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This paper proposes the method to the solution of fuzzy linear programming problem with the help of 
multi objective constrained linear programming problem when constraint matrix and the cost 
coefficients of an objective function are fuzzy in nature. Also proved is that the solutions are 
independent of weights. 
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INTRODUCTION 
 
Linear programming is a one of the most important 
operational research (OR) techniques. It has been 
applied to solve many real world problems but it fails to 
deals with imprecise data. So the many researchers 
succeed in capturing vague and imprecise information by 
fuzzy linear programming problem (FLPP) (Bellman and 
Zadeh, 1970; Campose and Verdegay, 1989; Mahmoud 
and Abo-Sinna, 2004; Negoita, 1970; Takashi, 2001; 
Takeshi et al., 1991). 

The concept of a fuzzy decision making was first 
proposed by Bellman and Zadeh, 1970. Recently, much 
attention has been focused on FLPP (Campose and 
Verdegay, 1989; Mahmoud and Abo-Sinna, 2004; 
Negoita, 1970; Takashi, 2001; Takeshi et al., 1991) 
(Zimmermann, 1978). 

An application of fuzzy optimization techniques to linear 
programming problems with multiple objectives has been 
presented by Zimmermann (1978) and Tanaka et al.  
presented a fuzzy approach to multi objective linear 
programming problems. 

Negoita has formulated FLPP with fuzzy coefficient 
matrix, Zhang et al. (2003) formulated a FLPP as four 
objective constrained optimization problems where the 
cost coefficients are fuzzy and also presented its solution. 

In this paper, we provided a method to solve FLPP 
where both the coefficient matrix of the constraints and 
cost coefficient are fuzzy in nature. Each problems, first 
converted into equivalent crisp linear problems, which are 
then solved by standard optimization methods. 
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PRELIMINARIES 
 

Definition 1: A subset A of a set X  is said to be fuzzy set 
if;    
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Where 
A  denote the degree of belongingness of A   

in X . 
 
Definition 2:  A fuzzy set A of a set X is said to be normal 
if;   
 

XxxA  ,1)(  

 
Definition 3: The height of A is defined and denoted as; 
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Definition 4: The  cut and strong  cut is defined 

and denoted as;  
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Definition 5: Let ba
~

 ,~  be two fuzzy numbers, their sum is 

defined and denoted as:  
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Definition 6: If a fuzzy number a~ is fuzzy set A on R, it 

must possess at least following three properties: 

 

i) 1)(~ xa  

ii)    )(/ ~ xRx a  is a closed interval for every 

 1,0  

iii)  0)(/ ~  xRx a bounded and it is denoted by 

 RL
aa  ,  

 

Theorem 1: A fuzzy set A  on R  is convex if and only if; 
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For all x 1, x 2 X  and for all  1,0  , where min 

denotes the minimum operator. 
 
Proof: Obvious. 

 

Theorem 2: Let a~  be a fuzzy set on R , then )(~ Rfa  if 

and only if a~ satisfies  
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Where )(xL is the right continuous monotone increasing 

function, 1)(0  xL  and )(,0)(lim xRxL
x




is a left 

continuous monotone decreasing function, 1)(0  xR  

and .0)(lim 
x

xR  

Proof: Obvious. 

 
 

FUZZY LINEAR PROGRAMMING PROBLEM 

 
We consider the FLPP with cost of decision variables and 
coefficient matrix of constraints are in fuzzy nature. 
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Where at least one jx  > 0 and  
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Let’s consider triangular fuzzy numbers i.e. any fuzzy 
number A can be represented by three crisp 

numbers rls ,, . 
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Where ijijijij rlsA ,,  

iiiij vutB ,,   are fuzzy numbers. 

