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This study present electromyographic (EMG) signal to torque model and investigates the effects of 
various factors on EMG signal and EMG to torque model. Pre-processing techniques are applied on 
EMG signal in order to remove the DC offset, 60 Hz noise and to estimate the EMG amplitude. The 
estimated EMG amplitude is then mapped to joint torque using a new non-linear equation. This equation 
uses some parameters, whose values are obtained using nonlinear regression. Ten subjects took part 
in the experiments and performed variable force maximal voluntary contractions (MVC) and sub-
maximal voluntary contractions (SMVC). The resulting elbow joint torque and EMG signals were pre-
processed and entered to the model to find value of the parameters using nonlinear regression. Once 
these values were obtained they were put into the model and thus joint torque was estimated. Also EMG 
is analysed for effect of various factors like muscle fatigue, cross talk and different joint velocity. The 
results obtained from this model are highly correlated with the true values of the torque and the 
average correlation and mean square error for different experiments are 0.9997 and 0.047 Nm 
respectively. This new mathematical equation can be used to design a control system for rehabilitation 
and wearable robots. 
 
Key words: Electromyographic (EMG), maximal voluntary contractions (MVC), power spectral density, 
levenberg-marquardt algorithm, non-linear regression. 

 
 
INTRODUCTION 
 
Muscle is a source of force and joint torques in human 
body. In the upper limb of human body the bicep and 
tricep muscles consist of muscle fibres and joint 
movements are realized by contraction of these fibres, 
controlled by Central Nervous System (CNS).When the 
muscle fibres receive the command (electrical activity) 
from CNS, an electric signal is generated on the muscle 
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surface and the signal is called EMG signal (Roberto and 
Philip, 2004).  

The EMG signal is random, continuous and nonlinear in 
nature (Hogan and Mann, 1980; Siegler et al., 1985). 
These properties of EMG signal reveal that it should be 
processed in order to get a simple model for its amplitude 
and then map this amplitudeto joint torques. Some of the 
models that map the EMG to joint torque assume that the 
EMG signal is a band limited white noise modulated by 
the level of muscle contraction thusjoint torque can be 
derived from this signal by controlling muscle length (Rack 
and  Westbury,   1969).   According    to    these    assumptions,  



   

 

     

 
 
 
 
mapping EMG signal to joint torque requires pre-
processing the raw EMG signal. Numerous attempts 
have been made by researchers to mathematically model 
the joint moments and torques using EMG signal. In 
some of these models, first the muscle force is calculated 
and then joint torque is estimated. In one of these models 
torque is calculated on basis of response from a single 
motor (Fuglevand et al., 1993). Herbert and Gandevia 
(1999) improved this system by providing an accurate 
single motor response. Statistical optimization methods 
are also used by researcher to extract the joint torque 
and muscle tension from EMG signals, but these 
statistical methods are not robust because they use too 
many parameters (Hof and Van der Berg, 1981). Some 
researchers tried to get a signal and to extract torque for 
each joint of the body from this single EMG signal using 
low pass filtering. Low pass filtering is the easiest way to 
get EMG amplitude, and then using it for torque 
prediction. However if it is used for controlling the whole 
body skeleton then it is very difficult to get such set of 
EMG signals that will result in torque for whole body 
joints (Zajac, 1993). Some researchers have used 
Artificial Neural Networks (ANN) for estimating joint 
torque from EMG signal. It has been shown that ANN 
yield good results if it is trained for limited values of EMG 
and torque (Fausett, 1993). If there is large data set of 
EMG and torque, then ANN results are random and not 
well-correlated with the measured torque.  

