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This paper presents an electrical model for studying the process behaviour of a sachet water 
production plant. In this model, the mechanical components of the plant such as the connecting 
pipes, the water tanks and the water filter were represented by resistors, capacitors and an 
inductor, respectively. A state equation was developed as a mathematical model of the electrical 
circuit. In this equation, resistors, capacitors and inductor representing the restriction of the 
pipes, the capacity of the tanks and the filtration of the filter respectively, were used as variable 
parameters to generate the state variables of the state equation. This mathematical model was 

used to simulate the effects of varying the electrical parameters ( ,,CR and L ) on the state 

variables ( v  and i ) representing the restriction of the connecting pipes, the water levels ( h ) in 

the water tanks and the filtration of the water filter, respectively. Insight into the response 
curves will indeed form the basis for studying the process control of the sachet water 
processing plant.  
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INTRODUCTION 
 
Over the years, man has constantly searched for 
reliable methods of controlling things around him to 
suit his purpose. The successful operation of a 
system under changing conditions often requires a 
control system. The flow of water in a Production 
Plant was previously monitored by having an 
operator take a pressure reading in the treatment 
plant once or twice a day. Obviously, this daily 
routine was wasteful and hardly accurate. It was 
impossible to maintain a stable flow even with nearly 
continuous operator intervention. The correct amount 
of water needed to sachet was very difficult, if not 
impossible, to ascertain from a pressure reading and 
thus overshooting of desired flow was common. 

Sachet water plants without process control are 
likely to experience problems, such as the water level 
in the filter cells in the tanks tend to fluctuate widely 
and create the potential for partial drainage, overflow, 

and potential initial turbidity breakthrough at the 
beginning of the filtration cycles thereby causing most 
of the products not to fill properly. 

The necessary condition for achieving efficient 
process control resides in a thorough understanding 
of the dynamics of water flow through the plant. If the 
internal conditions would be predictable through 
modeling and simulation, we could design a process 
control that would operate continuously to supply 
properly filled water sachets at a predetermined 
sachet plant. Therefore, the mathematical model 
representing the dynamic behaviour of the process is 
developed and the system variables expressed in 
state variable form. In this way, the entire analysis is 
fashioned in such a way that it is amenable to 
computer simulation. 

In this paper, an Analogous Electrical model for 
sachet   water  processing   plant   is    developed.   A
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step-by-step analogous model strategy as proposed 
by Ani (2007) is adopted: the development of an 
electrical model of the sachet water production plant, 
computer simulation of the electrical model and the 
analysis of the results of the simulation time. This 
paper spotlights the effects of process control 
modeling on the treatment of simple water. 
 
 
Water 
 
Water is one of the prime natural resources, an 
essential commodity for the living systems that 
constitute the biosphere (Casey, 2006); unique in its 
properties – the only substance to exist in all three 
phases, solid, liquid and gaseous, within the 
temperature range of the natural environment, 
continually renewed by the natural hydrological cycle 
of evaporation, vapour transportation and 
precipitation. Water conservation opportunities arise 
in increased efficiency through improvements in flow 
rates, pressure, temperature, chemistry, filtration or 
timing (Le Chevallier and Kwok-Keung, 2004). 
Metering both inflow and outflow from the system 
provides the operator information to determine if the 
system is meeting design efficiencies. Process 
control is often an area where increased efficiency 
can be obtained. Many operations can also increase 
efficiency by recirculating water or by filtering 
contaminants and reclaiming water for reuse 
internally. Thus the engineering associated with 
water resources management and use is multi-
faceted (Ani, 2013b). This treatise deals with the 
technologies used to control the treatment process 
and its related use in industrial manufactures. It deals 
with the range of treatment processes used in the 
production of drinking and other high quality water. In 
general, the presentation of the subject matter 
proceeds sequentially from basic principles through 
analytical/experimental methods to the development 
of process design methodologies. Processes are 
treated as unit operations, emphasizing those 
process fundamentals which can be applied to all 
process applications. 
 
 
Physical components describing the sachet water 
plant 
 
The basic physical parameters used in describing the 
properties of the sachet water production plant are: 
Pipe (restriction), tank (capacity) and filter (water 
filteration). 

These parameters from the basis of a conceptual 
design were used in constructing the passive 
resistance, capacitance and inductance electrical 
network for the analog model. To accurately stimulate  

Anayochukwu            171 
 
 
 
the process, these parameters should be known at all 
locations throughout the area being modeled. The 
general boundary of the model is the demarcation 
between where recharge enters and discharge 
leaves the plant. The boundary was chosen so that 
cause-and-effect relations outside the model area 
would not affect the process data of the sachet water 
production system which are useful in preparing an 
analog model. The better defined the process is, the 
more accurate the working model (Hardt, 1971). 
Figure 1 shows the physical setup with all the various 
regulating devices. 
 
