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This paper introduces a family of simple bipartite graphs denoted by 
( ),

P
G m p

, named and 
constructed as polygon graphs. These polygon graphs are bicubic simple graphs possessing 
Hamiltonian cycles. Some important results are proved for these graphs. The girth of these graphs is 

counted as 6( 3m ≥ ). 
( )3,1PG

Polygon graph is isomorphic to a famous Pappus graph. Since polygon 
graphs are bipartite, therefore they can be used as Tanner graphs for low density parity check codes. 
This family of graphs may also be used in the design of efficient computer networks.  
 
Key words: Polygon graph, girth, Hamiltonian cycle, bicubic graph.  

 
 
 

INTRODUCTION 
 
A graph G is a triple, consisting of a vertex set V= V(G), 
an edge set E=E(G) and a map that associates to each 
edge two vertices (not necessarily distinct) called its end 
points. A loop is an edge whose end points are equal. 
Multiple edges are edges having same end points. A 
simple graph is one having no loops or multiple edges. 
To any graph, we can associate the adjacency matrix A 

which is an n×n matrix (n=IvI) with rows and columns 
indexed by the elements of vertex set and the (x,y)-th 
entry is the number of edges connecting x and y. A path 
is a non-empty graph 
 
P = (V, E)  
 
where, 
 
V= {x0, x1,…………xk} , E = {x0x1,……xk-1 xk} 
 
01Where the xi’s are all distinct. 
 
The vertices x0 and xk are linked by P and are called its 
ends; the vertices x1,… xk-1 are the inner vertices of P. 
The number of edges of a path is its length. If P = x0, … 
xk-1 is a path with k> 3, then the graph C: = P + xk x0 is 
known as cycle. As with paths, we  often  denote  a  cycle  
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by its (cyclic) sequence of vertices, the above cycle C  
might be written as x0 …xk-1 x0. The length of a cycle is 
the number of its edges (or vertices). The cycle of length 

k is called k-cycle and denoted by
kC . The length of the 

shortest cycle (contained) in a graph G is the girth g (G) 
of G, the maximum length of a cycle is G and is its 
circumference. If G does not contain a cycle, we set the 

former to ∞  the latter to zero (Reinhard, 2000). Cubic 
graphs also known as trivalent graphs are intensively 
studied in graph theory. The bipartite cubic graphs widely 
known as bicubic graphs took special interest. Tait 
(1888), conjectured that every planer cubic graph 
contains Hamiltonian cycle, it was challenged by Tutte 
(1946), by a counter example, a 46-vertex graph now 
named for him (Tutte, 1946). In 1971, Tutte conjectured 
that all bicubic graphs are Hamiltonian; however, Horton 
provided a 96-vertex counter example (Horton, 1982). 

Study of cubic graphs is one of the favorite topics for 
graph theorists. One main reason is that they have wide 
application. For example, it follows from the result of 
Malle et al. (1994) that, almost every finite simple group 
has a cubic Cayley graph. Moreover, the generalization 
to the graphs of degree k>3 does not appear to be more 
difficult than the case k=3. Finally, the cubic case is the 
only one where we have specific examples that improve 
significantly on the best general results currently 
available incorrect format (Biggs, 1998). Polygon graphs 
are constructed by connecting odd  number  of  copies  of 
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polygons of same size in a delicate manner. These 
graphs are defined only for polygons with an even 

number of sides and denoted by ( ),PG m p , where 2m is 

the number of sides and 2p +1 is the number of copies of 
polygon P. These graphs are bicubic with some 
interesting properties. Principle of mathematical induction 
is used to prove the existence of Hamiltonian cycles in 
these graphs. It is shown that, these graphs have girth 6. 
It is a simple fact that cubic Hamiltonian graphs have at 
least two Hamiltonian cycles. Finding such a cycle is NP-
hard in general, and no polynomial time algorithm is 
known for the problem of finding a second Hamiltonian 
cycle, when one such cycle is given as part of the input 
(Cristina, 1999). However, in the case of polygon graph, it 
is easy to find Hamiltonian cycles. 
 
