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This paper presents a real time simulation for virtual end milling process. Alyuda Neurolntelligence was
used to design and implement an artificial neural network. Artificial neural networks (ANN’s) is an
approach to evolve an efficient model for estimation of surface roughness, based on a set of input
cutting conditions. Neural network algorithms are developed for use as a direct modeling method, to
predict surface roughness for end milling operations. Prediction of surface roughness in end milling is
often needed in order to establish automation or optimization of the machining processes. Supervised
neural networks are used to successfully estimate the cutting forces developed during end milling
processes. The training of the networks is preformed with experimental machining data. The neural
network is used to predict surface roughness of the virtual milling machine to analyze and preprocess
pre measured test data. The simulation for the geometrical modeling of end milling process and
analytical modeling of machining parameters was developed based on real data from experiments
carried out using Prolight2000 (CNC) milling machine. This application can simulate the virtual end
milling process and surface roughness Ra (um) prediction graphs against cutting conditions
simultaneously. The user can also analyze parameters that influenced the machining process such as
cutting speed, feed rate of worktable.

Key words: Surface roughness, virtual reality, simulation, surface roughness, virtual end milling process, neural
network.

INTRODUCTION

Milling process is classified as material removal process.
This process and its machine tools are capable of
producing complex shapes with the use of multi-tooth,
cutting tools. In the milling process, a multi-tooth cutter
rotates along various axes with respect to the work piece.
Applications of the end milling process can be found in

almost every industry ranging from large aerospace
industry to small tool and die makers. One reason for the
popularity of the end milling process is that it can be used
for both rough and finish machining of components. The
major problem, which may result from the end milling
process, is the generation of a finished part surface which
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does not satisfy product design specifications. A finished
part surface might be too rough or poor dimension
accuracy. An undesirable part surface may require
additional machining, thus lowering productivity and
increasing the cost of the production. In order to produce
parts, which conform to design specifications, proper
machining conditions (spindle speed, feed rate, depth of
cut, cutter diameter, number of cutting flutes, and tool
geometry), must be selected (Boothroyd, and Knight,
1989).

Machining processes such as turning, milling, drilling
and grinding can be visualized using Virtual Reality (VR).
VR technology can also be used to evaluate the
feasibility of a design, selection of process equipment
and to allow a user to study the factors affecting the
quality, machining time and costs. It is important to note
that a virtual reality system is essentially an interactive
simulation that can represent a real or abstract system.
The simulation is a representative computer based
model, which provides appropriate data for visualization
or representation of the system. The virtual environment
can take many forms and for example, it could be a
realistic representation of a physical system (Schofield,
1995).

Some of the machine operator using ‘trial and error’
method to set-up milling machine cutting conditions. This
method is not effective or efficient and the achievement
of a desirable value is a repetitive and empirical process
that can be very time consuming thus, a mathematical
model using statistical method provides a better solution.
Multiple regression analysis is suitable to find the best
combination of independent variables, which is spindle
speed, feed rate, and the depth of cut in order to achieve
desired surface roughness. Unfortunately, multiple
regression model is obtained from a statistical analysis
which requires large sample data. The advantages of
ANN-based prediction systems are as follows:

(i) ANN is faster than other algorithms because of their
parallel structure.

(i) ANN does not require solution of any mathematical
model.

(iii) ANN is not dependent on the parameters, so the
parameter variations do not affect the result.

Instead of attempting to find analytical relationships
between machining parameters by the use of statistics,
machine learning is used. In the present paper, a
different approach that is based on advanced artificial
intelligence techniques is implemented and tested. More
specifically neural networks are used to predict the
surface roughness developed during end milling. The
advantages of proposed system over the traditional
estimation methods are: simple complementing of the
model by new input parameters without modifying the
existing model structure, automatic searching for the non-
linear connection between the inputs and outputs.

According to the comparisons on the testing results, it
has been shown that the neural network approach is
more accurate and faster than the other methods.
Compared to traditional computing methods, the ANNs
are robust and global. ANNs have the characteristics of
universal approximation; parallel distributed processing,
hardware implementation, learning and adaptation.
Because of this, ANNs are widely used for system
modeling function optimizing and intelligent control. ANNs
give an implicit relationship between the input(s) and
output(s) by learning from a data set that represents the
behavior of a system.

Tandon and Mounayri (2001) also proposes a back
propagation (BP) ANN for on-line modeling of forces in
end milling. In (Zuperl and Cus, 2003), a more efficient
model is created using BP ANN (using Levenberg—
Marquardt approach). This approach has the
disadvantage of requiring too many experiments to train
the ANN. This, in terms of industrial usability, is
unattractive and expensive. Researchers (Lee and Lin,
2000), in their ANN implementations, evolve knowledge
of the machining environment by training these networks
on run-time data. Researches (Szecsi, 1999) also
propose a modified back propagation ANN which adjusts
its learning rate and adds a dynamic factor in the learning
process for the on-line modeling of the milling system.
The learning rate is adjusted by the divided method and a
dynamic factor is used during the learning process so as
to develop the convergence speed of the back
propagation ANN. A much larger set of input machining
parameters is considered than in other work reported so
far.

