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The response of the Lotka-Volterra system forced by periodical modulation was numerically simulated 
in a wide frequency range. The main question is: how does the change of environment A parameter 
influence the behavior of such a system? The answer to this question is the main purpose of this paper. 
In the resonance region, the oscillation of the system fits to the forced frequency (or its harmonics) and 
shows that the numbers of prey and predators change significantly in time. Their populations after 
reaching the specified value become small and sometimes they are near zero and making the recovery 
of the population (e.g. of the predators) impossible. The Lotka-Volterra non-linear system, in contrast to 
the linear oscillatory systems (e.g. damping harmonic oscillator- RLC circuit), is very sensitive; the 
initial conditions of the effect of resonance chaos depend on the conditions of the system. 
Superposition principle, including relaxation behavior is not applicable in the nonlinear Lotka-Volterra 
system. 
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INTRODUCTION 
 
In spite of many studies that are devoted to the relation 
between prey and predator in the evolution dynamic (in 
particular, the species extinction), there is lack of a 
satisfactory model of that ecosystem. The simple model 
is based on Lotka-Volterra ecological system and it has 
been considered from many points of view (Nicolis and 
Prigogine, 1977; Smith, 1978). There are also more 
specific modifications of the Lotka-Volterra model: 
Rosenzweig and McArthur model (Rosenzweig and 
MacArthur, 1969; MacArthur et al., 1966), SI model 
(Svennungsen and Kisdi, 2009; Gilchrist and Coombs, 
2006) and its combinations (Morozov and Adamson, 
2011) as well as Arditi and Ginzberg (1989) modi-
fications.  

The oscillatory aspects in the Lotka-Volterra system are 
presented by many authors. The exogenous component - 
a strong periodic component, called periodic forcing is 
regarded by Turchin in his book (Turchin, 2003).The 
author shows how nonlinear population dynamics can 

create something novel when interacting with an 
exogenous driver. He demonstrates how two regular, 
periodic kind of motions produce an irregular trajectory. 
The Lotka-Volterra dynamics under periodic influence is 
considered by Dutta and Bhattacharjee (2008). Some 
aspects of evolution as well as extinction of species 
based on the Lotka-Volterra model are included in the 
literature. Evolutionary stability in Lotka-Volterra systems 
was considered by Cressman and Garay (2003). 
Extinction dynamics of a Lotka-Volterra model of two-
level food web were considered too (Coppex et al., 
2004). Khaminskii et al. (2003) show how perturbations of 
coefficients averaging lead to extinction of one of the 
populations. Stabilization of the Lotka-Volterra food webs 
by evolutionary feedback is presented by Ackland and 
Gallagher (2004). The dynamic behavior of the classical 
periodic Lotka-Volterra competing system with impulsive 
effect is investigated in the paper by Liu and Chen 
(2004). The authors explain how one of the competing
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species without impulsive effect but in a periodic 
environment would be doomed to extinction. 

The Lotka-Volterra model describes the periodic 
oscillation in certain autocatalytic reactions and it is used 
to explain the some biological population behaviors. This 
model was employed to explain ecological relationships 
in prey-predator populations (e.g. hares and lynxes). 
Lotka in 1925 (Lotka 1925) and Volterra in 1926 (Volterra 
1926) independently formed nonlinear equations 
describing prey-predator time behaviors: 
 

 bXYaX
dt

dX
 , eYcXY

dt

dY
                                     (1) 

 
Where, X is the number of prey and Y is the number of 
predators. Parameters a, b, c, and e represent the 
interaction of two species; in particular, a denotes a 
prey’s increasing rate in the absence of predators and e 
is the predator’s mortality rate. The model shows that the 
prey and predators populations exhibit nonlinear 
stationary oscillations and their phase trajectory (mutual 
dependence between X and Y) is a closed cycle line.   