 
METHODS OF CONSTRUCTING POLYGON GRAPHS 
  

Let P be a polygon with ( )2  2m m ≥  sides. Place 2p+1 copies 

of P denoted by 
1 2 1 2

, , , , , ,
p p

P P P P P P P′ ′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  in parallel, 

such that P is in the middle, p copies on the right side of P 

say
1 2
, ,

p
P P P⋅ ⋅⋅ ⋅  and p copies on the left side of P 

say
1 2

, ,
p

P P P′ ′ ′⋅⋅ ⋅⋅  as follows. 

1 2 1 2
, , , , , ,

p p
P P P P P P P′ ′ ′⋅⋅⋅ ⋅ ⋅⋅ ⋅⋅ . Vertices of P,

i
P′ and 

i
P  are 

denoted by 
( ) ( ) ( )0 0 0

1 2 2
, , ,

m
v v v⋅⋅ ⋅⋅ , 

( ) ( ) ( )
1 2 2

, , ,
i i i

m
u u u⋅ ⋅⋅⋅ , 

( ) ( ) ( )
1 2 2

, , ,
i i i

m
w w w⋅ ⋅⋅⋅ , 1, ,i p= ⋅⋅ ⋅  respectively. Simple connected 

graph 
P

G  is constructed by drawing edges such that, an even 

vertex is connected with odd vertex and an odd vertex with an even 
one in the following manner. 
 
 
Algorithm 

 
Edges between vertices of different polygons 
 

a) For i p<  connect m vertices of 
i

P  with m vertices of 
1i

P −  

and m vertices of 
i

P with m vertices of 
1i

P + . Similarly, connect 

m vertices of 
i

P ′  with m vertices of 
'

1i
P −  and m vertices of 

i
P ′ with m vertices of 

1i
P + . 

b) For i p= , m vertices of 
i

P  are already joined with m 

vertices of 
1i

P − , where the remaining m vertices of 
i

P are joined 

with the remaining m vertices of 
i

P ′ . 

 
 
Edges between vertices within a polygon 

 

Only sides of polygon represent edges in 
P

G . This simple graph is 

 
 
 
 

denoted by ( ),
P

G m p and is named as a polygon graph.  

 

Example 1: If m = 2, p = 2, 
P

G (2 , 2) (Figure 1) 

( )3,1
P

G is isomorphic to a famous bicubic symmetric distance-

regular Pappus graph with 18 vertices. It has representations as 
presented in Figure 2. 

 
 
RESULTS 
 
Theorem 1 
 

Let ( ),
P

G m p  be a polygon graph then: 

 

i) |
PG

V  | = 2m (2p+1), |
PG

E  | = 3m (2p+1); 

ii) ( ),
P

G m p  is a cubic graph; 

iii) ( ),
P

G m p  is a bipartite graph. 

 
 

Proof 
 
i) Since each polygon has 2m number of vertices and 

there are (2p+1) copies of polygons in ( ),
P

G m p . 

Hence, total number of vertices equals: 
  

|
PG

V  | = 2m (2p+1) 

|
PG

E  | = ( )
1

1

2

GP
V

k

k

d v
=

∑  

 

Where ( )k
d v is the degree of thk vertex. 

 

=

2 (2 1)

1

1
( )

2

m p

i

i

d v
+

=

∑ = { }
1

3 2 (2 1)
2

m p + =3 (2 1)m p +  

 

ii) By definition of ( ),
P

G m p , it is clear that each vertex of 

a polygon is connected with two vertices of the same 
polygon and with one vertex of a polygon, either on its 
right or on its left. Hence, degree of each vertex becomes 

three. So, ( ),
P

G m p  is a regular simple graph of degree 

three, that is  ( ),
P

G m p  is a cubic graph. 

iii) There exists a vertex labeling such that, each even 
vertex is connected with three odd vertices and each odd 
vertex is connected with three even vertices, therefore 

vertices of 
P

G can be colored using only two colors. As 

every two colorable graph is bipartite. Hence, 
P

G  is a 

bipartite graph with equal number of vertices in each part.  
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Figure 1. Polygon graph Gp (2 , 2). 