In this paper the Multi-Layer back propagation (BP)
network is a supervised, continuous valued, multi-input
and single-output feed forward multi-layer network that
follows a gradient descent method interfaced with the
virtual environment to predict surface roughness in the
end milling process. ANN based model is developed with
using the optimized network for this particular case (100
networks are tested) that the most accurate model will be
suggested for in-process part surface roughness
prediction. Computer numerical control or better known
as CNC has been used as a model for the virtual end
milling process simulation. The application will simulate
an end milling process as well as perform analytical
modeling of machining parameters such as surface
roughness on machined work piece. Real time graphs of
the surface roughness Ra (um) against cutting conditions
will be displayed simultaneously during the simulation of
the end milling process. The mechanism behind the
formation of surface roughness in CNC milling process is
very dynamic, complicated, and process dependent.
Several factors will influence the final surface roughness
in a CNC milling operations such as controllable factors
(spindle speed, feed rate and depth of cut) and
uncontrollable factors (tool geometry and material
properties of both tool and work piece).



RELATED WORKS

Manufacturing industries have gained benefit from VR
applications in several ways. The use of VR to build
prototypes will reduce the costs of finished products,
changes in the physical product can be costly but
modifications can be made in the virtual prototypes
inexpensively.

Virtual reality has been applied to many areas of
manufacturing. It provides 3D visualization of
manufacturing environment and has great potential in
manufacturing applications to solve problems and help in
important decision-making.

A desktop virtual shop floor containing a 3-axis
numerical control milling machine and a 5-axis robot for
painting has been developed. The user can mount a work
piece on the milling machine, choose a tool and perform
direct machining operations, such as axial movements or
predefined sequences (Bayliss et al., 1994). Java, Virtual
Reality Modeling Language (VRML) and the External
Authoring Interface (EAI) have been employed to perform
Numerical Control (NC) machining simulation in a
networked VR environment (Qiu et al., 2001).

The geometry of the work piece being cut will be
updated dynamically A number of applications of VRML
exist on the Web in various areas. One of them is a
method for simulating basic manufacturing operations
such as unload, load, process, move and store in a 3D
virtual environment. The virtual environment provides a
framework for representing a facility layout in 3D that
consists of the static and dynamic behavior of the
manufacturing system (Chawla and Banerjee, 2001).

Another VR application is a virtual machining laboratory
for knowledge learning and skill training in an interactive
environment. This virtual laboratory is specifically
designed for helping students to virtually operate a lathe
or set machining parameters and input CNC G-code
program to turn the work piece automatically (Fang et al.,
1998). Yuzhong and Altintas (2007) have developed an
integrated model of the spindle bearing and machine tool
system, consisting of a rotating shaft, tool holder, angular
contact ball bearings, housing, and the machine tool
mounting. The model allows virtual cutting of a work
material with the numerical model of the spindle during
the design stage. The proposed model predicts bearing
stiffness, mode shapes, frequency response function
(FRF), static and dynamic deflections along the cutter
and spindle shaft, as well as contact forces on the
bearings with simulated cutting forces before physically
building and testing the spindles.

Delmia’s Virtual NC is also an interactive 3D simulation
environment for visualizing and analyzing the functionality
of an NC machine tool, its CNC controller and the
material removal process (Delmia, 2001).

A prototype of 3D virtual environment which is based
on the standalone concept has been developed using
AutoCAD 2002, VRML Out, VRML Pad, JavaScript and
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Java (CUS et al., 2003). AutoCAD 2002 was used to
model the 3D objects and then the models were
transformed into VRML format using VRML Out. Java,
JavaScript and VRML were used to develop the
animation of end miling process simulation and
machining parameters simulation such as the flank wear
on cutting tools. The simulation for the geometrical
modeling of end milling process and analytical modeling
of machining parameters was developed based on real
data from some experiments using Computer Numerical
Control (CNC) milling machine (Haslina and Zainal,
2008).

An Adaptive neuro-fuzzy inference system (ANFIS) to
predict the surface roughness in the end milling process
has been developed (Haslina and Zainal, 2008). Surface
roughness was used as dependant variable while cutting
speed, feed rate and depth of were used as predictor
variables. Normal and feed forces were used as predictor
variables to verify the ANFIS model. Different
membership functions were adopted during the training
process of ANFIS. Surface roughness was measured in
an off line manner. The normal and feed forces were
measured in an on-line manner using two components
dynamometer (Soltan et al., 2007).