Most of these models have established a successful 
relationship between EMG signal and joint torque. 
However, the muscle fatigue is caused if the force is 
applied repeatedly and the contractions of muscles are 
sustained. This fatigue affects the capability of applying 
force (McComas et al., 1995). Similarly joint angular 
velocity and cross-talk also have effect on the EMG 
signal and thus affecting the EMG to torque processing. 
The previously mentioned models did not consider these 
cases of muscle fatigue, joint velocity and cross-talk, 
while modelling the muscle force and joint movements on 
the basis of EMG signal. Some of the models like Reiner 
and Quintern (1997) and Gait’s et al. (1993) models use 
more than 25 parameters, making them very complex 
and it is very difficult to adjust these parameters for 
different muscle contractions and joint torques. Another 
major disadvantage of these models is that they use too 
many assumptions so they are not robust. 

One of the solutions to model joint torque on the basis 
of EMG signal is to use a new mathematical model, 
which can predict joint torque from EMG signals at both 
the conditions of muscle fatigue and varying joint velocity. 
So in this study we present a new mathematical 
(nonlinear) model using  nonlinear  regression.  Nonlinear  
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regression enables us to fit a set of data to a mathematical 
model which represent the data in a compact form 
(Douglas et al., 1988). The model considers a few 
parameters, whose values are found and then updated 
until the difference between the model data and actual 
data is minimized. Thus, we get a single equation which 
represents the EMG to torque relation using a single 
function (Gallant, 1975). In our non-linear regression 
model Levenberg-Marquardt method is used for finding 
and adjusting value of the parameters as explained by 
Marquardt (1963) and Levmar (2005). The pre-processed 
EMG signal, recorded from the bicep muscle of the 
human arm, and the joint torque are used as input to our 
model. Then a merit function is minimized by adjusting 
the parameter’s values until there is no more 
improvement in the merit function. The joint torque 
estimated by our model is highly correlated with the 
measured torque.  
 
 
MODEL DEVELOPMENT METHODOLOGY  
 

Basic physiology of motor control, muscle contraction and 
EMG generation 
 

The motor unit is an important functional unit of muscle. It has 
motor neurons and muscle fibers which are innervated by motor 
neurons. This is shown in Figure 1. When a muscle fibre of a motor 
unit is activated an electrical potential is generated called fibre’s 
potential. This potential spreads into the muscle fibre through the 

transverse tubules. In response to this action potential, the stored 
calcium is released that binds with troponin, altering the location of 
tropomyosin. This frees the active site on the actin, allowing a 
muscle contraction to take place (Roberto and Philip, 2004).The 
sum these   electric potentials in a motor unit are called motor unit 
action potential (MUAP). Sum of these motor unit action potentials 
is called electromyographic signal.This signal can be acquired by 
either placing electrodes on the surface of human’s muscle (Non-
invasio), or by inserting needle electrode into the muscle (Invasio). 
 
 
Experimental setup and data collection 

 
The robotic exoskeleton arm that was used in this experiment 
(Figure 2) had a link and joint  corresponding to the human elbow 
joint. The length of the link was adjustable for different lengths of 
the arm. Also there was another mechanism that was fastened to 
the arm as shown in Figure 2. It had a potentiometer at the elbow 
joint. This was used to record the elbow joint angle when the 
subject was performing the contractions. 

 Ten persons without any physical disorder took part in the 
experiments in order to collect the EMG signal, joint angle and load 
data. Before starting the experiment each subject was trained how 
to operate the load sensor and the potentiometer. Also the skin was 
prepared by shaving the hair in order to place the surface EMG 
sensor properly on the bicep brachii muscle. Subjects were asked 

to stand straight and fasten the exoskeleton robotic arm. They were 
asked  to  do  non-fatigue  MVC  and  SMVC  contractions  and  the  
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Figure 1.The motor unit, MUAPs and the electromyogram signal.  
 
 
 

 
 

Figure 2. A view of the experimental setup, exoskeletal robotic arm with load cell for measuring 

load lifted by the subject and a manipulator with potentiometer for measuring joint angles.  
 