 
ANALOGOUS SYSTEMS 
 
Analog models are physical models in a different 
physical system used to model the original model. An 
analog model can be the use of electrical circuits to 
represent mechanical systems such as automobile 
suspensions. An example of an analog model is a 
direct analog model where series mechanical 
elements are replaced by analogous series electrical 
elements and parallel mechanical elements are 
replaced by equivalent electrical elements in parallel 
(Ani, 2013a; Hardt, 1971). The use of electric analog 
model in fluid flow is possible because of the 
mathematical similarity between the flow of electricity 
in conducting materials and the flow of fluid in porous 
media (Walton and Prickett, 1963; Pattern, 1965). 
Electric analog methods are now regarded as one of 
the powerful computing tools available to the 
hydrologist. Direct simulation of the hydrologic 
system by electrical methods simplifies the 
computational process. Once the analog model is 
verified through the use of field data, all electrical 
phenomena observed on the model can be directly 
related to hydrologic factors. Any theoretical set of 
water flow conditions, including alternative solutions, 
can be modeled, and the effects observed (Hardt, 
1971). 

The electrical conductivity of the resistors is 
proportional to the hydraulic conductivity of the plant, 
and the electrical capacitance is directly related to the 
storage coefficient of the plant. A resistor impedes 
the flow of electricity in the same way as the piping 
materials impede the flow of water through the plant; 
likewise, capacitor stores electricity in a manner 
similar to the way water is stored in a tank. If such a 
model is quantified, the electrical units of potential, 
charge, current, and model time correspond to the 
hydraulic units of head, volume, flow rate, and real 
time. The concept of analogous system is a very 
useful and powerful technique for system modeling 
(Ani, 2013a; Dorf and Bishop, 1998). 

To develop fully an analog model requires detailed 
analysis of the process parameters. The flow  system
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Figure 1. Flow sheet of a water treatment plant (Ani, 2007). 
 
 
 

under equilibrium or steady-state conditions (before 
development) is described by a form of law of 
conservation of mass (fluid flow continuity). 

 

oi qqm                                          (1) 

 
This simply states that the time rate of change m  of 

mass in a container must equal the total mass inflow 
rate minus the total outflow rate. The quantity of 
water moving into the plant (recharge) is about equal 
to the quantity of water moving out of the plant 
(discharge). Water levels in the plant are a function of 
the magnitude of inflow and outflow and the 
characteristics of the materials through which the 
water is moving. 

In liquid flow system, the differential equation 
describing liquid flow is derived by law of 
conservation of mass. 

 

R

h

dt

dh
C                                            (2) 

 
Where: 

 

C = storage coefficient (dimensionless) 

dt

dh
= change in water level with time, in metre per 

seconds. 

h = water level, in meters 

R = restriction in piping 

t = time, in hours 
 

The equivalent equation for field in electricity is 
derived by Kirchhoff’s voltage and current laws as: 
 

R

v

dt

dv
C                                        (3) 

 

Where: 
 

C = electrical capacitance, in farads 

dt

dv
= change in voltage with time 

t = time, in seconds 

R = electrical resistance, in ohms 
v = electrical potential, in volts 
 

The similarity between these two equations indicates 
that the cause-and-effect response in a hydrologic 
system can be duplicated in an electrical system, 
provided the two are dimensionally equivalent (Hardt, 
1971). Mathematically, a solution to the response of 
developed plant requires use of equations that are 
too complex for ordinary solution. However, an 
electric analog model can be constructed that closely 
approximates the actual flow system because the 
flow of fluid through porous media is analogous to the 
flow of current through conducting material. A model 
that is quantitatively proportional to the liquid flow 
system can be built by selecting proper electrical 
components. 

Comparison of these two equations show that the 
behaviour of the two  systems  is  determined  by  the 



 
 
 
 
same basic differential equation. The systems are 
analogous and there is a one-one correspondence 
between the elements of the two systems. The 
analogy is very close. The effect of variations in L, C 
and R on the water-levels in the hydraulic system can 
thus be determined by simply observing the effect on 
the voltages in the electric circuit of variation in L, C 
and R. The voltage across the capacitor and the 
current in the circuit vary in the same way as the 
water-Level and velocity of the mass (Ord-Smith and 
Stephenson, 1975). In complex water-flow systems, it 
is impractical to measure all these parameters in 
great detail or with high accuracy. If, however, they 
are known approximately, initial tests can be made 
with an analog model. Usually model response on the 
first few trails bears little resemblance to actual 
water-level changes. 

Through evaluation of model response and 
reconsideration of the original plant parameters, the 
model design is revised until the water-level change 
computed by the model agrees with observed 
changes (Hardt, 1971). However, electrical analogies 
have the advantage that they can be easily set up in 
the laboratory. A change in a particular parameter 
can be accomplished very easily in the electric circuit 
to determine its overall effects and the electric circuit 
can be approximately adjusted for the desired 
response. 

Afterwards, the parameters in the liquid level 
system can be adjusted by an analogous amount to 
obtain the same desired response (Schwedes, 1995). 
 
 

Volumetric flow rate as analogous to current 
 

Volumetric flow rate Q  is defined as the quantity of 

fluid passing a given area per unit time and current i  

is defined as the rate of flow of charge across a given 
area, often the cross-sectional area of a wire. 