DEVELOPMENT OF THE
ENVIRONMENT

SIMULATION

In developing the application, there are some important
stages and these are clearly illustrated by Figure 1.
These stages will begin with static object (machine parts),
which covered the authoring of the 3D model up to the
creation of virtual environment. Details of the processes
are explained in 3D world in solid works (static objects)
part of the work. In the next stage, assembly of dynamic
objects is constructed and their coordinates or positions
are generated accordingly. Details of the interfacing
activities are explained in 3D world in solid works (static
objects) as part of this research.

3D World in solid works (static objects)

Initially, this paper reports the research surrounding the
development of a virtual machine tool designed to
simulate a typical actual machine implemented to predict
several parameters in the virtual environment. The actual
machine tool details were not developed in complete
structure of a typical CNC machine within this paper;
however, the major constituents of the machine were
reconstructed to a point where it could be implemented
and become the subject of research in the virtual
environment. Only selected parts of the CNC machine
that are involved in the end milling process are created
instead of developing a complete structure of a typical
CNC machine. The machine table system that which
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Figure 1. Framework of Real Time Simulation for Virtual Milling Process.

linear bearings are subject, typically due to the actual
traversals, also the same friction and mass is generally
found in actual slides. The three dimensional model for
the static objects (machine parts) was first created using
Solid works 2008 to form a 3D world of end milling
process.

Construction of the virtual machine

Design requirements demanded the use of commercially
available cutters to produce the same actual work pieces.
Spindle speeds (revolutions per minute) rpm and drive
system specifically for use with the same actual
materials.

The saddle engages the linear rods that are attached to
the base of the machine. A ball screw moves the saddle
along the Y axis. The linear rods running through the top
of the saddle engage the cross slide. Another ball screw
moves the cross slide along the X and Z axis (Figure 1).
The spindle motor on the movable machine head is a 1hp
DC permanent magnet motor (regarding to the machine
power requirements). The spindle motor drives the
spindle shaft with a timing belt. The axis drive belts are
located between the motors and balls crews on each
axis. The developed virtual machine has the following
major specifications: Steeples 0 to 5,000 rpm spindle
speed range, X Travel: 12", Y Travel: 6", Z Travel: 8",
Motor: 1 hp. Table: 25 1/2" x 6 1/4" and Power: 230 volt,
single phase. The three dimensional model of CNC
milling machine has been drawn in a wire frame form
before the solid model of the machine is displayed as
shown in Figure 2. When this stage is completed, the
translation process begins where a group of few objects
representing the components of the machine is being

exported to the solid works animator tools. For example,
the detailed worktable would be exported as one group.
This procedure is repeated with the other groups
(column, bed, head, etc) until the entire model has been
translated into the solid works animator. The entire
translation process as shown in Figure 3 was released by
Solidworks2008 to allow the exporting of any 3D solid
model to be animated. Finally, all the groups of file are
gathered once again with solid works animation editor, to
form a complete animated model as previously seen in
the Solidworks2008 drawing. Now, the virtual end milling
process world is completed and ready to be explored
through the Vericut browser and to be equipped with the
control panel CNC part program inputs. In this
application, programming is to transform the final model
of extension (.sld.) to typical file extension: (.mch.) It is an
ASCII file that contains data describing the construction,
kinematics, and other properties of an NC machine tool.
Machine file can be loaded into VERICUT via the
Configuration menu > Machine > Open function. NC
machine configurations are changed via other "Machine"
functions in the Configuration menu. Save the new file via
Configuration menu >Machine > Save as.

MACHINING TESTS

All the machining tests were carried out on the Prolight
2000 CNC milling machine as shown in Figure 4. The
work piece tested is 60/40 Brass (80 mm x 40 mm x 40
mm). The end milling and four flutes high speed steel is
chosen as the machining operation and cutting tool. The
diameter of the tool is D=7/16 inch (11 mm.). End milling
experiment were performed under dry machining
condition. Seventy-five readings were used as training
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Figure 2. 3D model from solid works 2008.

data set and thirty two readings were used as testing
data set. The range selected of speed is 750, 1000,
1250, 1500 and 1750 rpm, for feed rate is 50, 100, 150,
200 and 250 mm/min, and for depth of cut is 0.3, 0.5 and
0.7 mm. Every test was repeated three times,
measurements were taking the average value for the
roughness parameter Ra, as shown in Tables 1 and 2.
Surface Roughness Ra, was observed and measured by
using a stylus-based profile-meter (Surtronic 3+,
accuracy of 99%) (Figure 5). The direction of
measurement of the surface roughness is perpendicular
to the direction of the lay. The measurement length of
each specimen equals to 12.5 mm divided into five cuts;
of length; 2.5 mm each.