 
 

corresponding EMG, angle and load data were recorded to a file in 
computer. The time duration of the experiment for one subject 

varied between 5 to 15 s for one contraction with rest time 10 min 
between two contractions. For recording the EMG signal from bicep 
muscle a DELSYS single differential DE-2.3 sensor was used. This 
sensor has detection surfaces consisting of two parallel bars. It is a 
band pass filter with cut-off frequencies 20-500 Hz. MNT-50L 
miniature load cell was used for measuring the load lifted by a 
subject. Data from all these sensors was sampled using 1000 Hz 
sampling frequency and then digitized using a NI USB-6009 A/D 
converter, in order to feed into the computer for analysis. NI-

LabVIEW 8.5 was used for data acquisition and real time 
processing,  while  Math  works-MATLAB 7.6  and  Microsoft  Visual 

C++ 2005 were used for batch processing. 
 
 

Data pre-processing 

 
Before inputting the EMG signal to the model it was first pre-
processed. DC offset was calculated for 2 s and then removed, this 
signal was then passed through a 5

th
 ordered notch filter to remove 

the 60 Hz noise due the power supply, then full-wave rectified and 
finally the moving average of the EMG (of window size varying from 
0.2 to 0.5 s), was found. This moving average EMG is then 

normalized. The normalized moving average EMG is the estimated 
amplitude of the EMG signal. Similarly the joint angle and load data 

 

 

 

Figure 2.A view of the experimental setup, exoskeletal robotic arm with load cell for measuring load lifted by the 

subject and a manipulator with potentiometer for measuring joint angles 
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Figure 3. Schematic diagram for EMG signal, joint angle and joint torque pre-processing. 

 
 
 
were collected and smoothed and then joint torque was calculated. 
Now, this torque acted as a control variable for our model because 
on the basis of this measured torque the parameters of our 
mathematical model are adjusted. The schematic diagram for pre-
processing of the EMG signal, joint angle and load data is shown 
below in Figure 3. The EMG linear envelope obtained after pre-
processing and actual torque was then entered as input to our 
model.  The raw EMG, pre-processed EMG and joint torque data for 
MVC and .SMVC for two different subjects is shown in Figure 4. 

 
 
EMG to torque models 

 
In order to model joint torques from EMG signal, it is important to 

know the nature of the relationship between EMG and joint torque. 
According to these assumptions to find a best mathematical model 
for estimating joint torque, EMG linear envelope was plotted against 
joint torque and it was found that the relation is not linear and is 
somewhat exponential (Figure 5).  Also according to Stephen and 
Stuart (2008) EMG producing less torque output output at higher 
levels of activation. Due to the nonlinear and exponential nature of 
the relationship, different exponential models including neural 

network were introduced and analyzed to get the best model. Each 
of these models except ANN has unknown parameters, a, b and c. 
The values of these parameters are obtained using nonlinear 
regression. The ANN and other models were analysed in two ways. 
The ANN and other models were analysed in two ways, batch 
processing and real-time processing. In the batch processing the 
ANN is trained and for the other models both EMG estimated 
amplitude, and measured joint torque were entered to the model 
and best fit values were found for the parameters using nonlinear 

regression. These values were put into the model to calculate the 
torque for the same EMG signal. While in real-time processing, 

another different EMG signal was entered to the model and the joint 
torque for this new EMG was calculated using the parameters 
obtained from batch processing.  

Table 1 shows the analysis of different candidate models. MSE 
and correlation coefficient were calculated for each model. The 
model which has least MSE and greater correlation between 
measured torque estimated torque in both batch and real-time 
processing was selected. The comparison of these models is 
shown in Figure 6. The selected mathematical model and the non-
linear regression for finding values of the parameters are discussed 
in details in the next subsections. Besides the above models 
polynomial curve fitting was also used. The polynomial gave good 
results in range of the data but outside the range of the data the 
results were quite different from measured data.  The results of our 

new selected model were also compared to some existing models 
developed by Metral and Cassar (1981) and Fleischer (2005).  
 

 
The selected best mathematical model 
 

As the relationship between EMG and joint torque is non-linear 
Metral and Cassar (1981). Thus a new mathematical model was 
introduced to map EMG to joint torque. The model which can best 
describe the relationship between EMG and joint torque is given in 
Equation. (1). 
 