Mathematically: 
 

dt

dV
Q                                           (4) 

 

dt

dQ
i                                                       (5) 

 

When two parts or elements of a fluid system are 
connected by a section of pipe, the principle of 
conservation of mass states that the amount of fluid 
leaving element A must enter element B. This 
principle also requires that the net flow rate of mass 
into any fluid system must equal the rate of increase 
of mass inside the system. 

As the fluid is incompressible, the preceding 
statement also applies to volume flow rate and fluid 
volume. 
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In electrical system, when two elements are 
connected together, the principle of conservation of 
electric charge requires that the net charge-leaving 
element A must enter element B. This principle also 
requires that the charge entering an element minus 
the charge leaving the element must equal the 
change of net charge stored within the element. 
 
 
Analogous components and variables 
 

Analogous systems are physical systems that are 
identical; each can be replaced by the other system 
by deduction of dynamic behaviour of one of these 
systems from the dynamic behaviour of the other. 
Just like the deduction of electrical system behaviour 
from the hydraulic system behaviour. 

The model generally starts as an analytical model, 
that is, a set of differential equations. 
Using principle of analogy, which states that two 
different physical systems can be described by the 
same mathematical model, these equations are 
converted into an electrical circuit. This permits a 
generalization of ideas specific to a particular field in 
order that a broader understanding of a variety of 
apparently unrelated situations can be achieved. 

The electrical circuit analogy is a force (flow) to 
current analogy as outlined in Tables 1 and 2. 

The analogous components and variables are thus: 
 

ii = iQ (Input current; water flow into the process). 

oi = oQ  (Output current; water flow from the process). 

1C = (Capacitance of capacitor 1; Capacity of tank 1 

(sand treatment tank)). 

2C = (Capacitance of capacitor 2; Capacity of tank 2 

(carbon treatment tank)). 

L = (Inductance of the inductor; filteration of the 
filter). 

3C = (Capacitance of capacitor 3; Capacity of tank 3 

(Treated water tank)). 

1cv = 1h (voltage across capacitor 1; water level of 

tank 1). 

2cv = 2h  (voltage across capacitor 2; water level of 

tank 2). 

3cv = 3h  (voltage across capacitor 3; water level of 

tank 3). 

1i = 1Q (flow of current through the inductor; rate of 

water flow through the filter). 

1R = (Resistance of the resistor 1; Restriction of pipe 

1). 

2R = (Resistance of the resistor 2; Restriction of pipe 

2). 
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Table 1. Describing differential equations for ideal elements of an analog system (Pattern, 1965; Dorf and Bishop, 1998). 
 

Types of element Physical element Describing equation 

Inductive storage Electrical Inductance L  
dt

di
Lv   

 Fluid Inertia I  
dt

dQ
Ip   

Capacitive storage Electrical Capacitance C  
dt

dv
Ci   

 Fluid Capacitance 
fC  

dt

dp
CQ f  

Energy dissipator Electrical Resistance R  v
R

i
1

  

 Fluid Resistance 
fR  p

R
Q

f

1


 

 
 
 

Table 2. Through-and-across-variable for an analog system (Pattern, 1965; Dorf and Bishop, 1998). 
 

System Variable through element Variable across element Integrated through variable 

Electrical Current, i  Voltage, v  Charge, q  

Liquid-level Liquid flow rate, Q  water level, h   Liquid flow, q  

 
 
 

3R = (Resistance of the resistor 3; Restriction of pipe 

3). 

 

The Liquid – Levels, 1h , 2h , and 3h  of the flow 

system are directly analogous to the node 

voltages 1v , 2v  and 3v  of the electrical circuit. 

Therefore, an electrical circuit is analogous to fluid 
flow system/plant, implying that the process control of 
a sachet water plant can be model by means of an 
electrical model. 

Figure 1 shows the physical arrangement of how 
the system components function and it forms the 
basis for an analytical study. The electrical circuit 
representation of the system is shown in Figure 3. 

Using the method of analogy for which Kirchhoff’s 
voltage and current laws are utilized, we obtain the 
state equation. The network has four energy storage 

elements: three capacitors 1C , 2C , 3C , and an 

inductor L , and this network are specified by the 
voltage across the capacitors and current through the 
inductor. Since there are potential differences across 
the capacitors as well as current through the inductor, 
this electrical picture leads to ordinary differential 
equations. History of the network is completely 
specified by the voltages across the capacitors and 
current through the inductor at t = 0 (Nise, 2003). 
This involves the identification of individual system 

components as well as identification and idealization 
of their interconnection. 

Interconnection of the elements imposes 
constraints on the variation of system variables, and 
the convenient way of specifying these constraints is 
by a mathematical statement of the way in which the 
various through-variables are related and the way in 
which the various across-variables are related. This 
package of equations is a complete mathematical 
description of the system (Shearer et al., 1971). The 
essence of the model is to provide the medium in 
which the controlled process can be analyzed without 
practically meddling with the operations of the real 
system. 
 
