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Problems of premature breakage or failure may be encountered with composite pipelines used in the 
transportation of oil and gas products due to the manner in which these lines are laid or installed, 
especially in cases where the lines traverse long distances with rapidly varying topograghy over which 
considerable twisting and bending of the pipelines may occur. To overcome such problems, an 
analytical model is developed herein for determining the optimal spacings between successive 
supports of a transporting composite pipeline which would be effective in eliminating or minimizing the 
risk of failure or breakage of the line and at the same time substantially reducing the costs involved in 
excessive conservatism in existing specifications for this purpose. These dual benefits can be achieved 
through design specification on pipeline support spacing proposed in this paper which is simple and 
easy to use by pipeline operators and oil and gas exporting countries. 
 
Key words: Pipelines, oil and gas, composite material, optimal support spacing, cylindrical shell theory, 
analytical solution, Excel calculations. 

 
 
INTRODUCTION 
 
Certain problems of premature failure or breakage 
encountered in the field application of composite pipes for 
the transportation of oil and gas products have been 
attributed to the manner in which these lines are laid or 
installed, especially in situations where the pipelines 
traverse long distances with rapidly varying topograghy 
(Figure 1).  To overcome such problems, it is proposed to 
develop an analytical model for determining the optimal 
spacing between successive supports of a composite 
pipeline which would be efficient and cost-effective in 
eliminating or minimizing the risk of failure of a line during 
the transmission of oil and gas products.  

In  this   report,   the   thin   shell  theory  for anisotropic 

linearly elastic materials is used to model a composite 
pipeline's response to internal pressure and/or external 
loadings. Thereafter, an interactive failure criterion in 
stress or strain space is used to determine the optimal 
support spacing such that the pipeline would be safe from 
failure. It is found that the optimal spacing is not only a 
function of the pipe diameter, but also depends on the 
material of the pipe, the operating pressure of the line, 
the transported fluid, as well as the pipe cross-section 
geometry characterised by the ratio (D/h) of the diameter 
to the wall thickness. Specifications for support spacings 
contained in other models (SIPM, 1993), which are only 
expressed in terms of pipeline diameters, are found  to be  
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Figure 1. Illustration of pipeline support spacing. 

 
 
 

 
 

Figure 2a. Geometry of cylindrical shell model. 

 
 
 
grossly inadequate. 
 
 
PROBLEM FORMULATION 
 

Pressure p and thrust P are axisymmetric, while q is 
uniformly distributed over the pipeline length. The 
coordinates and notations used here are shown in Figure 
2a, and the supports and loadings are sketched in Figure 
2b. The loadings comprise:  internal pressure, p; weight 
loading (uniformly distributed), q; axial thrust, P. The key 
variable is the lateral deflection w(x), which in view of the 
combination of loads, and subject to the assumption of 
linear elastic response can be expressed as a 
superposition of two solutions as shown in Equation 1: 

                                 (1) 
 
where w

axi
(x) is the deflection under the axisymmetric 

loads, and w
udl

(x) is the deflection under the uniformly 

distributed loading. 
The axisymmetric solution w

axi
(x) is determined from 

the differential equations for a thin shell of a linearly 
elastic anisotropic (but homogeneous) material. The 
solution for the uniformly distributed load w

udl
(x) is 

obtained approximately by use of simple beam theory. 

The strain (and stress) components, ij (ij), are found 

from the displacement components {u(x), v(x), w(x)} by 
use of  standard kinematic and constitutive (stress-strain) 

 w x w x w xaxi udl( ) ( ) ( ) 
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Figure 2b. Forces and moments (Note: alternative notations are 
in the Text). 

 
 
 
relations.  