                    (1) 
 

Here in Equation 1, is the estimated joint torque, u is the pre-
processed EMG signal and a, b, c are the unknown parameters. 

The problem is to estimate best fit values for these unknown 
parameters.  For  this  purpose  non-linear   regression   was   used,  
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Figure 3. Schematic diagram for EMG signal, joint angle and joint torque pre-

processing. 
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Figure 4. EMG Signals, raw EMG and denoised EMG, normalized moving averaged 
EMG and the measured joint Torque for two different subjects. 

 
 

 

where a merit function was selected and minimized. This is 
explained in detail in next subsection. 

 
 
Non-linear regression for finding values of the parameters 

 
Regression analysis is a technique that fits a set of data to a 
smooth continuous function (Laurene, 1998). Regression has two 
types, linear and nonlinear. In non-linear regression, large number 

of iterations are performed to minimize the merit function (MF  and 
the values of the parameters are non-linearly related to the model. 

The purpose of nonlinear regression is to determine the best-fit 
values for the parameters for a model by minimizing the chosen MF 
(Laurene and Fausett, 1998). In this iterative approach first initial 
values were obtained using least square fitting for the parameters 
and then the Levenberg-Marquardt Algorithm developed by 
Marquardt (1963), was used to obtain values of the parameters for 
next iteration. The newly estimated values now act as the initial 
values for the following iteration. Adjusting the values of the 
parameters is continued until no further improvement in the MF. Let 

our model torque is denoted by     and     is the actual measured 
torque. Then our model can be written as follows in Equation 2. 

                     (2) 
 

The MF minimization can be represented by Equationn. 3. 
 

         (3) 
 
The whole algorithm for merit function minimization to find values of 

parameters is as follows Marquardt (1963): 
 

(i) Estimate initial values for the unknown parameters using least 
square fitting. 
(ii) Using these initial values, calculate the merit function by putting 
values of parameters in Equation 3. 
(iii) Now to minimize the merit function, adjust the values of the 
parameters using the Levenberg-Marquardt method. 
(iv) Compute the merit function and compare it to its previously 
obtained value. 
(v) Repeat step 3 and 4 until no further minimization occurs in MF
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 Figure 5.  EMG Signal versus Joint Torque plot. 

 
 
 

Table 1. Detail of the different models and ANN for estimating joint torque from EMG signal. 

 

Model 
Batch analysis of the 

models 
Real time analysis 

of the models 

No The model MSE  (Nm) R
2
 MSE (Nm) R

2
 

1 
 

0.094 0.997 0.382 0.993 

2  0.167 0.996 0.525 0.990 

3 
 

0.116 0.997 0.442 0.992 

4 
 

0.128 0.997 0.311 0.994 

5  0.497 0.988 0.301 0.997 

6 Neural network 0.021 0.998 0.415 0.993 

7 
 

0.049 0.998 0.056 0.997 

8  0.413 0.981 0.527 0.987 

9 
 

0.145 0.989 0.328 0.988 

 

 
 

(vi) Save the final values of the parameters, and now the joint 
torque is calculated by putting these parameters into Eqn. 1. 

(vi) Finally calculate some performance indexes (MSE, variance  
and correlation). Once the best fit values for the parameters were  

obtained, they were assigned to the parameters of our model. Now 
in real-time, only the EMG envelope was entered as input to the 

model, and it generated the estimated joint torque. The schematics 
for batch and real-time processing are shown in Figure 7.  
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Figure 6. Comparison of the models on basis of MSE in both batch and real-
time processing. 

 
  
 

 
 

Figure 7. Schematic diagram for batch and real-time processing. 
 

 
 

RESULTS OF THE MODEL 
 
To validate the performance of the new model, 
experiments were performed using the experimental 
setup discussed in previous section. The experiments 
were performed in two groups. First group presents 

experiments that were performed to obtain best 
parameter’s values. Second group presents experiment 
in which only EMG signal was entered as input to the 
model and it generated the required torque.  There were 
several  important  results  derived  after  completing  the  
described  experimental procedure.   
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Table 2. Values of the parameters and error analysis for 5 subjects data 

 

No. 