 

MATHEMATICAL MODEL DEVELOPMENT 
 

In order to develop the mathematical model of the 
system in Figure 1, the following assumptions are 
made (Ani, 2007): 
 
1. Pressure differences at various stages of the 
process (water flow), which implies an adoption of a 
positive-flow direction through the Interconnected 
elements. 
2. The input flow is equal to output flow if and only if 
the water level at each stage (capacitance) in the 
plant remains constant, which agrees with the law of 
conservation of mass. 



 
 
 
 
3. Fluid’s density remains constant despite changes 
in the fluid pressure (Model fluid behaviour as 
incompressible). 
4. Laminar flow exists (the model for the tank height 
is linear). 
5. The walls of the treatment tank and the reservoir 
are rigid. 
 
Based on the assumption that the inflow minus 

outflow during the small time interval dt is equal to 

the additional amount stored in the tank, we see that 
 

 dtqqcdh i 0  or 
0qq

dt

dh
c i      (6) 

 

Where: 
 

 
dt

dh is the dependent variable reflecting the system’s 

behaviour, C  is a parameter representing a property 

of the system, and oi qq   represent the 

independent variable along which the system’s 
behaviour is being determined. 
 

From the definition of resistance, the relationship 

between     0q and h  is given by  

 

R

h
q 0                                            (7) 

 
This is a model that relates water flow rate to the 
height of water in each tank in the plant. For each 
tank a flow continuity equation can be written in 
which the rate of change of fluid volume is equated to 
the rate of inflow of fluid. 

The model generally starts as an analytical model, 
which is a set of differential equations. Using principle 
of analogy, which states that two different physical 
systems can be described by the same mathematical 
model, these equations are converted into an 
Electrical circuit. This permits a generalization of 
ideas specific to a particular field in order that a 
broader understanding of a variety of apparently 
unrelated situations can be achieved. 

The development of these two models (Fluid and 
Electrical) follows a very similar process. Their 
respective relations in both cases enable one to 
relate the two-coupled sets of physical variables: 
Hydraulic and Electrical. 

An electrical model of process control of a sachet 
water plant conveys a mental picture of the process 
control’s actual behaviour in a variety of 
circumstances. 

The developed mathematical model of process 
control   of   sachet   water  based  on  the  equivalent 
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circuit shown in Figure 2 is stated below: 

From the circuit diagram, selection of the state 
variables is thus: 
 

111 hvx c  (voltage across the capacitor 1 (C1); 

water level of tank 1 (h1)). 

222 hvx c  (voltage across the capacitor 2 (C2); 

water level of tank 2 (h2)). 

113 Qix  (current through the inductor and rate of 

water flow through the filter). 

334 hvx c  (voltage across the capacitor 3 (C3); 

water level of tank 3 (h3)).  
 

Where cv  is the state variable representing voltage 

capacitor across each and h  is an equivalent state 

variable representing the height of water in the tank. 
The system of differential equations which govern 

and describes the dynamic behaviour of the model 
under transient conditions is presented (Ani, 2013b). 
 

 
 C

1

211
1 









 


R

vv
i

dt

vd ccc
                 (8) 

 

 
1

1

212
2 i

R

vv

dt

vd
C ccc 









 
                   (9) 

 

   
32

2

2

1
cc

c vv
dt

vd

R

L

dt

id
L                  (10) 

 

   

3

3
2

2

2

3
3C

R

v
v

dt

vd

R

L

dt

vd c
c

cc     (11) 

 

Rearranging the equations: 
 

From Equation (8) 
 

 









 


1

211
1

R

vv
i

dt

vd
C ccc

 

 

   

1

211
1

R

vv
i

dt

vd
C ccc 

  

 

 

1

2111
1

R

vviR

dt

vd
C ccc 

  

 

 
211

1
11 cc

c vviR
dt

vd
CR   
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Figure 2. Coupled tank flow system. 
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Figure 3. Electrical circuit equivalent. 

 
 
 

 

11

2

11

1

11

11

CR

v

CR

v

CR

iR

dt

vd ccc   

 

 

11

2

11

1

1

1

CR

v

CR

v

C

i

dt

vd ccc   

 

 

111

2

11

11

C

i

CR

v

CR

v

dt

vd ccc                 (12) 

 
From Equation (9) 

 

 
1

1

212
2 i

R

vv

dt

vd
C ccc 









 
  

   
1

1

212
2 i

R

vv

dt

vd
C ccc 


  

 

 

1

11212
2

R

iRvv

dt

vd
C ccc 

  

 

 
1121

2
21 iRvv

dt

vd
CR cc

c   

 

 

21

11

21

2

21

12

CR

iR

CR

v

CR

v

dt

vd ccc   

 

 

2

1

21

2

21

12

C

i

CR

v

CR

v

dt

vd ccc             (13) 



 
 
 
 
From Equation (10), 
 

   
32

2

2

1
cc

c vv
dt

vd

R

L

dt

id
L   

 

Substituting 
 
dt

vd c2  in Equation (13) gives: 

 

 
32

2

1

21

2

21

1

2

1
cc

cc vv
C

i

CR

v

CR

v

R

L

dt

id
L 










  

 

 
32

22

1

221

2

221

11
cc

cc vv
CR

Li

CRR

Lv

CRR

Lv

dt

id
L   

 

 