A failure criterion is then applied at the most highly 
strained / stressed (that is the critical) part along the 
length of the pipeline. For a typical pipe segment on 
simple supports under the loadings specified above, the 
critical location is the inner surface at mid-span between 
the supports. The selected failure criterion is the Tsai-Wu 
interaction criterion in strain or stress space;Tsai SW, 
Hahn HT (1974) as shown in Equation 2 and 3: 

 

                                                            (2) 

                                                            (3) 
 
The choice of this criterion is influenced both by the 
analytical basis from which it is derived for modelling the 
response of various types of composite stuctures to 
various loads, as well as by its widespread use and 
successful application to a variety of problems (Tsai and 
Hahn, 1974). The predictions of this criterion are 
compared with a simpler one of maximum strain / stress 
in this text. Following the determination of the strain / 
stress components from the displacement components 
w(x) and uo(x), introduction of the failure criterion leads to 

a transcendential equation for finding the desired pipeline 
support length L which appears as a non-dimensional 

parameter  :      L/2. The transcendential equation 
takes the form: 
 

Gcr () = 0                                                 (4) 

 

whose roots () can be found numerically for specific 
data, for example by computation in an EXCEL 
spreadsheet   or    with   a   FORTRAN  program. Sample 

results obtained from an EXCEL spreadsheet are shown 
and discussed 
 
 
AXISYMMETRIC SOLUTION 
 
General features 
 
The axisymmetric solution w

axi
(x) is determined from the 

differential equations for a thin shell of a linearly elastic 
anisotropic (but homogeneous) material, which may be 
written in the forms (Vinson, 1993) as shown in Equation 
5: 
 

                

(5) 
 
where w(x) is the lateral deflection, uo(x) is the mid-plane 

displacement, and the loading and geometric parameters 
are as shown in Figures 2a and 2b. 
 
Since this pair of equations in w and uo is uncoupled, the 

first of it alone is used to determine w
axi

(x) as described 

subsequently. The pipeline is represented as a thin-
walled circular cylindrical shell with uniform wall-thickness 
h, and radius R, taken to its midplane. The material of the 
shell is modelled as a specially orthotropic material, so 
that the material parameters contained in the governing 
Equation (5) are defined as followsas shown in Equation 
6: 
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(6)

                                 
 

 
 
 
 

where  are poisson’s ratios w.r.t. the 
longitudinal and transverse directions respectively. 
(Equation 7):  

                                                         (7) 
 
The axisymmetric loading consists of an internal pressure 
p(x) together with an axial thrust Nx. The axial thrust Nx 

satisfies the condition (Equation 8): 
 

                                                                          (8)   

so that is a constant. 
                              (8) 

Also, for the present purpose, we take the pressure 
p(x) as a constant. This follows from the consideration 
that the internal pressure in pipelines varies little even 
over long distances. Typically, one gets a pressure drop 
of only 0.1 bar over a pipe length of 20 km (Vinson, 
1974). The general solution to Equation 9 is the sum of a 
homogeneous solution w

h
(x), and a particular integral 

w
p
(x): 

 

w x w x w x w xaxi h p( ) ( ) ( ) ( )                                        (9) 

 

For the particular integral wp(x), we observe that for Nx 

constant, and p(x) assumed a constant p, as shown in 
Equation 10: 
 











R

N
p

D
xw xx

x

p


 44

1
)(                                              (10) (10) 

 

In this expression, the pressure p will normally be 
prescribed from the operating conditions of a specific 
pipeline, while the axial thrust Nx is determined by the 

weight loading on the line. 
The homogeneous solution wh(x) in Equation 9 can be 

expressed in the form (Vinson, 1993): 
 

w x Ae x Be x Ce x De xh
x x x x( ) cos sin cos sin               

                                                                                     (11) 
 

where the constants A, B, C, D are determined by 
applying appropriate boundary conditions for the problem 
to the general solution w(x). In Equation 11 and related 

ones following, notational equivalents used: xx   to 

maintain the use in Vinson (1993). 
 