Values of the 
Parameters for model  

 

Error analysis 

(Real time) 

a b c SSE (Nm) MSE (Nm)    

1 0.815 3.318 0.314 364.4 0.071 0.988 

2 0.844 3.450 0.366 285.6 0.056 0.998 

3 0.699 3.231 0.348 174.0 0.072 0.987 

4 0.784 3.267 0.412 315.0 0.061 0.991 

5 0.805 3.336 0.374 321.2 0.062 0.983 
 

 
 

 
 
Figure 8. Shoulder joint angle and elbow joint angle 

(   ) during contractions. 

 
 
 

During the first group of experiments, five subjects took 
part in the experiments. The shoulder joint angle was 
fixed at -90° w.r.t x-axis as shown in figure. Each subject 
did isometric flexion on the elbow joint.  They flexed the 

elbow from 0 to 90°  w.r.t y-axis as in Figure 8.After 
flexion, they extended their arms with elbow joint angle 
decreased from 90 to 0° w.r.t y-axis (Figure 8). During 
these contractions the subjects applied variable force 
with maximal and submaximal contractions and the 
resulted joint torque was entered as input to the model for 
batch processing. During the batch processing the 
algorithm found best fit values for the unknown 
parameters. As the iterations of the MF minimization 
algorithm increased the values of the parameters were 
adjusted so the estimated torque became closer and 
closer to the actual torque and thus the mean square 

error (MSE) was decreased.  The algorithm took 29 
iterations to get the best fit values for the parameters for 
one subject and 24 for the one of the four other subjects. 
The convergence time for getting best values of the 
parameters was 31.537 and 21.6 µ for two subject’s data 
respectively. The estimated parameter’s values and the 
error analysis for each of the five subjects (who took part 
in experiments) are listed in Table 2.  

As in batch processing the best values for the  
parameters are obtained so now in  real time processing 
only EMG signal is entered to the model and torque is 
obtained for the joint (Figure. 7). The joint torque 
estimated by our model is highly correlated with 
measured torque. The mean square error (MSE) and 
correlation coefficient were 0.056 Nm and 0.998, and for 
another subject’s data were 0.061 Nm, 0.991 
respectively. The results for two different subjects that 
participated in experiments are shown in Figure 9. 

Here subject ―A‖ performs maximal voluntary 
contraction (MVC) and subject ―B‖ performs sub-maximal 
voluntary contractions (SMVC). Result for another 
subject, who perform MVC is shown in Figure 10. From 
Figures 9 and 10, it is clear that our model can 
successfully map EMG signal to the joint torque in both 
maximal and sub-maximal voluntary contractions 

 
 
Factors affecting EMG to torque model 

 
There are a lot of factors which can affect the EMG signal 
thus can affect EMG to torque model. Due muscle fatigue 
the EMG envelope is slightly increased. Due to this 
increase in EMG amplitude the EMG to torque model is 
affected and the values of the parameters should be 
adjusted to overcome this change. This change in 
parameters of the model is shown in Figure 11. 

Similarly  joint  angular  velocity  also  affects  the  EMG  
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Figure 9. Results of two experiments performed by different subjects (Subject 

A perform MVC and subject B SMVC). 
 

 
 

 
 
Figure 10. Results of our model for one subject data during MVC. 
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Figure 11. Change in Values of the parameters due to muscle fatigue. 

 

 
 

signal and thus affecting the EMG to torque model. A 
large number of contractions were performed by subjects 
varying the joint velocity, and it was found during the 
experiments that the EMG amplitude is increasing linearly 
in the beginning as the joint velocity increases and after 
some time it changes very slightly. Now at this stage 
when EMG amplitude is changing, the values of the 
parameters were again estimated using the proposed 
algorithm and it was found that the new values of the 
parameters are changing.These changes in values of the 
parameters are shown in Figure 12. 
 