221

3221222111211

CRR

vCRRvCRRLiRLvLv

dt

id
L cccc 

  

 

 
LCRR

vCRRvCRRLiRLvLv

dt

id cccc

221

3221222111211 
  

 

 
LCRR

vCRRLiRvCRRLvLv

dt

id cccc

221

3221112221211 


 

   
LCRR

vCRRLiRvCRRLLv

dt

id ccc

221

322111222111 


 

 
  32211122211

1
221 ccc vCRRLiRvCRRLLv

dt

id
LCRR 

 

   
LCRR

vCRR

LCRR

LiR

LCRR

vCRRL

LCRR

Lv

dt

id ccc

221

3221

221

11

221

2221

221

11 


  

 

   
L

v

CR

i

LCRR

vCRRL

CRR

v

dt

id ccc 3

22

1

221

2221

221

11 


          (14) 

 
From Equation (11) 
 

   

3

3
2

2

2

3
3

R

v
v

dt

vd

R

L

dt

vd
C c

c
cc   

 

Substituting 
 
dt

vd c2
 in Equation (13) gives: 

 

 

3

3
2

2

1

21

2

21

1

2

3
3

R

v
v

C

i

CR

v

CR

v

R

L

dt

vd
C c

c
ccc 










  
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 

3

3
2

22

1

221

2

221

13
3

R

v
v

CR

Li

CRR

Lv

CRR

Lv

dt

vd
C c

c
ccc   

 
 

2321

32212232113123133
3

CRRR

vCRRvCRRRLiRRLvRLvR

dt

vd
C ccccc 



 

 

32321

32212232113123133

CCRRR

vCRRvCRRRLiRRLvRLvR

dt

vd ccccc 


 

 

32321

32211312232123133

CCRRR

vCRRLiRRvCRRRLvRLvR

dt

vd ccccc 


 
 

32321

32211312232123133

CCRRR

vCRRLiRRvCRRRLvRLvR

dt

vd ccccc 


 

 

32321

322113122213133 )(
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The resulting state equations are given by: 
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The state equation’s equivalent in x  form is thus:  
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In vector-matrix form, the process control equation is 
given as: 
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The output equation is thus: 
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x  is the state vector while y  is the response or 

output vector. 
 
 

STATE VARIABLES REPRESENTATION 
 

The merit of the state-variable method is that it 
results easily to the form amendable to digital and/or 
analog computer methods of solution (Perdikaris, 
1996). Sachet water processing plant can be 
represented in state variable form as: 
 

uBxAx **                                        (20) 
 

Cxy                                         (21) 

 

Where 
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Table 3. Sachet water processing plant parameters. 
 

1R  2R  3R  L  1C  2C  3C  

0.1 0.1 1.0 1.0 1e-03 1e-03 1000e-03 

0.3 0.3 3.0 3.0 3e-03 3e-03 1300e-03 

0.5 0.5 5.0 5.0 5e-03 5e-03 1500e-03 

0.7 0.7 7.0 7.0 7e-03 7e-03 1700e-03 

0.9 0.9 9.0 9.0 9e-03 9e-03 1900e-03 
 
 
 

x  is the state vector while y  is the response or 

output vector. A  is the coefficient matrix of the 

process and is of order  mm . B  is the driving 

matrix of order  pn , and C  is the output matrix of 

order  nq , which satisfied the rules of matrix 

multiplication. The above defined matrix operations 
are carried out on a digital computer using MATLAB 
software (Mathworks, 2002). 
 
 

METHODOLOGY 
 

Solution of resulting state equation is achieved numerically 
thus, the computer study of a modified mathematical model 
description involving the problem variables are instrumented 
on the computer and the parameter values are adjusted, 
thereby varying the matrices CBA ,,  so as to obtain/predict the 

behaviour of the actual system. From the model equation 
above, output y  depends on the state equation x  which is 

4x , that is 4xy  . 

Therefore, x  and y are dependent variables to be 

simulated. 
The above equations contain all that we need to know about 

the theory of process control (flow) in a sachet water plant 
being studied. Solving the time domain 

     tButAxtX    and )()()( tDutCxtY  where 

D=0. Using Ordinary Differential Equation (ODE 45) of 
MATLAB Software, the results will be obtained graphically. 
 
 

SIMULATION AND RESULTS 
 

Table 3 shows the sachet water processing plant 
parameters used for the simulation. 

In order to study the dynamic behaviour of the 
process, the state-variable form of Equation (18), 
were solved numerically using the differential 
method. By incorporating the developed algorithm 
into the MATLAB m-file (MATLAB, 1997), the system 
time response curves for the voltage across 
capacitor, and flow of current through the inductor at 
various coordinate systems are developed. 

Response of voltages across the capacitors graphs 
are shown in Figures 4 to 18 and 24 to 38, while 
Figures 19 to 23 show the Response of current 
through the inductor graph for the system. 

The following is applicable to Figures 4 to 38. 



 
 
 
  

 

 

Time [s]  
 

Figure 4. Effect of Restriction to flow on the Process, with 
1R  

=0.1. 
 