In most cases, a constant inflow of food consumed by 
prey in the predator-prey system was considered and 
therefore in equations a constant parameter, a is 
assumed (1). However, in some real systems, food inflow 
changes in time. How does the change of a parameter 
influence the behavior of such a system? The answer to 
this question is the main purpose of this paper. We have 
shown through computer simulations the existence of 
resonance and chaotic effects which result from 
oscillatory modulation of food inflow to the predator-prey 
ecosystem. The resonance effect should be observed 
when a frequency of food inflow into a population area 
becomes equal to the natural frequency of predator-prey 
system. 

In addition, chaotic effects are particularly visible when 
the system is far from equilibrium. The resonance and 
chaotic effects were observed in other nonlinear systems, 
e.g. for a forced nonlinear pendulum (Kahn and Zarmi, 
2003; Arinstein and Gitterman, 2008). The present 
simulation, when applied to the ecological system, allows 
for a better understanding of the nature of all nonlinear 
oscillatory systems in biology.  
 
 
Computer simulation and results 
 
For convenience and transparency of calculations, we 
used dimensionless variables, in which the differential 
equations (1) look as follows:  
 

)1(),1(  xy
d

dy
yAx

d

dx


                               (2) 

 
Where, x and y denote the prey and predator reduced 
population, respectively, in stationary conditions:  
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e

c
Xx   and 

a

b
Yy  . te   is the reduced time, and 

e

a
A   is a constant directly proportional to the resources 

of food consumed by prey and inversely proportional to 
the mortality rate of predators. In this form a non-zero 

stationary state ( 0
dt

dx
; 0

dt

dy
) is observed for x = 1 

and y = 1, and populations of prey and predators are 
constant. 
 
When the initial values of x or/and y are not one, simple 
analyses reveal steady oscillations of both x and y. When 
the predator population is low, the prey population 
increases or vice versa. A phase trajectory (called phase 
portrait or limit cycle), that is, the dependence between x 
and y is determined. The population oscillation of 
predators shifts in comparison to the prey population. For 
the small deviations from the equilibrium, the phase 
trajectory is almost rounding whereas for the large 
deviation it becomes similar to triangle in shape. This 
shift is still large near the equilibrium. This is widely 
described in literature (Nicolis and Prigogine 1977; Smith 
1978). Figure 1 shows the period T of natural oscillations 
of the system in function of its amplitude, obtained by 
numerical calculations for the different initial values of x 
and y. For the small deviations from the equilibrium, the 
beginning of the plot in Figure 1 can easily be calculated 
by linearization of equations (2).  

In this case, we deal with a simple harmonic motion. 
The population of the predator delays from that one of the 
prey by π/2, and its oscillation period is equal to 2π. For 
the larger deviation, the linearization may not be applied 
and the monotonous rise of the period vs. amplitude is 
visible. In a similar experiment (Kahn and Zarmi, 2003). 
This relationship will be further taken into account to 
interpret the unusual behavior of Lotka-Volterra system in 
resonance. 

In this paper, we assume that the relation between prey 
and predators, represented by A, is not constant but 
periodically modulated in time. For the sinusoidal 
modulation, A may be expressed by: 

 

))sin(1(0 mAA                                                  (3)  

 

Where,  denotes the modulation frequency 

( T 2 ) and m is the amplitude modulation depth. 

A0 represents a constant concentration of food and 
determines the amplitude of the modulation, provided the 
rate of death of predator is constant. In order to solve 
differential equations (2) the fourth-order Runge-Kutta 
numerical algorithm was used (Appendix 1). For time-
dependent simulation, we assumed A0 = 1 and m = 0.1 or 
0.2. Comprehensive numerical calculations were carried 
out for the initial values of the prey number, xin = 2 and 
predator yin = 2.5 in a wide range of period T. Particular
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Figure 1. The period T of natural oscillations of the system in dependence on its amplitude A 
obtained by numerical calculations. 

 
 
 
attention was paid to resonances, where in this nonlinear 
system the first and higher harmonics were expected to 
occur.  