 
 

 
 
Figure 2. Polygon graph Gp (3 , 1). 

 
 
 

Theorem 2 
 

Let ( ),
P

G m p  be a polygon graph, then 

( )( ) ( )( ), ,P PG m p G m pχ ≤ ∆  

 
 
Proof 
 

Since ( ),
P

G m p  is a bipartite graph, therefore there is 

no odd cycle in it. Also, since by definition ( ),
P

G m p  is 

not complete, so according to Brooks theorem (1914). 
 

( )( ) ( )( ), ,P PG m p G m pχ ≤ ∆   

( )( ), 2PG m tχ = , ( ( ),
P

G m p  is bipartite) 

( )( ), 3PG m t∆ =  ( ( ),
P

G m p is cubic). 

 
 
Theorem 3 
 

( ),
P

G m p  is a Hamiltonian graph that is, it contains a 

Hamiltonian cycle!. 
 
 
Proof 
 
Let m = 2, we use mathematical induction on p, to prove 

the result. For p= 1, 
P

G  (2,1)  contains  the   Hamiltonian  
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Figure 3. Polygon graph Gp(2,1). 

 
 
 

path. 1 – 2 – 3 – 4 – 11 – 12 – 9 – 10 – 7 – 8 – 5 – 6 as 
shown in Figure 3. 

Let 
P

G ( )2, p contain Hamiltonian cycle for p k≤  that 

is; 
  

( ) ( ) ( ) ( )0 0 0 0

1 2 3 4
, , ,v v v v ,

( ) ( ) ( ) ( )1 1 1 1

3 2 1 4
, , ,u u u u ………

( ) ( ) ( ) ( )
3 2 1 4

, , ,
k k k k

u u u u ,
( ) ( ) ( ) ( )
1 2 3 4

, , ,
k k k k

w w w w ,………….

( ) ( ) ( ) ( )
1 2 3 4

, , ,
k k k k

w w w w
( )0

1
v  

 

Now we prove that ( )2,
P

G p  contains Hamiltonian cycle 

for 1p k= + . Replace edges between 
k

P and kP ′  by 

drawing edges between
k

P ,
1k

P + and kP ′ ,
1kP +
′ . Now we 

have two vertices of 
1k

P +  and two vertices of 
1kP +
′ each 

of degree two; now connect these vertices to make the 
following path.  

 
( ) ( ) ( ) ( )0 0 0 0

1 2 3 4
, , ,v v v v ,

( ) ( ) ( ) ( )1 1 1 1

3 2 1 4
, , ,u u u u ………

( ) ( ) ( ) ( )
3 2 1 4

, , ,
k k k k

u u u u ,
( ) ( ) ( ) ( )1 1 1 1

3 2 1 4
, , ,

k k k k
u u u u

+ + + +

( ) ( ) ( ) ( )1 1 1 1

1 2 3 4
, , ,

k k k k
w w w w

+ + + + ( ) ( ) ( ) ( )
1 2 3 4

, , ,
k k k k

w w w w ,………….

( ) ( ) ( ) ( )
1 2 3 4

, , ,
k k k k

w w w w
( )0

1
v  

 
is a Hamiltonian path. Similarly, it could be proved that for 

arbitrary m , ( ),
P

G m p  has Hamiltonian cycle.  

 
 
Theorem 4 
 

Let ( ),
P

G m p  be a simple graph, for 3m ≥ , girth of 

( ),
P

G m p  is 6 that is, ( )( ), 6.
P

g G m p =  

 
 
Proof 
 

Since ( ),
P

G m p  is a bipartite graph. The girth must be 

an even number. There are two types of cycles in 

( ),
P

G m p . 

