 2018). In all, there is a need for more intensive 
surveys in natural areas and geographic regions, 
including regions where surveys have not yet been done. 
There is need for more research efforts on EPN field 
application especially in areas with hostile environmental 
conditions and; more effort toward EPNs mass 
production for a broader application in agriculture. 
Substituting chemical pesticides will stabilize agricultural 
environments and crop yields (Ehlers and Shapiro-Ilan, 
2005). Thus, progressing in EPNs research will be an 
important move toward sustainable agricultural practices. 
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