The range of oscillating, phase shift of x φx can be 
associated with the resonance of the system stimulated 
by changes of environmental resources of food. Due to a 
strong nonlinearity of the system, resonance effects 
should be expected not only for the basic frequency (the 
first harmonic), but also for higher harmonics. Special 
simulation of behavior of the prey-predator system was 
carried out for the second harmonic case when the 
stimulated frequency was about two times higher than the 
natural frequency (Figure 2). Based on the numerical 
calculations, the amplitude of the number of prey x and 
the phase shift φx are very sensitive to the stimulated 
frequency ω. The vibration amplitude of the system 
fluctuates first when it reaches a maximum value and 
drops next to a minimum of one (Figure 2a). This beha-
vior can be explained by an increase in the fashion, the 
period of pendulum increases with its amplitude, which 
may be proved at a simple laboratory oscillation period of 
the system with increasing amplitude. This has a signi-
ficant influence on the phase difference between vibra-
tions of A-parameter and the system oscillations. When 
the two vibrations are in phase coincidence, the ampli-

tudes of x and y components rise, and the period of the 
system oscillations gets longer, which leads to a delay of 
the vibration of the system in respect to the stimulated 
oscillations. After a while, these two oscilla-tions are not 
in phase, so the natural oscillation be-comes suppressed 
and its amplitude falls down consi-derably. Due to that, 
the frequency of the system osci-llations becomes larger 
than the stimulated oscillation, the phase delay dis-
appears, and the oscillations again are in phase coin-
cidence. Then the cycle of changes of the system ampli-
tude and the phase relations are re-peated (Figure 2b). 
For other frequencies of stimulated vibrations which do 
not differ significantly and which are situated in the reso-
nance range, the situation is similar. Only the resonance 
curves take different shapes, depending on frequency ω. 
What is essential is that the frequency system gets 
adjusted to ω. However, this ability to adjust is limited. 
When the phase difference becomes higher, the system 
cannot compensate for the frequency gap, and φx de-
creases or increases monotonously. The maximum 
amplitude of the system drops suddenly to achieve 
approximately the initial value. 

For example, Figure 2b and c present the time depen-
dencies of x and φx for the periods (Τ = 2π/ω) equal to 
3.36 and 3.3598, respectively. It is normal that very small
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Figure 2. a) Changes of the population of preys x stimulated by oscillatory changes of food A consumed 

by preys. The phase shift Δφ between the two oscillations is marked by arrow. b) and c) Population of the 
preys (the grey line) and the phase shift Δφ (the solid line) for the period stimulated oscillation T = 3.36 
(b) and T = 3.3598 (c).  

 
 

 

changes of the stimulated frequency with a small amp-
itude (m << Ao) cause sudden and significant changes in 
both the amplitude of prey (or predators) and phase shift 

φx. Furthermore, φx initiated for the period 3.36 is 
maintained until 4.00 and its changes are less than ½ of 
the natural oscillation of the system. Until T = 3.36 the
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Figure 3. a) The maximum xmax and minimum xmin population number of preys and their difference 

b) in dependence on the period of the stimulated frequency for the second harmonic; c) the phase 
shift Δφ between stimulated vibration and population of the preys in the resonance range.  

 

 
 

phase shift decreases for decreasing T, first gradually in 
accordance with the amplitude oscillation of x, then the 
changes become smaller, and a decrease in φx is mono-
tonous. Above T = 4.00, φx increases, first gradually, then  

monotonously. 
A response of Lotka-Volterra system to a second 

harmonic is shown in Figure 3. The amplitudes of x at 
maximum, xmax, and at minimum, xmin are determined from 
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Figure 4. The change of prey population, xmax - xmin, in a function of stimulated frequency. The resonance 

ranges of orders from 1 to 5 are denoted by grey areas.  

 
 
 
the phase trajectories, which are similar to the plots in 
Figure 2b. Abrupt changes can be noticed when the 
period T of stimulated oscillation achieves the value, 3.36 
or 4.00 (Figure 3a). The difference, xmax - xmin, is plotted 
in Figure 3b. Figure 3c shows the phase shift Δφ is 
restricted only to the resonance range. It is normal that 
xmax - xmin and Δφ exhibit the minimum inside the 
resonance region.  