THE INTERFACE
NEUROINTELLIGENCE

OF ARTIFICIAL

Generally, the interface of Neurolntelligence is optimized

SN R | 443 A

[
0 Solidworks ... EN @& JBL
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to solve forecasting, classification and function
approximation problems. Neurolntelligence is neural
network software designed to assist experts in solving
real-world problems. Aimed at solution of engineering
problems, Neurolntelligence features only proven
algorithms and techniques, is fast and easy-to-use.
Neurolntelligence supports all stages of neural network
application. It is used in this work to:

1. Analyze and preprocess the pre measured test results,
2. Find the best neural network architecture that
represents the end milling process trend accurately,

3. Test and optimize the selected network,

4. Apply the optimum network to predict surface
roughness (Ra) for the designed virtual CNC end milling
process (Cus and Balic, 2000). The prediction is much
faster with easy-to-use interface and unique time-saving
features. All processes on the machine are automated
and we can easily understand the underlying machine
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behavior with graphs, statistics and reports. Machining
parameters are represented to be intelligible,
comprehensive and accessible with the overall virtual
environment as in Figure 6.

Predictive surface roughness modeling

Artificial neural networks are systems with inputs and
outputs composed of many simple interconnected parallel
processing elements, called neurons. These systems are
inspired by the structure of the brain. Computing with
neural networks is no algorithmic (Yang and Park, 1991)
and they are trained through examples rather than
programmed by software. Some of the key features of
ANN’s are their processing speed due to their massive
parallelism, their proven ability to be trained, to produce
instantaneous and correct responses from corrupted
inputs once trained, and their ability to generalize
information over a wide range. The Multi-Layer BP

BN R L % iy R 6:22 am

network is a supervised, continuous valued, multi-input
and single-output feed forward multi-layer network that
follows a gradient descent method. The gradient descent
method alters the weight by an amount proportional to
the partial derivative of the error with respect to the
weight in question. The back propagation phase of the
neural network alters the weights so that the error of the
network is minimized. This is achieved by taking a pair of
input/output vectors and feeding the input vector into the
net which generates an output vector, which is compared
to the output vector supplied, thus gaining an error value.
The error is then passed back through the network (back
propagation process), modifying the weights due to this
error using the equations. Hence, if the same sets of
input/output vectors are presented to the network, the
error would be smaller than previously found. For
modeling the surface roughness, three-layer feed-forward
neural network was used as in Figure 7, because this
type of neural network which was used gives the most
accurate results. The detailed topology of the used ANN



Figure 4. ProLight 2000 CNC end milling machine.

with optimal training parameters is shown on Figure 7.
The ANN was trained with the following parameters:
cutting speed (n rpm), feed (f mm/min), radial depth of cut
(t mm), The first layer of processing elements is the input
layer (buffer), where data are presented to the network
(Feng and Menq, 1996). The last layer is the output layer
(buffer) which holds the network response (surface
roughness Ra). The layers between the input and output
layers are called hidden layers. The activation of the
multilayer feed forward network is obtained by feeding
the external input to the first layer, using the
corresponding input function to activate the neurons, and
then applying the corresponding transfer function to the
resulting activations. The vector output of this layer is
then fed to the next layer, which is activated in the same
way, and so on, until the output layer is activated, giving
the network output vector. This is called the feed forward
phase, because the activations propagate forward
through the layers.

Developing the ANN predictor

To develop the optimal neural network predictor the
following steps must be accomplished:
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1. Collecting the experimental data
measurements of surface roughness.

2. Preparation of data for training and testing of ANN is
carried out as follows: Cutting conditions and measured
surface roughness Ra are listed into a data matrix (text
file or excel file), where cutting conditions as input vectors
and roughness values as output vector.

3. Optimization process: where the optimal network
configuration is determined and training of parameters is
done by simulations.

4. Training and testing of ANN.

5. Putting the estimator into operation. Graphic
representation of results and prediction of statistic are
obtained.

through the

Details of neural network and its adaptation to
surface roughness modeling problem

For the BP network, the choice of the training parameters
is the most important criteria that determine the degree of
success of a network used to perform the specific task.
Even if a set of training parameters and a corresponding
architecture have been selected and successfully
implemented, the question of whether or not the selected
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Table 1. Measured Ra in microns (training data set).

n (rpm) 750 1000 1250 1500 1750
t(mm)f(mm/min) 03 05 07 03 05 07 03 05 07 03 05 07 03 05 07
50 11 136 1.9 096 1.12 136 118 1.6 1.08 0.6 0.82 102 084 0.82 1.54

100 128 206 222 1.02 1.44 178 118 13 1.14 086 1.02 124 098 1.16 1.22

150 142 263 2.96 1.54 154 224 124 134 122 132 1.36 138 11 126 1.62

200 154 35 352 1.16 228 264 126 15 1.44 156 156 1.4 132 162 1.6

250 182 25 55 158 296 3.14 166 138 1.62 1.32 1.26 142 148 174 156

Table 2. Measured Ra in microns (testing data set).