 
The particular integral 
 
The   particular   integral   (Equation   10)   is   completely  

determined once Nx is found. To determine Nx, assume 

the pipe is resting on a series of simple supports which 
are equally spaced as illustrated in Figure 1. Then, a 
representative segment SG of length L between supports 
will experience an axial force P (Figures 3 and 2b) 
induced by weight loadings from the adjoining pipe 
segments on both sides of SG such that by symmetry 
and for balance of moments about either support, we 
have (Equation 12): 
 

PR
W L

P
WL

R
 

2 4 8
 , so that                                          (12) 

 

where W is the total weight loading on any pipe segment, 
as typified by SG. Here, W is the sum of the weight of the 
pipe Wp and that of the fluid Wf instantaneously 

contained within its length. Under steady flow conditions, 
we have (Equation 13): 
 

W W Wp f                                                                  (13) 

 

Let the specific gravity of the pipe material be sp, and 

that of the contained fluid sf. Then for this shell geometry 

we find that in Equation 14: 
 

W W W RhLs R Ls

RL hs Rs

p f p w f w

w p f

   

 

2

2

2   

                     ( )
                    (14) 

 

where w is the specific weight of water, that is w = 

9.81E-06 N/mm
3
. 

By definition, the axial thrust Nx is obtained from the 

axial force P through the relation (Equation 15): 
 

21682

1
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                                            (15) 

 

Consequently, on using Equations 12 - 15, we find that 
the particular integral given Equation 10 takes the form 
(Equation 16): 
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The general solution 
 

The   general    solution    (Equation    9)    is   completely 
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Figure 3. Model of a simply supported beam under external distributed load and internal pressure. 

 
 
 
determined once the constants A, B, C, and D in the 
homogeneous solution (Equation 11) have been found by 
applying appropriate boundary conditions to the general 
solution w(x) in Equation 9. Consider again a typical pipe 
segment SG of length L between simple supports at S 
and G (Figures 1 and 3). Set the origin of axial coordinate 
x at midspan O, so that by symmetry, only one-half of this 
segment needs to be considered. The appropriate 
boundary conditions are (Equation 17): 
 

w x w x

w x w x

x x

x L x L

' ( ) ' ' ' ( )

( ) ' ' ( )/ /

 

 

 

 

0 0

2 2

0 0

0 0

 ,           

 ,        
                 (17) 

 
We write the general solution w(x) as (Equation 18): 
 

w x w Ae x Be x Ce x De xp
x x x x( ) cos sin cos sin            (18)  

                                                             
Then by successive differentiation, we find (Equation 19): 
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                                                  (19) 
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                                                        (20) 
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                                                                  (21) 
 
Conditions (3.13)1 at x=0 yield (Equation 22): 

 
    
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A B C D

0

0
                                                         (22) 

 
while conditions (3.13)2 at x=L/2 yield (Equation 23): 

 

                                                     
                                                                                     (23)

 

where,  
 

Equation 22 lead to the relations 
 

C A D B   ,    and                                                    (24) 
 

which are subsequently used in Equation 23 to obtain the 
results (Equation 25): 
 

                                                 (25) 
 
where,  
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so that the constants A, B, C, and D are functions of the  

parameter   L/2. 
 
 
SOLUTION FOR THE UNIFORMLY DISTRIBUTED 
LOAD 
 
An approximate solution for the lateral deflection of the 
pipeline under the uniformly distributed weight loading 
can be constucted by regarding the typical pipe segment 
as a simply-supported beam of length L, carrying the said 
loading along its length, Figure 3. The use of simple 
beam theory is illustrated in Figure 3. Here, the origin of 
the axial coordinate is placed at midspan as for the 
axisymmetric problem.  

Let the load per unit pipe length be q. Then by relation 
(11), we have Equation 26: 
 

  







 

fpfpw ss
R

h
RRshsR

L

W
q 210*81.92 26        

                                                                                   (26) 
 
 Then from the free-body-diagram in Figure 2b, we find 
that the bending moment M(x) is given in Equation 27: 
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                  (27) 

 
where the flexural rigidity EI is taken with respect to the 
pipe axis, that is EI = ExIx, and E = Ex is Young's 

modulus w.r.t. the axial direction, while I = Ix is the 

second moment of area of the pipe cross-section w.r.t. 
the pipe axis, which for a thin circular cylindrical shell of 
mid-radius R and wall thickness h is given (Equation 28): 
 