A similar behavior was observed for other harmonics; 
however, for the first harmonic the range of the 
resonance is considerably lower and devoid of the 
minimum of the difference xmax - xmin inside the resonance 
curve (Figure 4). This figure presents complex changes 
of population of prey, xmax - xmin, in function of the 
stimulation frequency ω (this dependence is similar to 
population of predators). Five resonances corresponding 
to five harmonics (1 to 5) are denoted by the shadowed 
regions. The resonance peak between the first and 
second harmonic for the stimulated frequency ω equal to 
3/2 of the frequency of the system is distinctly visible. 

 
 
Species extinction  

 
Predator - prey dynamics represented by Lotka-Volterra 
model (equations 1 or 2) is based on the following 
assumptions: 

(i) Predators eat only one kind of prey. 
(ii) There is a particular case when the prey population 
considerably decreases and their population density 
becomes very low. 
(iii) There is density of prey below when the population of 
predators decreases; this enables the recovery of the 
prey population because of lack of natural enemies. 
Now, we shall discuss the prey-predator interaction 
introducing an additional assumption.  
(iv) In the absence of predators the prey population 
considerably grows and tends towards a stable value 
determined by limited food resources. In this case, to the 
prey equation a logistic term proportional to x

2
: kx

2 
should 

be added, where k is a constant.  
 

)1(,)1( 2  xy
d

dy
kxyAx

d

dx


.                    (4) 

 

Parameter A periodically changed in time as described by 
eq. (3). The system (4) has asymptotically stable periodic 
solutions. Our simulation procedure is carried out for the 
first resonance harmonic of stimulated vibration for the 
period T = 7.8. For k = 0.0003, the unusually large 
changes in the prey and predator populations are 
reached. At the minimum, the prey and predator 
populations are a bit less than 0.028 and we may say that 
this value is sufficiently low to fulfil the assumption (iii).   
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Figure 5. a) Changes in the food resources A and populations of preys x (the blue line) 

and predators y (the red line) as function of time τ at the resonance (see text). Insert 
represents the phase trajectory. b) The same as in a) plotted in considerably expanded 
vertical axis. The simulation was made for the following data: xin = 2, yin = 2.5, T = 7.8, 
A0 = 1, m = 0.2, and the iteration step h = T/1000, k = 0.0003.  

 
 
 

The predator population decays to zero; y = 0 and 0
d

dy  

in Equations (4). The result of the simulation is shown in 
Figure 5 applying the numerical procedure described in 
Appendix I. The prey population x after extinction of 
predators considerably increases and then oscillates with 
respect to the stable value determined by the food 
resources represented by A. The values of A and y are 
significantly lower than x and so they are not visible in 

Figure 5a (the overlapping lines parallel to the abscissa 
axis). For this reason, in Figure 5b the vertical axis is 
appropriately extended and the changes in A, x and y 
and their relations are visible. Insert in Figure 5a 
represents the phase trajectory, which tends to the 
triangular shape, which shows that the system is highly 
non-linear. It is clearly visible in the last cycle, when after 
a great increase in the species population it falls to a very 
small value and leads to extinction of predators and a sig- 



 

 
 
 
 
nificant growth of the population of prey.  
 
 
DISCUSSION 
 

The results of the present study illustrate only a small, but 
fundamental part of a more common phenomenon, which 
we should expect to occur if other parameters of the 
system, e.g. initial conditions or amplitude of the forced 
oscillations, were to change. The periodical inflows have 
been presented by many authors from different points of 
views (which were presented in introduction). In 
particular, the periodical modulation by pulse-shaped 
food inflow was considered too (Kneubühl, 1997). The 
results, in general, are similar to the above outcome for 
the sinusoidal food inflow, but they are different in details.  

Forced oscillation seems to be important for 
characterizing the system. Response of a nonlinear 
oscillator to an external periodic force was sought for by 
Minorsky (1962) and Kneubühl (1997). For the system 
that is far from equilibrium, chaotic effects are also 
observed (Nicolis and Prigogine, 1977). Since the Lotka-
Volterra non-linear system is very sensitive, the initial 
conditions of the resonance effect depend on the 
conditions of the system. In contrast, for the linear 
oscillatory systems such effects as sensitivity to the initial 
conditions, resonance or chaotic behavior and triangular 
limit cycle are never observed.  