 
 

 

 
 

 

Time [s]  
 

Figure 5. Effect of Restriction to flow on the Process, with 
1R  

=0.3. 
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Figure 6. Effect of Restriction to flow on the Process, with 
1R  

=0.5. 
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Figure 7. Effect of Restriction to flow on the Process, with 
1R  

=0.7. 
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Figure 8. Effect of Restriction to flow on the Process, with 
1R  

=0.9. 
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Figure 9. Effect of Restriction to flow on the Process, with 
2R  

=0.1. 
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Figure 10. Effect of restriction to flow on the process, with 
2R  

=0.3. 
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Figure 11. Effect of restriction to flow on the process, with 

2R  

=0.5. 
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Figure 12. Effect of restriction to flow on the process, with 
2R  

=0.7. 
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Figure 13. Effect of restriction to flow on the Process, with 
2R = 

0.9. 
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Figure 14. Effect of restriction to flow on the process, with 
3R  

=1.0. 
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Figure 15. Effect of restriction to flow on the process, with 
3R  

= 3.0. 
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Figure 16. Effect of restriction to flow on the process, with 
3R  

= 5.0. 
 
 
 

 

 
 

 

 

Time [s] Time [s]  
 

Figure 17. Effect of restriction to flow on the process, with 
3R  

=7.0. 
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Figure 18. Effect of restriction to flow on the process, with 
3R  

=9.0. 
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Figure 19. Effect of wound string on the process, with L  =1.0. 
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Figure 20. Effect of wound string on the process, with L  =3.0. 
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Figure 21. Effect of wound string on the process, with L  =5.0. 
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Figure 22. Effect of wound string on the process, with L  =7.0. 
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Figure 23. Effect of wound string on the process, with L  =9.0. 
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Figure 24. Effect of the capacity of tank on the process, with 

1C  =1e-03. 
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Figure 25. Effect of the capacity of tank on the process, with 

1C  =3e-03. 
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Figure 26. Effect of the capacity of tank on the process, with 

1C  =5e-03. 
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Figure 27. Effect of the capacity of tank on the process, with 

1C  =7e-03. 
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Figure 28. Effect of the capacity of tank on the process, with 

1C  =9e-03. 
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Figure 29. Effect of the capacity of tank on the process, with 

2C  =1e-03. 
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Figure 30. Effect of the capacity of tank on the process, with 

2C  =3e-03. 
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Figure 31. Effect of the capacity of tank on the process, with 

2C  =5e-03. 

 
 
 

 

 
 

Time [s] 

Time [s] 

 
 

Figure 32. Effect of the capacity of tank on the process, with 

2C  =7e-03. 
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Figure 33. Effect of the capacity of tank on the process, with 

2C  =9e-03. 
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Figure 34. Effect of the capacity of tank on the process, with 

3C  =1000e-03. 
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Figure 35. Effect of the capacity of tank on the PROCESS, 
with 

3C  =1300e-03. 
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Figure 36. Effect of the capacity of tank on the process, with 

3C  =1500e-03. 
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Figure 37. Effect of the capacity of tank on the process, with 

3C  =1700e-03. 
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Figure 38. Effect of the capacity of tank on the process, with 

3C  =1900e-03. 

 
 
 

Data 1 

1cv = 1h (voltage across capacitor 1, as water level of tank 1).  

Data 2 

2cv = 2h  (voltage across capacitor 2, as water level of tank 2).  

Data 3 

1i = 1Q (flow of current through the inductor, as rate of water 

flow through the filter).  
Data 4 

3cv = 3h  (voltage across capacitor 3, as water level of tank 3).  

 

Vertical Line 
Ydot[m3]=(Response of voltages[v] and current[A] to change(s) 
in the RLC circuit; 
 as Response of water levels[m] and rate of water flow[cub-
m/min] to 
 change(s) in system parameters). 
 

Horizontal Line 
Time[s]=(model time; real time). 
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Table 4. Table of values with 1R  varied while other parameters were kept constant. 

 

1R  2R  3R  L  1C  2C  3C  1cv  2cv  i  3cv  

0.1 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.0232 0.9237 0.9904 4.8779 

0.3 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.2206 0.9222 0.9895 4.8698 

0.5 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.4168 0.9200 0.9878 4.8577 

0.7 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.6121 0.9175 0.9858 4.8442 

0.9 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8269 

 
 
 

Table 5. Table of values with 2R  varied while other parameters were kept constant. 

 

2R  1R  3R  L  1C  2C  3C  1cv  2cv  i  3cv  

0.1 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.0042 0.1046 0.9991 4.9362 

0.3 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.2108 0.3122 0.9971 4.9184 

0.5 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.4144 0.5171 0.9945 4.8975 

0.7 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.6133 0.7183 0.9901 4.8683 

0.9 0.9 9.0 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8269 

 
 
 

Analysis of the results of the simulation 
 
The analysis of the results of the seven (7) simulations made 
by varying the values of the parameters of the model, one after 
the other, and the interpretations of the observed values of the 

variables ( 1cv , 2cv , i , and 3cv ) as related to the rate of 

water flow, are given below: 
 
 
First simulation 
 

An increase in the Restriction ( 1R ) to flow between tanks 1 

and 2 (as shown in Figure 1) (while keeping the other 
parameters constant, Table 4), caused reasonable increase in 
the water level of tank 1; water levels of tanks 2 and 3 

decreased and flow ( 1i ) through the filter ( L ) also decreased, 

as demonstrated by the graphs shown in Figures 4, 5, 6, 7 and 
8. In essence, this may be regarded as attempting to fine tune 
the process so as to influence the overall rate of water flow into 
the sachet bag (since varying 1 R has an effect on the water 

levels of tanks 1, 2, 3 and water flow ( 1i ) through the filter). 