n (rpm) 875 1125 1375 1625
t (mm) f(mm/min) 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6
75 1.42 1.86 1.02 1.36 1.02 1.18 0.76 1.22
125 1.96 2.36 1.28 1.62 1.14 1.33 1.16 1.32
175 2.42 2.66 1.36 1.92 1.22 1.32 1.22 1.38
225 2.06 2.88 1.56 1.96 1.26 1.52 1.3 1.44

Figure 5. Stylus-based profilometer.

parameters are the optimum for that task will still remain network? What values should be picked for the learning
to be answered. The important questions are: How many rate (a) and momentum rate (b)? The selection of these
hidden layer neurons, should be assignedto a given training parameters is more art than science and is
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Figure 6. Designed virtual environment of end milling proces
predict Ra.

reported to be depended on application (EI Mounayri et
al., 1998). In researches three groups of simulations were
executed to study systematically the individual influences
of training parameters on the performance of back
propagation networks used for predicting surface
roughness in end milling. The individual effects of varying
each of these parameters were kept at (or near) their
optimum values (CUS et al., provide year). To evaluate
the individual effects of training parameters on the
performance of neural network 100 different networks
were trained, tested and analyzed using actual machining
data. From the results of all simulations the following
conclusions can be drawn:

(i) Learning rates below 0.3 give acceptable prediction
errors while learning rates must be between 0.01 and 0.2
to minimize the number of training cycles and obtain low
predictions errors. Therefore, learning rates that will give
an overall optimum performance are any value between
0.01 and 0.2;

(i) To minimize the estimation errors, momentum rates
between 0.001 and 0.005 are good. However, the
momentum rate should not exceed 0.004 if the number

BN R % g & @ 1:514M

s of the Prolight2000 CNC Vertical Milling Machine while ANN

of training cycles is also to be minimized;

(iii) The optimum number of hidden layer nodes is 3 or 6.
Networks with between 2 and 15 hidden layer nodes,
other than 3 or 6, also performed fairly well but resulted in
higher training cycles;

(iv) Networks trained with the (tanh) transfer function in
all their processing elements give the least prediction
errors, while those employing sigmoid and sine give the
highest and next highest prediction errors respectively;

(v) Networks that employ the sine function require the
lowest number of training cycles followed by the
Arctangent, while those that employ the hyperbolic
tangent require the highest number of training cycles;
Figures 8 to 16 shows the network information details
implemented in this paper.

DISCUSSION

The interface of this application is a page that briefly
explains the project as shown in Figure 6 which has
some description about the CNC milling machine and the
milling process. The machining equipment menu will
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Figure 7. Predictive surface roughness (Ra) network.

final pap2
Training Error  Maximum Average Minimum
1.0000
Learning rate: 0.60000000
0.9000 Momentum: 0.80000000
0.8000 Accelerator: 0.00000000
Max. Training error:  0.00388513
0.7000 Ave. Training error: ~ 0.00025794
Min. Training error: 0.00000019
0.6000
0.5000 Target error: 0.01000000
Average error saved: 0.00024298
0.4000 Training examples: 99
Validating examples: 0
0.3000 No validating results.
0.2000
0.1000
b
0 94 192 324 540 1040 2020 3980 9200 21600 54000
Learning Cycles
Layer: Input Hidden 1 Hidden 2 Hidden 3 Output Learning Threads 1/0
Nodes: 3 6 7 1 1
Weights: 18 42 7 1

Figure 8. Training error curve of modeling surface roughness (Ra.) after 54000 cycles.
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hossam results 78250 cycles. Target error 0.0100 Average training error 0.007451

The first 3 of 3 Inputs in descending order.

Column Input Name Importance
0 n rpm 1.5562
1 f mm/min 1.4925
2 tmm 1.2772

Relative Importance

73

Figure 9. Effect weights of cutting conditions.

final pap2 54239 cycles. Target error 0.0100 Average training error 0.000258

The first 3 of 3 Inputs in descending order.

Column Input Name Change from

0 nrpm 750.0000
1 f mm/min 50.0000
2 t mm 0.3000

Output column 3 Ra

to Sensitivity Relative Sensitivity
1750.0000 0.242541335
250.0000 0.024277320
0.7000 0.002490710

Figure 10. Sensitivity of Surface Roughness (Ra) to cutting conditions.

final pap2 Input Real Column 0 nrpm

Scaled Value

Average

Missing
1.0
0.9
0.8
0.7
0.6

0.5

0.3
0.2
0.1
0.0

0 9 19
4 14

29 39
24 34 44

49

Estimate

54

Right click mouse for display options.