In the linear dynamical systems the results may be 
utilized to construct the universal superposition principle, 
including the relaxation behavior. In the nonlinear 
dynamical systems the superposition principle does not 
apply. The facts presented above distinguish all non-
linear systems from the linear ones. The simple example 
of a linear oscillatory system is a damping harmonic 
oscillator (RLC circuit) whose amplitude varies slowly and 
periodically (Krupska and Krupski, 2003). When this 
linear oscillatory system (RLC circuit) is in resonance we 
can estimate a relaxation time from the phase shift 
between the generator voltage and the voltage of the 
capacitor of the RLC circuit. In the presented oscillatory 
nonlinear Lotka-Volterra system with the A parameter 
periodically modulated, any relaxation occurs. This is 
non-relaxing system. In the forced periodically Lotka-
Volterra system higher harmonics are observed 
corresponding to the more than one resonance region. In 
the forced periodically RLC circuit higher harmonics are 
not observed, because only one resonance region 
occurs.  

Kneubühl (1997), in his book, presents both linear and 
nonlinear physical and biological oscillatory systems, 
including Lotka-Volterra one. This book is a good 
comparison between the liner and nonlinear oscillatory 
systems. Another difference between the linear and non-
linear systems is visible in the shape of the resonance 
curve. The linear response, with a normal simple curve, 
Lorentzian or Gaussian in shape, can be observed only 
at the natural frequency of the system; while the non-linear 
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linear shape of the resonance starts suddenly, then it is 
kept within a certain frequency range and finishes also 
suddenly. The higher harmonics of the resonance 
frequency are observed, which spread over a significant 
range of the frequency. Sometimes, in the resonance 
region different modes may be observed, depending on 
the initial conditions of the system and on the amplitude 
modulation of the forced oscillations. These facts lead to 
the finding of a lot of other forced frequency (or periods) 
for which the oscillation of the prey-predator system 
becomes large and leads to extinction of species, as in 
the example shown in Figure 5. That is why Lotka-
Volterra system is interesting and requires further 
investigations.  

The predator extinction follows after a lot of oscillations 
of the system (for example 27 periods in Figure 5). It 
explains the ecological behaviour of the predator-prey 
system, in which after a long time of the predator-prey 
coexistence, significant growth of the system oscillations 
occurs. The predator population decreases below critical 
value and again its growth becomes impossible. This 
situation results from lack of food for predators, because 
of significant decrease of prey and their dispersion in the 
environment as well as difficulties of the predators to 
reproduce. The preys are in better situations because 
they have sufficient food resources and their population 
growth is approximately logistical and finally oscillate 
according to the oscillation of the food in the 
environment.  

In this paper, a typical two-dimensional nonlinear 
system is considered. In this system there is no effect of 
chaos. It is a stable system, where chaos does not occur. 
There is no damping oscillation here. In the two-
dimensional non-linear systems, chaos and stochastic 
fluctuations usually do not occur. As a result, stochastic 
fluctuations are neglected in the model presented in this 
paper. We may suppose that in our model these 
fluctuations do not occur or are so small that they can be 
neglected. In the literature three or four-dimensional 
examples of a competitive Lotka-Volterra system have 
been characterized as where stochastic fluctuations 
occur (Vano, 2006; Sprott, 2005). There is no work on the 
two-dimensional nonlinear regarding Lotka-Volterra 
model and other systems in which there are stochastic 
processes. In the stochastic or random process there is 
some indeterminacy. This means if the initial condition is 
known, there are several directions in which the process 
may evolve. In our case at given initial condition there is 
only one process of evolution of system. So this is not a 
stochastic process. But, we observe a strong sensitivity 
to initial conditions (Figure 2). 