I R R hx  (pipe cross-section area)*  2 32             (28) 

For convenience, we drop the subscript x on E and I as 
there would be no ambiguity in doing so here. Integrating 
(Equation 27)2, we obtain successively (Equation 28): 
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where C1 and C2 are constants of integration which are 

evaluated from the following boundary conditions for a 
simply-supported pipe-beam (Equation 30): 
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 (30) 

 
Consequently, the lateral deflection w

udl
 under the 

uniformly distributed load is given in Equation 31: 
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                                                                                     (31) 
 
COMBINED SOLUTION 
 
Total lateral deflection 
 
By superposition, as explained previously (Equation 1), 
the total lateral deflection of the pipe under the 
combination of the axisymmetric and uniformly distributed 
loads is (Equation 32): 
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where wp is given Equation 15, A and B by Equation 24, 

and for convenience we have set (Equation 33): 
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the last step following from the relation   L/2. 

 
Strain components 
 

The total lateral deflection w(x) obtained in Equation 32 is 

independent of the circumferential coordinate , so that 

the strain components w.r.t. the (x, ) plane are given: 
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where  is the radial coordinate, measured from the pipe mid -surface.

( )                     (34) 



 
 
 
 

Where   is the radial coordinate measured from the 
pipe mid-surface. 

As the shear component x  is zero, 
x
 and  become 

the principal strain components in the pipe wall. This 
feature is utilized subsequently. Substituting Equation 5 
(2) in 33 (1) leads to Equation 35: 
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Hence from the expression obtained for w(x) in Equation 
32, together with Equations 16, 25, and 8, the strain 

components x and  can be calculated using Equations 

35 and 34(2). For this, we observe that w"(x) resulting 

from Equation 32 is: 
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The use of Equations 32 and 36 in  Equations 34 and 35 

give the final expressions for 
x
(x) and (x) in terms of 

the quantities wp, g(),  t(), x, and (1/2 - x/L). Only the 

reduced forms of these expression obtained for a specific 

value of variables (x, ) are needed in the application of 
the failure criterion, and these are written out explicitly in 
the following where the failure criterion is discussed. 
 
 
APPLICATION OF A FAILURE CRITERION 
 
Interactive failure criterion 
 
The selected failure criterion is the Tsai-Wu interactive 
criterion in either strain or stress space, expressed by 
Equations 2. Note that the strain- and stress- space 
expressions are equivalent, the use of one rather than 
the other is determined in specific cases by the data 
available for the computation involved. An EXCEL 
spreadsheet can be written to allow the use of either form 
of this criterion. To use the stress-space form, the stress 
components are first calculated from the strain 
components, using the stress-strain relations Equation 
(37): 
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The said criterion is applied at the most highly strained / 
stressed region in the pipe. For the problem being 
investigated, this critical region is the inner surface of the 

pipe at its midspan, that is at x = 0 and  = -h/2. Set 
 

       x x h x x x    0 2 0 0, /
 

     ,       ,          

                                                                                     (38) 

Then from previous section (The total lateral deflection), 
we found: 
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The strain-space criterion (2.2)1 can be expanded into [4] 

 

G G G G G Gss s11 1
2

12 1 2 22 2
2 2

1 1 2 22 2 1 0              (40) 
 
and correspondingly for the stress space, we have 

 

F F F F F Fss s11 1
2

12 1 2 22 2
2 2

1 1 2 22 2 1 0              (41) 
 
where subscript 1 denotes the fiber direction, 2 the 
direction normal to that of the fibers, and s the shear 
component. For the pipe geometry here, (Figure 2a), the 

fiber direction is the circumferential (or -) direction, while 
the axial (or x-) direction is the one normal to the fibers. 
This follows from the manner in which fiber-reinforced 
materials are wound into circular pipe profiles. 