 
 
Second simulation 
 

An increase in the restriction ( 2R ) of water flow between tank 

2 and filter (while keeping the other parameters constant, 
Table 5) caused reasonable increase in water levels of tanks 1 
and 2, with tank 2 affected most, while the flow of water 
through the filter and the water level of tank 3 decreased. This 

could be interpreted to mean that an increase in 2R decreased 

the water levels in tank 3, thereby decreasing the water flow 
into the sachet bag. These observations are demonstrated by 
the graphs shown in Figures 9, 10, 11, 12 and 13. As stated 
above, this can also be interpreted as  attempting  to  fine  tune 

the process so as to influence the overall rate of water flow into 
the sachet bag. 
 
 

Third simulation 
 

An increase in the restriction, (
3R ) (while keeping the other 

parameters constant, Table 6) caused an increase in the water 
levels of all the tanks 1, 2, 3 [minimal changes (increase) in 
water levels of tanks 1, 2 and reasonable changes (increase) 
in water level of tank 3], while flow of water through the filter 
decreased. This observation was demonstrated by the graphs 
shown in Figures 14, 15, 16, 17 and 18. 

The essence of this is to fine tune the process so as to get 
the right flow of water from the plant into the sachet bag. More 
specifically, this parameter is used to control the rate of water 
flow into the sachet bag. 

 
 
Fourth simulation 

 
Varying L  (the inductance) and keeping other parameters 
constant (Table 7), caused minimal changes (increase) in the 

water levels of all the tanks 1, 2, 3, while the flow ( 1i ) of water 

through the filter decreased showing that at high filtration, the 
flow of water through the filter lessened (decreased). 

This observation is demonstrated by the graphs shown in 
Figures 19, 20, 21, 22 and 23. This could be interpreted as 
indicating that at high filtration (indicating increase in number 

of wound string of the conductor), the flow ( 1i ) of water 

through the filter decreases, thereby affecting the overall 
output of water flow into the sachet bag. 
 
 

Fifth simulation 
 

Varying 1C  (increasing the  capacity  of  tank  1)  and  keeping
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Table 6. Table of values with 3R  varied while other parameters were kept constant. 

 

3R  
1R  2R  L  1C  2C  3C  1cv  2cv  i  3cv  

1.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8051 0.9138 0.9832 4.6573 

3.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8054 0.9141 0.9830 4.7839 

5.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8096 

7.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8207 

9.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8269 
 
 
 

Table 7. Table of values with L  varied while other parameters were kept constant. 
 

L  
1R  2R  3R  

1C  2C  3C  1cv  2cv  i  
3cv  

1.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.7680 0.8714 0.9949 0.5428 

3.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.7959 0.9033 0.9860 1.6138 

5.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8018 0.9099 0.9843 2.6851 

7.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8043 0.9127 0.9835 3.7562 

9.0 0.9 0.9 9.0 9e-03 9e-03 1900e-03 1.8055 0.9142 0.9830 4.8269 
 
 
 

Table 8. Table of values with 
1C  varied while other parameters were kept constant. 

 

1C  2C  3C  L  1R  2R  3R  1cv  2cv  i  3cv  

1e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8313 0.9316 0.9960 4.9213 

3e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8282 0.9293 0.9951 4.9085 

5e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8241 0.9263 0.9933 4.8919 

7e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8170 0.9215 0.9896 4.8660 

9e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8055 0.9142 0.9830 4.8269 
 
 

 
other parameters constant (Table 8), caused changes 

(decrease) in all the water levels of tanks 1, 2, 3 and flow ( 1i )  

through the filter, as demonstrated by the graphs shown in 
Figures 24, 25, 26, 27 and 28. 

The essence of this variation is to study the effects of 1C  

(capacity of tank 1) on the process (flow of water into the 
sachet bag) and its interaction with the other parameters of the 

model. In this circumstance, the increase in the value of 1C  

could be interpreted as decreasing the rate of water flow into 
the sachet bags. 
 
 
Sixth simulation 
 

Varying 2C (capacity of tank 2) and keeping other parameters 

constant (Table 9), caused changes (decrease) in all the water 

levels of tanks 1, 2, 3 and flow ( 1i ) through the filter, as 

demonstrated by the graphs shown in Figures 29, 30, 31, 32 
and 33. 

This is also to study the effects of 2C  (capacity of tank 2) 

on the process (flow of water into the sachet bag) and its 
interaction with the other parameters of the model. 