 
DISCUSSION 

 
In this study a new nonlinear model is introduced and 
then experiments were performed in order to validate the 
model. In the creation of the model three parameters (a, 
b, c) were used. The selection of the number of 
parameters is very critical and it can affect the predicted 
output. The robustness of the model is related with the 
values of the parameters. If optimized values are not 
obtained for the parameters then there may be larger 
errors. 

In this study a new nonlinear model is introduced and 
then a number of experiments were performed in order to 
validate the model. In the creation of the model three 
parameters (a, b, c) were used. The selection of number 
of parameters is very critical and it can affect the 
predicted output. The robustness of the model is related 
with the values of these parameters. If best fit values are 
not obtained for the parameters then there may be large 
errors. As standard method (e.g. Levenberg Marquardt) 
is used for estimation of the parameters and the 
correlation coefficient and MSE values show that this 
model can successfully map EMG to joint torque. 

Another purpose of this study was to examine the 
estimation of torque from EMG during maximal and 
submaximal contractions. Previously only torque is 
estimated from EMG in case of maximal voluntary 
contractions. As a patient with serious muscle injury can’t 
exert maximum force so the model should be able to 
estimate the accurate torque from EMG in such case of 
sub-maximal forces. Hence in our model we calibrate 
EMG to torque processing for both maximum and also 
sub-maximal um muscle contractions. The results 
(Figures 9 and 10) show that our mathematical model is 
able to map EMG to  joint  torque  for  both  maximal  and 
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Figure 12. Change in values of the parameters of our model due to change in angular velocity of the 
joint. 

 
 

 

sub- maximal voluntary contractions (Figure 9b). 
  Although the results of our model are good, still some 
MSE errors exist between target torque and our 
estimations. The new model is a simpler model as 
compare to other existing models because it takes only 
one EMG signal and only the muscle fatigue and joint 
velocity are analyzed. The model needs only one EMG 
signal from the bicep brachii muscle for estimating the 
joint torque. If torques for the shoulder joint and other 
joints are to be estimated, then more EMG sensors will 
be needed, and I hope our model may be successful in 
this case as well. 

This model was refined by studying the EMG signal for 
muscle fatigue and varying joint velocity. It was found that 
there are slight changes in parameter’s values of the 
model which should be considered during torque 
estimation. 

 
 
Conclusions 

 
This study investigates the relationship between EMG 
signal and joint torque and presents an EMG-to-torque 

model. The main aim of this research was to detect the 
intended motion of the human arm and then develop an 
EMG-to-Torque model that will be a basis for controlling 
the exoskeletons. 

For this purpose it was required to find a relationship 
between the electrical activity (EMG) and joint torque. A 
nonlinear model which has least MSE and greater 
correlation with measured torque is selected.  

Conceptually this mathematical model has some 
advantages and disadvantages. As joint torque estimated 
by this model directly depend on EMG signal so this 
model is very sensible to EMG recording. Improper 
placement of sensors and inaccurate experiments may 
result in wrong estimates, but still this model is more 
robust because it uses limited number of EMG sensors. 
From the results of the model, it can be considered that 
our mathematical model can be used successfully to 
predict joint torque from EMG signal. A standard method 
is used for finding parameter’s values, which leads to 
mapping EMG to joint torque. In the experiments only 
healthy subjects took part due to safety reasons, but we 
hope that this model can help in controlling assistive 
devices for  disabled  people  who  have  some  muscular  
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disorder.  

This model will be a basis for controlling exoskeletons. 
In the future we hope this model can be used 
successfully to make an interface between human 
operator and the exoskeleton arm. A device 
(exoskeleton) and a control system may be developed 
which will support a human operator with extra force in 
the elbow joint specially and also for legs and thigh joints. 
The exoskeleton can be attached with human body and it 
should increase his or her mobility and strength by 
supporting the arm, leg and thigh muscles.  
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