 
 
Cycles containing vertices of one polygon 
 

Since there are 2m (with 3m ≥ ) vertices in each polygon, 

the length of the cycle must be greater than or equal to 6. 

( )( ), 6
P

g G m p =  

 
 
Cycles involving the vertices of more than one 
polygon 
 
In this case, the shortest cycle must involve  at  least  two 



 

 
 
 
 
vertices from two adjacent polygons that is, two edges 
from each polygon. 

Moreover, one edge is required to switch from one 
polygon to the other and one edge to come back making 
a total of 6.  
 

( )( ), 6
P

g G m p =  

 
 
Theorem 5 
 

Let ( ),
P

G m p  be a polygon graph. Then there are at 

least ( )2 1p +  number of cycles of length 2m . 

 
 
Proof 
 
All cycles containing the vertices of a polygon are of 

length 2m . The cycles containing vertices of more than 

one polygon of length 2m  may also exist. 

 However the number of cycles which involve vertices of 

only one polygon equals ( )2 1p + ,(since ( ),
P

G m p , 

contains ( )2 1p +  polygons). Hence, there will be at least 

2 1p +  cycles of length 2m .  

 
 
Theorem 6 
 

Let ( ),
P

G m p be a polygon simple graph. Then, there is 

at least one cycle of length  
 

( )2 2 1m p + . 

 
 
Proof 
 

From theorems 5 and 3, ( ),
P

G m p is a Hamiltonian 

graph for all possible values of m  and p , so there is a 

Hamiltonian cycle that is a closed path contain each 
vertex (except first) exactly once. Since there are 

( )2 2 1m p + vertices in ( ),
P

G m p . So, there must be at 

least one cycle of length ( )2 2 1m p + . 

 
 
Corollary 1 
 

Let ( ),
P

G m p be a simple graph. The circumference of 

( ),
P

G m p  is ( )2 2 1m p + . 
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Theorem 7 
 

Let ( ),
P

G m p  be a simple graph. Then, there are at 

most ( )2 1m p +  ( )2 2 1 1m p + −    cycles in 
P

G . 

 
  
Proof 
 

Since ( ),
P

G m p  is a cubic graph. So when a path enters 

a vertex v
i
 there are two options for the path to proceed 

to the next vertex, since the total number of vertices is 

( )2 2 1m p + . Therefore, total number of different paths 

from v
i
 to v

i
 equals 

 

2 (2 1)
 (2 1) [2 (2 1) -1]

2

m p
m p m p

+ 
= + + 

 
 

 

Since at initial vertex that is v
i
, there is one more option, 

at the last there is one less option. Hence, total number 

of cycles is  (2 1) [2 (2 1) -1]m p m p+ + .  

 
 
Theorem 8 
 

Every edge of ( ),
P

G m p is contained in an even number 

of Hamiltonian cycles. 
 
 
Proof 
 

Since ( ),
P

G m p  is a cubic graph that is, degree of each 

vertex is three let ( )( )( ,
i j P

v v E G m p∈  

Let ( )1
,

P P i j
G m p G v v= − . Now in 

1

P
G  except 

i
v and 

j
v all vertices are of degree three, whereas 

i
v and

j
v are 

the only vertices of degree two. 
1

P
G  Contains two longest 

paths from 
i

v and
j

v , hence ( ),
P

G m p  posses two 

Hamiltonian cycles containing 
i j

v v �  

 
 
Conclusions 
 
Polygon graph is a new discrete structure. We worked 
out basic properties. Polygon graphs are bipartite, there-
fore could be used as Tanner graphs, to generate low 
density parity check codes. Moreover, polygon graphs 
would   be   attractive  due  to  their   simple   construction 
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algorithm with a wide range of a choice of parameters. In 
this paper, we presented polygon graphs of girth 6. It 
could be extended to the graphs of girth more than 6.  
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