Furthermore, at the critical region where the criterion is 
being applied the shear strain component vanishes. 
Hence in Equations 40 and 41, we set Equation 42: 

 

    1   ,     ,       
2 0x s  (42) 

 
Then substituting Equation 39 Equations in 40 and 41 
leads to a transcendential equation of the form Equation 

4 for determining the values of   L/2, which satisfy the 
failure criterion Equation 2. Thereafter, from the set of 
values of L resulting from the solution of this 
transcendential equation the required optimal support 
spacing can be extracted. This is explained further 
subsequently. 
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where  is the radial coordinate, measured from the pipe mid -surface.
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Dimensionless form 
 

To make the dependence of the required quantity L (or ) 
on the governing parameters more apparent, we re-
arrange the variables occurring in the failure criterion 
(Equations 40 and 41) in non-dimensional form. To this 
end, we rewrite the expressions for the strain 

components 1 and 2 as follows in Equation 43: 
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Note that the last term in the expression for 1 can be 

rewritten as in Equation 44: 
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Hence from (6.6) and (6.7) we see that the dimensionless 
variables which enter into Equations 40 and 41 are (as 
shown in Equation 45): 
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of which  becomes the dependent variable and the rest, 
the specified or independent variables. Furthermore, we 
have the following relations (as shown in Equation 46): 
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Similarly, using relations found earlier previously, we 
have (as shown in Equation 47): 
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Thus Equation 43 become Equation 48 
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Consequently, the transcendential equation for  
resulting from (Equations 40 and 41), have the  functional  

form in Equation 49: 
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which gives the quantity   L/2 as a function of the form 
(as shown in Equation 54): 
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Thus we see that the required optimal support spacing 
Lopt to be extracted from Equation 50 is a function of the 

following variables or parameters: 
 
1. Pipe cross-section geometry, represented by the 
variable R/h or D/h; 
2. Pressure loading, represented by variable p/Eθ*; 
3. Pipe material and fluid content, represented by 
parameters Sm, *, *s . 
 

Because of the non-linear character of the dependence of 
Lopt on each of the variables in Equation 54, the features 

of these dependences cannot be expressed in a closed 
analytical form. However, they are displayed graphically 
and in tabular forms. 
 

 

DISCUSSION  
 

Features 
 

Equation 49 is found to be a quartic equation in 2 so 

that there could be up to 4 real roots for 2. If there are 
any complex roots, they would occur in conjugate pairs in 

the resulting values for  . In fact, only 2 real roots have 

been detected for 2 for a wide range of values of the 
main independent variables shown on the r.h.s of 
Equation 50. The range of values used are given in 
Tables 1.1 to 1.6 in Appendix I. Of the two roots of in 
Equation 49 only one can be considered acceptable as 
the  other  one  gives  a  vanishingly  small  value  for  the 
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Figure 4. Lopt vs. D/h for varying h values, for E-glass epoxy. 

 
 
 

 
 
Figure 5. Lopt vs. D/h for a fixed h value, for graphite epoxy. 

 
 
 

support spacing. Hence the solution can be considered 
sound as there would be no ambiguities for any specific 
case. This can be seen from the last four columns of the  
EXCEL printout shown as Appendix III (A) 

Samples of the resulting solutions for optimal support 
spacing Lopt are shown graphically and in tabular form 

for various combinations of the governing variables 
(Figures 4 to 6): 
 
1. Lopt vs. D/h, for various values of h, at constant 
pressure p;  
2. Lopt vs. D/h, for various p, with h fixed;  
3. Lopt vs. D/h, for different transported fluids, with h 
fixed. 
 
A non-dimensional form of the graph of Lopt vs. D/h, for 

various h, at constant p, is the graph of Equation 51: 
 
L

hD
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D

h

opt
. .                                                                   (51) 

 
which  shows   other   interesting  features.  For  the  non- 

dimensionalisation, it was observed in Equation 52 that: 
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Sample results 
 
The computed results for the sample calculations are 
shown in Tables 1 to 6 in Appendix I. The corresponding 
graphs are contained in Appendix II. The reference data 
for the calculations are also shown in Table 1 in Appendix 
I. Table 1 gives a comparison of the results with some 
existing solutions; Vinson JR, Sierakowski A (1986) 
 
 
Scope of application 
 

As  illustrated  in  the examples, the solution for  ceases  
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Figure 6. Lopt vs. D/h for gas-transmission lines.  