 

Theorem 3: For any two fuzzy numbers,  A  

111 ,, rls     and 222 ,, rlsB     and BA   if 

and only if  
21 ss    , 

2211 lsls     and   

2211 rsrs   

 
Proof: Obvious 
 
Above problem can be rewritten as; 
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Where    the    membership    functions     of     jc~ (x)     is   
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Definition 7: A point Xx *  is said to be an optimal 

solution to the FLPP if  
 

xcxc ,~*,~   for all Xx  

 
 
Fuzzy multiple objective optimization 
 
Consider a multiple objective optimization problem with k 

fuzzy goals kfff ......., 21  represented by fuzzy sets iF
~

, i 

= 1 . . . . . k, and m fuzzy constraints mggg ,......., 21 ,  

represented by fuzzy sets jG
~

  j = 1 . . . . . m. By 

generalizing the analogy from the single objective 
function, the resulting fuzzy decision is given as; 
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In terms of corresponding membership values for the 
fuzzy goals and the fuzzy constraints, the resulting 
decision is; 
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An optimum solution X* is one at which the membership 

function of the resulting decision D
~

 is maximum, that is, 
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The shape of the membership functions such as a linear, 
concave, or convex function, for various objectives and 
constraints, can affect the optimum solution significantly. 
A linear approximation has been most commonly used 
because of simplicity and expediency.  
 

 

Multi objective linear programming problem with 
fuzzy coefficients 
 

In general, multi objective linear programming problem 
(MOLPP)  refers  to  those  LP  problems  of  systems   in  

 
 
 
 
which multiple objectives to be controlled. For above 
FLPP, the multi objective linear programming problem 
with fuzzy coefficients can be formulated as follow: 
 
So multi objective fuzzy linear programming problem can 
be written as 
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Let R  be the set of all real numbers, 
nR be an n-

dimensional Euclidean space, by considering the 
weighting factor, the MOLPP is defined as; 
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Definition 8: A point Xx * is said to be a complete 

optimal solution to the MOLPP if 
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Numerical example 
 

Example: We illustrate the method by numerical 
examples. 
Solve the following FLPP 
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Subject to the constraints; 
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Where the membership function of 
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Write the above FLPP as   Max 
21121

~~),( xcxcxxf   

Subject to the constraints 



 

 
 
 
 
Table 1. lists of solution for MOLPP for various weights. 
 

Sr. No.  
1w
 

 
2w

 
 

3w
 

 
4w

 
 ),( *

2

*

1 xx
 

1 0 1 1 0 (0, 0.9) 

2 0 1 0.5 0 (0, 0.9) 

3 0.2 0.4 0.5 0.2 (0, 0.9) 

4 0.1 0.2 0.3 0.4 (0, 0.9) 

5 0 0.3 0 0.4 (0, 0.9) 

6 0.2 0.4 0.6 0.8 (0, 0.9) 

7 0.5 0 0.5 0 (0, 0.9) 

8 0 1 1 0 (0, 0.9) 

9 0 0 0 0.5 (0, 0.9) 

10 0.3 0.1 1 1 (0, 0.9) 

11 0.5 0.5 0.5 0.5 (0, 0.9) 

12 0 0 0.5 0.5 (0, 0.9) 

13 0.2 0.5 0.5 0.5 (0, 0.9) 

14 0.1 0.2 0.3 0.4 (0, 0.9) 

15 0 0.2 0 0.2 (0, 0.9) 
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MOLPP    Max 
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subject to Equation (3) 
MOLPP

 214213212211 4025()3514()2510()207)( xxwxxwxxwxxwwMax 

  

 
subject to Equation (3) 
 
A standard optimization technique is used to solve the 
problem and found solution for different weights.  
 

For example,
41 0 ww  , 32 1 ww   

 

MOLPP 
2121 6024),f(x  )( xxxwMax   subject to 

Equation (3) 
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Following table lists the solution for above MOLPP for 
various weights and it also shows that the solutions are 

independent of weights )4,3,2,1,( iwi  (Table 1). 

 
 
Conclusion 
 
We successfully discussed the solution of fuzzy linear 
programming problem with the help of multi objective 
constrained linear programming problem where 
constraint matrix and the cost coefficients are fuzzy 
quantities and also proved that the solutions are 
independent of weights.  
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