The most interesting conclusion which we may draw for 
the oscillatory forced prey-predator system described 
above is the significant increase in the amplitude of the 
populations and possibility ofextinction of predators 
during time, considerable larger than the oscillation 
period of the system. Therefore, the above presented 
modification of Lotka-Volterra model may be used to ex- 

http://www.google.pl/search?hl=pl&tbm=bks&tbm=bks&q=inauthor:%22Fritz+Kurt+Kneub%C3%BChl%22&sa=X&ei=8BlGT9S6MsagOs_jlPYN&ved=0CB4Q9Ag
http://www.google.pl/search?hl=pl&tbm=bks&tbm=bks&q=inauthor:%22Fritz+Kurt+Kneub%C3%BChl%22&sa=X&ei=8BlGT9S6MsagOs_jlPYN&ved=0CB4Q9Ag
http://www.google.pl/search?hl=pl&tbm=bks&tbm=bks&q=inauthor:%22Fritz+Kurt+Kneub%C3%BChl%22&sa=X&ei=8BlGT9S6MsagOs_jlPYN&ved=0CB4Q9Ag
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plain some examples of species extinction. Although, we 
should note that Volterra-Lotka type of model (3) is a 
conservative system without dissipation. We should note 
also that the model (4) is not generic for k = 0, meaning 
that infinite small change of this parameter leads to a 
qualitative different solution.  

In this paper, an ideal example of stimulated oscillation 
with constant amplitude is considered, but in the real 
systems, we have very irregular changes in the 
environmental conditions driven by noise and some other 
periodical parameters. For simplicity, we assumed only 
one alternating parameter (A), which leads to the effect of 
the species extinction, using the simple numerical 
calculations. This may be the weakness of the presented 
model, but this is strictly a simulation paper. It is not 
possible to simultaneously simulate other time-varying 
parameters that describe Lotka-Volterra system. We 
chose only one modulation parameter A, which seems to 
be the most important. We hope the model presented in 
this paper may be useful for students. 
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Appendix I 
 
LV program; 
{Lotka-Volterra Model} 
Constant: 
 t0 = 0; 
 x0 = 2; 
 y0 = 2.5; 
 Ao = 1; 
 m = 0.2; 
 Tz = 7.8; 
 h = Tz/1000; 
 k = 0.0003; 
var 
 t, x, y, x1, y1, K : Real; 
 n : LongInt; 
 k1, k2, k3, k4 : array[1..2] of Real; 
plik1 : text; 
 
function fna(x, y, t: Real): Real; 
 begin 
 fna := A*(x-x*y)-k*x*x; 
 end; 
 
function fnb(x, y, t: Real): Real; 
 begin 
 fnb := y*(x-1); 
 end; 
 
begin 
 Assign (plik1,'C:\LV.dat'); 
 Rewrite (plik1);  
 
 x := x0; y := y0; 
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 for n := 0 to 10000 do 
 begin 
  
 t := t0 + n*h; x := x + x1; y := y + y1;  
 
 k1[1] := fna(x, y, t)*h; 
 
 
 k1[2] := fnb(x, y, t)*h; 
 k2[1] := fna(x + k1[1]/2, y + k1[2]/2, t + h/2)*h; 
 k2[2] := fnb(x + k1[1]/2, y + k1[2]/2, t + h/2)*h;  
 k3[1] := fna(x + k2[1]/2, y + k2[2]/2, t + h/2)*h; 
 k3[2] := fnb(x + k2[1]/2, y + k2[2]/2, t + h/2)*h;  
 k4[1] := fna(x + k3[1], y + k3[2], t + h)*h; 
 k4[2] := fnb(x + k3[1], y + k3[2], t + h)*h;  
 x1 := (k1[1] + 2*k2[1] + 2*k3[1] + k4[1])/6; 
 y1 := (k1[2] + 2*k2[2] + 2*k3[2] + k4[2])/6; 
 
 A := Ao*(1+m*Sin(2*Pi/Tz*t)); 
 IF x<= 0.028 THEN y := 0; 
 Writeln(plik1, t, ' ', A,' ', x,' ',y); 
 
end; 
close(plik1); 
end. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 