 
 
 
to be acceptable when its value suddenly drops sharply 
for a minute increase in D/h (Figure 6). At this point it is 
found that the second real root gets very close to the first, 
both of which then become vanishingly small and 
therefore unacceptable. 

This transition point marks the limit of validity of the 
foregoing solution and its point of occurrence is governed 
mainly by the applied pressure load for a given failure 
criterion and given material. Different limits are found for 
different criteria and different materials. A comparison of 
the limits set by different criteria is illustrated in Figure 6.  
For application of the model for D/h values beyond the 
range of validity, the terminal value in this range may be 
used, alternatively, a continuous foundation or support 
may become necessary, see for example the last column 
of Table 3.1b. 

On the whole, the interaction failure criterion in strain or 
stress space seems to give the most reliable solutions, 
and may be regarded as an 'upper' bound criterion. 
Furthermore, the range of solutions that can be obtained 
would cover all cases of practical concern and analytical 
interest. 

 
 
Application to other loading conditions 

 
As indicated previously, the model developed here can 
be applied to other pipe loadings or configuration by an 
appropriate interpretation or modification of the governing 
variables. Thus, for application to offshore pipelines, the 
pressure p would be defined as shown in Equation 57: 

 
p = pi – po                                                                     (53) 

 
where, 
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where

 is the internal pressure load as before, and

 is the external hydrostatic pressure:  

 

 
For buried land pipes, the weight loading is redefined 

as shown in Equation 58: 
 

W = Wp + Wf + Ws 

 
Where Wp and Wf are as before and Ws is the weight of 

the ‘head’ of soil covering the pipe. That is, 
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where  and  are as before, and

 is the weight of the 'head'  of soil covering the pipe, i.e. 

 

 
 
Conclusion 
 
The interactive failure criterion for composites has been 
used to determine the optimal support spacing for 
composite pipelines. The analysis, based on thin shell 
theory, shows that the optimal support spacing depends 
on the following parameters: The pipe cross-section 
geometry (D/h), the pressure loading (p/Eo), the 
transported fluid type and the material properties of the 
pipeline. This result is a considerable improvement on 
some previous specification on pipe support, which is 
solely determined by the pipe diameter, and provides an 
excessively conservative estimate of spacing distances, 
and is only valid for a very limited range of application. 

The interaction criterion is also compared with other 
criteria, such as the maximum strain criterion, and found 
to be much more reliable and found to cover a much 
wider scope of application. 

Furthermore, although the formulation is initially for 
overland pipelines, by appropriate modification or 
interpretation  of  the  input variables (such as inclusion of  



 
 
 
 
hydrostatic pressure head for offshore lines, etc.), the 
model can be applied directly to offshore and buried land 
pipes. 
 
 
Recommendations  
 
From the study, the following recommendations are 
made: 
 
1. In the model discussed here, the pipe layout is 
assumed to be horizontal throughout its entire length, 
which can be extensive and include a large number of 
supports. A useful extension of the work could include  
varying slopes between supports, to account for possible 
variation in the land or surface topography. 
2. The effect of field joints on the pipelines has not been 
included here. Where supports are placed at joint 
locations, the stress distribution over the representative 
pipe segment would be different and the failure criterion 
would need to be applied at the joints rather than at 
midspan as done here. 
3. A simple composite structure has been used here, 
namely that of a single layer, unidirectional composite. 
This may be sufficient for an estimate of the required 
quantity, Lopt, in many practical cases, but it is worthwhile 
to investigate the difference, if any, it would make when 
one considers a multi-layered and multi-directional 
composite.   
4. The Excel calculation should be developed into a 
software package for use in pipeline design and 
installation; Vinson JR, Sierakowski A (1986), Vinson and 
Chou (1975) and Mirsky (1964). 
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APPENDIX 
 
Appendix I. Data used in the excel calculations. 