Risk Trend Scaled Real
1.0 1750.000
0.9 1650.000
0.8 1550.000
0.7 1450.000
0.6 1350.000
0.5 1250.000
0.4 1150.000
0.3 1050.000
0.2 950.000
0.1 850.000
0.0 750.000
59 69 79 89
64 74 84 94

Row numbers

Figure 11. Experimental spindle speeds trend introduced to network.

describe and displays the cutter and example of CNC
milling machine processes. In this application, VR has
made it easy to perform the simulation of the geometrical
modeling of end milling process and analytical modeling
of machining parameters. By clicking the Simulation

button, it would link the user to the page where two
windows comprising of control panel (user input) and
ANN browser displaying the surface roughness
predictions in a 3D environment. The control panel shows
information on the machining process such as
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final pap2 Input Real Column2 tmm Right click mouse for display options.

Scaled Value Average Missing Estimate Risk Trend Scaled Real
1.0 1.0 0.700
0.9 0.9 0.660
0.8 0.8 0.620
0.7 0.7 0.580
0.6 0.6 0.540

W
0.5 FoaFoafatoatoa LAY Lo e drad s \ Y 0.5 0.500
0.4 0.4 0.460
0.3 0.3 0.420
0.2 0.2 0.380
0.1 0.1 0.340
0.0 0.0 0.300
| | | | | | L L L
0 9 19 29 39 49 59 69 79 89
4 14 24 34 44 54 64 74 84 94
Row numbers
Figure 12. Experimental radial depth of cut trend introduced to network.
final pap2 Input Real Column1 fmm/min Right click mouse for display options.

Scaled Value Average Missing Estimate Risk Trend Scaled Real
1.0 1.0 250.000
0.9 o 0.9 230.000
0.8 0.8 210.000
0.7 0.7 190.000
0.6 \ / \ \ A \ \ \ \ |/ A [ A 'A /|\ -[ 06 170.000
0.5 l l k 0.5 150.000

/ / NV
jala'a'ara'ara’ / AVaY VIV
04 B 0 I I A O O 04 130.000
0.3 0.3 110.000
0.2 0.2 90.000
0.1 e 0.1 70.000
0.0 T T T T T T T T T T T 0.0 50.000
0 9 19 29 39 49 59 69 79 89
4 14 24 34 44 54 64 74 84 94

Figure 13. Experimental feed rates trend introduced to network.

specification of the machine, cutting condition and
manual description on how to use this application. To run
the simulation, the user has to input the CNC part

Row numbers

program in G & M coding as a text file as shown in Figure
17. The coding program specifies the size of the work
piece and chooses the milling process parameters such
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final pap2 Output Real Column 3 Ra Right click mouse for display options.

Scaled Value Average Missing Estimate Risk Trend Scaled Real
1.0 1.0 5.500
0.9 0.9 5.006
0.8 0.8 4.512
0.7 0.7 4.018
0.6 0.6 3.524
0.5 0.5 3.030
0.4 0.4 2.536
0.3 0.3 2.042
0.2 0.2 1.548
0.1 0.1 1.054
0.0 0.0 0.560

0 9 19 29 39 49 59 69 79 89
4 14 24 34 44 54 64 74 84 94

Row numbers

Figure 14. Experimental surface roughness (Ra) trend introduced to network.

final pap2 54239 cycles. Target error 0.0100 Average training error 0.000258

99 training examples Output column (min to max values)

1 . 3 Ra (0.5600 to 5.5000)
£
o~
°
{‘\.F.

L)
0 1

0 validating examples
1
0 1

X axis: True values after scaling.

Y axis: Predicted values after scaling.

Figure 15. Network scatter diagram.
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final pap2 cycle 54239. Target error 0.0100 Average training error 0.000258 Average validating error: 1.0000C
A

The first 99 of 99 Example rows in descending order. Above target
Below target ss—