Seventh simulation 
 

Varying 3C (capacity of tank 3) and keeping other parameters 

constant (Table 10), caused changes (decrease) in all the 
water levels of tanks 1, 2, 3, while it caused an increase in flow 

( 1i ) through the filter, showing that any variation of the 

capacity of tank 3 affects all the water levels of tanks 1, 2, 3 

(decrease) and flow ( 1i ) of water through the filter (increase). 

This observation is demonstrated by the graphs shown in 
Figures 34, 35, 36, 37 and 38. The essence of this variation is 

to study the effects of 3C  (capacity of tank 3) to the process 

(flow of water into the sachet bag) and its interaction with other 
parameters of the model. 
 
 
Observations 
 
Connecting pipes 
 
It was observed that varying the restriction of the connecting 
pipes implies that either the radius (size) of the pipe is 
decreased/increased or the length of the pipe is 
increased/decreased  which  significantly influences the flow of  
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Table 9. Table of values with 2C  varied while other parameters were kept constant. 

 

2C  1C  3C  L  1R  2R  3R  1cv  2cv  i  3cv  

1e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8211 0.9265 0.9935 4.8929 

3e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8185 0.9243 0.9918 4.8810 

5e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8143 0.9212 0.9891 4.8641 

7e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8106 0.9182 0.9866 4.8479 

9e-03 9e-03 1900e-03 9.0 0.9 0.9 9.0 1.8055 0.9142 0.9830 4.8269 

 
 
 

Table 10. Table of values with 3C  varied while other parameters were kept constant. 

 

3C  
1C  2C  L  1R  2R  3R  1cv  2cv  i  3cv  

1000e-03 9e-03 9e-03 9.0 0.9 0.9 9.0 1.8287 0.9408 0.9753 9.4005 

1300e-03 9e-03 9e-03 9.0 0.9 0.9 9.0 1.8173 0.9278 0.9791 7.1447 

1500e-03 9e-03 9e-03 9.0 0.9 0.9 9.0 1.8124 0.9221 0.9807 6.1590 

1700e-03 9e-03 9e-03 9.0 0.9 0.9 9.0 1.8085 0.9177 0.9820 5.4122 

1900e-03 9e-03 9e-03 9.0 0.9 0.9 9.0 1.8055 0.9142 0.9830 4.8269 
 
 
 

water through the filter, but caused varying effects on the water 
levels in all the tanks. It is an attempt to fine tune the process 
so as to influence the rate of water flow (to get the right water 
flow from the plant). 
 
 
Capacity of the tanks 
 
It was observed that varying the value of the capacities 
(capacitances) of any of the tanks in the process significantly 
influences (decreases/increases) the water levels in all the 
tanks, but caused varying effects on the flow of water through 
the filter. This implies that an increase in the value of 

C (capacity of tank) decreases the water level ( h ) in the tank 

and hence the rate of water flow in the process, while a 

decrease in the value of C  (capacity of tank) increases h  

and hence the rate of water flow in the process depending on 
the type and size of pipe used which must obey the relations 
stated in Equations 8 – 11. 

 
 
Inductance of the filter 

 

It was observed that varying the inductance ( L ) of the filter 
influences the water levels in all the tanks, but caused changes 
(decrease) in the flow of water through the filter, implying that 

an increase in the inductance ( L ) (number of wound string on 
the filter cartridge) increases filteration. An increase in 
filteration tends to decrease the flow of water through the filter, 
and this in turn tends to influence the rate of water flow in the 
process. 

 
 
DISCUSSION 
 
From these results, it was observed that by varying 
the   electrical    parameters   (resistors,    capacitors, 

inductor), it is possible to study the way the 
manipulation of equivalent parameters of the 
analogous mechanical components (the connecting 
pipes, the water tanks and the water filter) of the 
sachet water plant could influence the rate of water 
flow in the production process of sachet water. This 
work demonstrates the possibility and advantage of 
using electrical model to study any analogous 
mechanical and other system types. 
 
 
Conclusion 
 

From the analysis, it is observed that varying any of 
the values of the parameters of the model (Table 3) 
has an effect on the water levels in the various tanks 
and the flow of water through the filter. All these 
variations affect the overall rate of water flow into the 
sachet bag.  

Of particular note is that varying the capacity of any 
of the tanks (1,2,3) significantly decreases the water 
levels in all the tanks, but causes varying effects on 
the flow through the filter. The analysis of this paper 
on modeling a water sachet production plant is a very 
simple way of knowing from the beginning the various 
sizes of pipes, tanks and filter to be used and how 
these will affect the flow of water in the plant before 
going into the physical construction of the plant. This 
method could be used in a more complex system. 

This paper also has shown that it is possible to use 
the commercially available software package, 
MATLAB

®
, to model and simulate the dynamic 

behaviour of sachet water processing plant. By using 
the   developed   program,   it   becomes   simple    to 
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compute and study the effect of the state variables on 
the system during transient state. 

The program, although it is specific for sachet 
water processing plant, can easily be modified and 
adopted for any water processing plant of interest. 
The analysis and simulation results presented in this 
paper will be of immense benefit in the development 
and realization of a simple sachet water processing 
plant. 
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