 
(A). Properties of the sample pipe materials (cf. [2, 5]) 

 
Table 1a. Mean strength values (MPa). 
 

Material Long. tens. X  Long. comp. X'  Trans. tens. Y Trans. comp. Y' Shear, S 

E-glass epoxy (EGE) 1323 1491.2 54.44 108.9 79 

S-glass epoxy (SGE) 937.93 1931 27.586 137.93 41.38 

Graphite-epoxy 1500 1500 40 246 68 

 
 
 

Table 2a. Strength parameters in stress space. 
 

Material Fxx (GPa)-2 Fyy (GPa)-2 Fxy (GPa)-2 Fss (GPa)-2 Fx (GPa)-1 Fy (GPa)-1 

E-glass epoxy (EGE) 0.50688 168.6763 -4.62327 160.2307 0.08526 9.1861 

S-glass epoxy (SGE) 0.55214 262.8164 -6.0231 584.0083 0.5483 29.0 

Graphite-epoxy 0.444 101.6 -3.36 216.2 0 20.93 

 
 
 

Table 3a. Strength parameters in strain space (dimensionless) - see [4] for formulae for calculating these quantities from the F-
values. 
 

Material Gxx Gyy Gxy Gss Gx Gy 

E-glass epoxy  790.302 11712.24 1590.64 2746.29 23.383 77.276 

S-glass epoxy 1068.7 18291.07 2851.65 10009.67 84.7494 244.564 

Graphite-epoxy 12004 10680 -3069 11117 60.64 216.5 

 
 
 

Table 4a. Engineering constants and specific gravity. 
 

Material Ex (GPa) Ey (GPa) xy yx
* Es (GPa) Sp. gr. 

E-glass epoxy  11.69 19.03 0.42144 0.68613 11.8354 1.8 

S-glass epoxy  58.07 13.793 0.293 0.067 5.31 1.7 

Graphite-epoxy 181 10.3 0.28  7.17 1.6 
 

* xy/Ex = yx/Ey. 

 
 
 

(B). Specific gravity (s.g.) of transported fluids 
 

Table 1b. Specific gravities of selected fluids. 
 

Fluid Specific gravity (s.g.) 

Water 1.0 

Crude oil 0.9 

Natural gas 0.005 
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(C). Selected pipe geometries 
 

Table 1c. Sample pipe geometries for oil and gas transportation. 
 

Application Nom. Diam., D (in) Wall thick., h (in) D/h range (typical) 

Flowlines (F/L) 4, 6, 8 1/8, 1/4 16 - 64 

Delivery lines (D/L) 10, 14, 16 1/4, 1/2 20 - 64 

Trunk lines (T/L) 18, 20, 24 1/2 - 1 18 - 48 

Loading lines (L/L) 30, 40, 50 1, 1.5, .. 20 - 50 

 
 
 
Appendix II: Data used in the Excel Calculations 
(A) Properties of the sample pipe materials (cf. [2, 5]) 
 

Table A.1. Mean strength values (MPa). 
 

Material Long. tens. X Long. comp. X' Trans. tens. Y Trans. comp. Y' Shear, S 

E-glass epoxy (EGE) 1323 1491.2 54.44 108.9 79 

S-glass epoxy (SGE) 937.93 1931 27.586 137.93 41.38 

Graphite-epoxy 1500 1500 40 246 68 

 
 
 

Table A.2. Strength parameters in stress space. 
 

Material Fxx (GPa)-2 Fyy (GPa)-2 Fxy (GPa)-2 Fss (GPa)-2 Fx (GPa)-1 Fy (GPa)-1 

E-glass epoxy (EGE) 0.50688 168.6763 -4.62327 160.2307 0.08526 9.1861 

S-glass epoxy (SGE) 0.55214 262.8164 -6.0231 584.0083 0.5483 29.0 

Graphite-epoxy 0.444 101.6 -3.36 216.2 0 20.93 

 
 
 

Table A.3. Strength parameters in strain space (dimensionless)( - see [4] for formulae for calculating these quantities from 
the F-values). 
 