Row Example Scaled Error Relative Error
88 T: 0.0040353500
65 T: 0.0031878540
30 T: 0.0014309170
45 T: 0.0013332343
71 T: 0.0013246525
97 T: 0.0012773999
96 T: 0.0010806775
39 T: 0.0008649109
50 T: 0.0008620060
93 T: 0.0008362215
73 T: 0.0006447306
47 T: 0.0005529636
78 T: 0.00050244
41 T: 0.0004664039
84 T: 0.0004357633
83 T: 0.0004071564
94 T: 0.0003741372
67 T: 0.0003634413
90 T: 0.0003151026
68 T: 0.0003110598
14 T: 0.0002962295
36 T: 0.0002835494
49 T: 0.0002829498
98 T: 0.0002709339
58 T: 0.0002636298
2 T: 0.0002461833
85 T: 0.0002073615
9 T: 0.0001934264
74 T: 0.0001834862
37 T: 0.0001646116
54 T: 0.0001563096
70 T: 0.0001561087
21 T: 0.0001493502
80 T: 0.0001383567
75 T: 0.0001310995
34 T: 0.0001305560
31 T: 0.0001206959
55 T: 0.0001164229
64 T: 0.0001120302
77 T: 0.0001045317
62 T: 0.0000949226
4 T: 0.0000882667
95 T: 0.0000867826
92 T: 0.0000863422
56 T: 0.0000830655
59 T: 0.0000804762
12 T: 0.0000785039
52 T: 0.0000750168
3 T: 0.0000743433
17 T: 0.0000739609
29 T: 0.0000736325
82 T: 0.0000734795
60 T: 0.0000731550
48 T: 0.0000692956
33 T: 0.0000676631
89 T: 0.0000625748
57 T: 0.0000613626
1 T: 0.0000568433
38 T: 0.0000559142
81 T: 0.0000557769
28 T: 0.0000541399
13 T: 0.0000499051
27 T: 0.0000480211
86 T: 0.0000464544
46 T: 0.0000455787
22 T: 0.0000452017
5 T: 0.0000441778
0 T: 0.0000370369
51 T: 0.0000350379
16 T: 0.0000320955
61 T: 0.0000306605
76 T: 0.0000296380
53 T: 0.0000268271
66 T: 0.0000249297
69 T: 0.0000237074
40 T: 0.0000229561
63 T: 0.0000177748
24 T: 0.00001531
18 T: 0.0000152930
91 T: 0.0000123950
7 T: 0.0000116785
32 T: 0.0000095779
19 T: 0.0000075334
25 T: 0.0000068762
42 T: 0.0000068284
44 T: 0.0000063774
10 T: 0.0000045676
20 T: 0.0000035375
26 T: 0.0000033960
35 T: 0.0000020568
6 T: 0.0000014660
8 T: 0.0000011610
11 T: 0.0000011590
15 T: 0.0000007624
87 T: 0.0000007506
72 T: 0.0000007212
23 T: 0.0000005169
79 T: 0.0000004374
43 T: 0.0000002386

Figure 16. Error distribution along input row values.
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File Edit Format Yiew Help

NG720 GOL X0.133 v0.496 Z0.
MS730 GOL 0,177 v0.36 Z0
N3740 GOL X0,207 v0.211 Z0.
N3750 01 ®0.232 v0.07 20
N5G760 GOL v-0.07 Z0.

MS770 GOL x0.2 v-0.211 Z0
N3780 GO1 X0.18 v-0.36 20
N3790 01 ®0.136 v-0.496 Z0.
N3800 01 =0, 084 v-0.618 Z0.
MSELO GOL X0.026 v-0.736 Z0.
MEE20 GOL »-0.026 v-0.795 Z0
N3830 501 =-0.084 v-0.66 Z0.
N3840 G0l x-0.132 v-0.4%6 20

M53E50 GOL *-0.178 v-0.36 Z0.
MESEE0 GOL »-0.207 v-0.211 Z0
N3B70 GOL X-0.232 v-0.07 20,
N3880 G0l v0.07 Z0.

NS890 GOL x-0.207 v0.211 Z0.
M5S200 GOL =-0.174 v0.363 Z0.
MN3910 GOl *-0.135 v0.494 20,
MN3920 G01 =-0.084 v0.632 Z0.
NG930 GOL x-0.026 Y0.773 Z0.
MN5240 GO0 Z0.2

M3930 GO0 X0,316 v0.002
N3960 01 Z-0.2

N3970 01 x0.019 v-0.578 Z0.
MSOE0 GOL X0.032 v-0.464 Z0.
M5S200 GOL 0,087 v-0.367 Z0.
NE000 301 ®0.113 v-0.251 Z0.
NE0L0 01 =0.129 v-0.155 Z0.
NG020 GOL X0.15 v-0.056 Z0.
MNE030 GOL 0,14 v0.056 Z0
NG040 GOL X0,123 v0.153 Z0,
NE0S0 GOL x0.114 v0.256 Z0.
NGOG0 GOL X0, 086 v0.362 Z0.
NG00 GOL X0.052 v0.464 Z0,
NE0E0 GOL X0,019 v0.578 Z0.

NE090 01 ®-0.019 v0.574 Z0.
NE100 GOL X-0.0532 v0.464 Z0.
MNE110 GOL X-0.087 v0.367 Z0.
MNE120 G0l x-0.113 v0.251 Z0.
NE130 01 =-0.129 v0.155 Z0.
NE140 G01 x-0.15 v0.056 20,
MNE150 GOL X-0.14 v-0.056 Z0.
ME1E0 GOL x-0.129 v-0.155 Z0
|NEL70 GO1 »-0.109 v-0.253 Z0
|NELB0 G0L =-0.085 v-0.365 Z0.
NE190 GOL X-0.052 ¥-0.464 Z0.
MNE200 GOL *-0.019 v-0.574 Z0
NE210 GO0 20,2

MS9

[ T Micr

14 start

Figure 17. Optimized G& M Coding CNC Program as a Text Format.

as cutting speeds, radial depth of cut and the feed rate of
worktable. Simulation of the virtual end milling process
and surface roughness on machined work pieces are
generated simultaneously. The predictive capability of
using neural network approaches are compared using
statistics, which showed that neural network predictions
for surface roughness were for 1.8% closer to the
experimental measurements, compared to 8% using
analytical (depending on empirical equations) method.