Material Gxx Gyy Gxy Gss Gx Gy 

E-glass epoxy  790.302 11712.24 1590.64 2746.29 23.383 77.276 

S-glass epoxy 1068.7 18291.07 2851.65 10009.67 84.7494 244.564 

Graphite-epoxy 12004 10680 -3069 11117 60.64 216.5 

 
 
 

Table A.4. Engineering constants and specific gravity. 
 

Material Ex (GPa) Ey (GPa) xy yx
* Es (GPa) Sp. gr. 

E-glass epoxy  11.69 19.03 0.42144 0.68613 11.8354 1.8 

S-glass epoxy  58.07 13.793 0.293 0.067 5.31 1.7 

Graphite-epoxy 181 10.3 0.28  7.17 1.6 
 

*Note: xy/Ex = yx/Ey. 
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(B) Specific gravity (s.g.) of transported fluids 
 

Table B.1. Specific gravities of selected fluids. 
 

Fluid Specific gravity (s.g.) 

Water 1.0 

Crude oil 0.9 

Natural gas 0.005 

 
 
 

(C) Selected pipe geometries 
 
 

Table C.1. Sample pipe geometries for oil and gas transportation. 
 

Application Nom. Diam., D (in) Wall thick., h (in) D/h range (typical) 

Flowlines (F/L) 4, 6, 8 1/8, 1/4 16 - 64 

Delivery lines (D/L) 10, 14, 16 1/4, 1/2 20 - 64 

Trunk lines (T/L) 18, 20, 24 1/2 - 1 18 - 48 

Loading lines (L/L) 30, 40, 50 1, 1.5 20 - 50 

 
 
 
Appendix III: Comparison of computed values of Lopt with those of another model in double columns 

 
A. Comparison for a wide range of pipe diameters (using h=3/8"). 
 

D (mm) D/h p @ max.* 
Lopt (m) graphite 
epoxyL-interact          

L-shear 
Lopt (m) E-glass epoxy 

L-interact 
L-strain Lopt (m)L-sys.des.* 

100 10.49869 19.05 4.615 4.0223 2.87876 2.3208 3.5 

150 15.74803 12.7 5.8684 5.111 3.657 2.948 3.9 

200 20.99738 9.525 6.923 6.0258 4.3105 3.47473 4.2 

250 26.24672 7.62 7.85 6.8233 4.883 3.937 4.5 

300 31.49606 6.35 8.687 7.5454 5.4 4.3526 4.7 

350 36.74541 5.443 9.4553 8.2086 5.872 4.7342 4.8 

400 41.99475 4.7625 10.17 8.819 6.3106 5.0873 4.8 

450 47.24409 4.233 10.8423 9.393 6.7216 5.42 4.8 

500 52.49344 3.81 11.478 9.9362 7.11 5.732 4.9 

550 57.74278 3.4636 12.083 10.448 7.478 6.02915 4.9 

600 62.99213 3.175 12.662 10.9422 7.829 6.313 4.9 
 

*For maximum hoop stress of 10 MPa, see [3]. 
 
 
 

B. Comparison for flowline pipes. 
 

D (mm) h (in) D/h p @ max.* 
Lopt (m) Graphite epoxy 

L-interact           L-shear 

Lopt (m) E-glass epoxy 

L-interact L-strain 
Lopt (m)L-sys.des.* 

40 0.25 6.30 31.75 2.481 1.55 2.7 

50 0.25 7.87 25.40 2.854 1.782 2.9 

80 0.25 12.60 15.88 3.796 2.368 3.3 

100 0.25 15.75 12.70 4.327 2.698 3.5 

150 0.25 23.62 8.47 5.455 3.397 3.9 

200 0.25 31.50 6.35 6.402 3.983 4.2 
 

*For maximum hoop stress of 10 MPa, see [3]. 

 