CONCLUSIONS

Virtual Milling Process has been successfully developed.
This application shows a simulation of the end milling
process in the virtual reality environment and simulation
of the machining parameters such as surface roughness

on machined work pieces. It is developed with the
purpose of providing useful information on the end milling
process and the related parts of the CNC machine to the
user. As a prototype, Real time simulation for virtual
milling process is implemented using, Solidworks2008,
Vericut6.2, and Alyuda Neurolntelligance, are interfaced
as the animation and prediction engine making the virtual
milling machine controllable. This simulation software
interface can be used in training students on operation of
CNC milling machine and increase the understanding of
the milling process. This will save money in purchasing
the actual equipment and hence accidental damage on
the actual machine due to programming errors or
mishandling can be avoided. Supervised neural networks
are used to successfully estimate the surface roughness
developed during end milling process. It can be claimed
that the results obtained from the neural model and of the
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experimental results confirms the efficiency and accuracy
of the model for predicting the surface roughness. In
testing the model, the surface roughness was predicted
to an accuracy of +1.8% (more accurate for this particular
case compared with other techniques such as multiple
regression or genetics). An effort is made to include as
many different cutting conditions as possible that
influence the surface roughness value extensive
experimentation forms the basis of the model developed.
The procedure should be used for the fast approximate
determination of optimum cutting conditions on the
machine, when there is not enough time for deep
analysis. Due to high speed of processing, low
consumption of memory, great robustness, possibility of
self-learning and simple incorporation into chips the
approach ensures estimation of the surface roughness in
real time.

REFERENCES

Bayliss GM, Bowyer A, Taylor RI, Willis PJ (1994). Set-theoretic Solid
Modelling Techniques and Applications. Virtual Manufacturing
Proceedings, CSG 94, Winchester, UK, pp. 353-365.

Boothroyd G, Knight WA (1989). Fundamentals of Machining and
Machine Tools. Marcel Dekker, Inc.

Chawla R, Banerjee A (2001). A Virtual Environment For Simulating
Manufacturing Operations in 3D. Proceeding of the 2001 Winter
Simulation Conference pp. 991-997.

Cus F, Balic J (2000). “Selection of cutting conditions and tool flow in
flexible manufacturing system”. Int. J. Manuf. Sci. Technol. 2:101-
106.

Delmia (2001). Delmia Machining
http://www.delmia.com/ (20 April 2003).

Solution. (online)

El Mounayri H, Spence AD, Elbestawi, MA (1998). “Milling Process
Simulation-A General Solid Modeller Based Paradigm”. ASME J.
Manuf. Sci. Eng. 120:213-221.

Fang XD, Luo S, Lee NJ, Jin F (1998). Virtual Machining Lab for
Knowledge Learning and Skill Training. Computer Appl. Eng. Educ.
6(2):89-97.

Feng HY, Menq CH (1996). “A Flexible Ball-End Milling System Model
for Cutting Force and Machining Error Prediction”. ASME J. Manuf.
Sci. Eng. 118:461-469.

CUS F, ZUPERL U, MILFELNER M (2003). University of Maribor,
Slovenia Dynamic Neural Network Approach for Tool Cutting Force
Modeling of End Milling Operations.

Haslina A, Zainal R, Mahayuddin Y (2008). Flank Wear Simulation of a
Virtual End Milling Process, Eur. J. Sci. Res. 24(1):148-156. ISSN
1450-216X, © EuroJournals Publishing, Inc. 2008
http://www.eurojournals.com/ejsr.htm

Qiu ZM, Chen YP, Zhou ZD, Ong SK, Nee AYC (2001). Multi-User NC
Machining Simulation Over the WWW. Int. J. Adv. Manuf. Technol.
18:1-6.

Schofield D (1995). Virtual Reality Technology and its Application.

Soltan IM, Eltaib MEH, EI-Zahry RM (2007). Surface Roughness
Prediction in End Milling using Adaptive Neuro-Fuzzy Inference
System, Fourth International Conference on Advances in Production
Engineering (APE)., Warsaw-Poland.

Tandon V, El-Mounayri H, Kishawy H (2002). “NC End Milling
Optimization Using Evolutionary Computation. Int. J. Mach. Tools
Manuf. 42:595-605.

Yang M, Park H (1991) “The Prediction of Cutting Force in Ball-End
Milling”. Int. J. Mach. Tools Manuf. 31:45-54.

Yuzhong C, Altintas Y (2007). Modeling of spindle-bearing and machine
tool systems for virtual simulation of milling operations. Int. J. Mach.
Tools Manuf. 47(9):1342-1350.



