
Journal of Engineering and Technology Research Vol. 3(1), pp. 5-15, January 2011     
Available online at http:// www.academicjournals.org/JETR 
ISSN 2006-9790 ©2011 Academic Journals  
 
 
 

Full Length Research Paper 
 

Spiking neural network-based control chart pattern 
recognition 

 
Medhat H. A. Awadalla1*, I. I. Ismaeil1 and M. Abdellatif Sadek2 

 
1Communications and Electronic Department, Faculty of Engineering, Helwan University, Egypt. 

2Information Technology Department, High Institute of Engineering, Shorouk Academy, Egypt. 
 

Accepted 13 December, 2010 
 

Due to an increasing competition in products, consumers have become more critical in choosing 
products. The quality of products has become more important. Statistical process control (SPC) is 
usually used to improve the quality of products. Control charting plays the most important role in SPC. 
Control charts help to monitor the behavior of the process, to determine whether it is stable or not. 
Unnatural patterns in control charts mean that, there are some unnatural causes for variations in SPC. 
Spiking neural networks (SNNs) are the third generation of artificial neural networks that consider time 
as an important feature for information representation and processing. In this paper, spiking neural 
network architecture is proposed to be used for control charts pattern recognition (CCPR). 
Furthermore, enhancements to the SpikeProp learning algorithm are proposed. These enhancements 
provide additional learning rules for the synaptic delays, time constants and for the neurons 
thresholds. Experiments have been conducted and the achieved results show a remarkable 
improvement in the overall performance compared with artificial neural networks.  
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INTRODUCTION 
 
Traditionally, statistical process control (SPC) was used 
only for monitoring and identifying process variation. 
Advances in SPC charting have moved from merely 
statistical and economic control to diagnosis purposes 
through control chart pattern identification (Ibrahim and 
Adnan, 2010). Control charts are useful tool in detecting 
out-of-control situations in process data (Hui-Ping and 
Chuen-Sheng, 2009). A process is considered out of 
control, if a point falls outside the control limits or a series 
of points exhibit an unnatural pattern (also known as 
nonrandom variation). There are seven basic CCPs, 
normal (NOR), systematic (SYS), cyclic (CYC), 
increasing trend (IT), decreasing trend (DT), upward shift 
(US) and downward shift (DS), as shown in Figure 1. All 
other patterns are either special forms of basic CCPs or 
mixed forms of two or more basic CCPs. 

Advances in manufacturing and measurement 
technology have enabled real-time, rapid and integrated 
gauging and measurement of process and product quality  
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(Indra et al., 2010). A typical control chart consists of a 
centre line (CL) corresponding to the average statistical 
level and two control limits, upper (UCL) and lower (LCL) 
normally located at ±3� of this statistic, where � is a 
measure of the spread, or standard deviation in a 
distribution. Selection of CCPs parameters is important 
for training and testing the ANN recognizers. Among the 
important parameters included window size, random 
noise, mean shift (for shift patterns), trend slope (for trend 
patterns), cycle amplitude and cycle period (for cyclic 
pattern), and systematic departure (for systematic 
pattern), Table 1 shows the equations that described all 
patterns in CCPs. The following equations were used to 
create the data points for the various patterns. 

Control chart pattern recognition has the capability to 
recognize unnatural patterns (Jenn-Hwai et al., 2005). 
Pattern recognition is an information-reduction process 
which aims to classify patterns based on a priori 
knowledge or based on statistical information extracted 
from the patterns. The patterns to be classified are 
usually groups of measurements or observations come 
from process or event (Samir, 2009). 

Currently, most researchers in artificial neural networks 
are  interested  in  spiking neural networks (SNNs). SNNs 
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Figure 1. Common CCPs for univariate process.                                                                                       

 
 
 

Table 1. Equations for simulation control charts. 
 

Patterns class Description Equations 
1 Systematic  
2 Cyclic  
3 Increasing Trend  
4 Decreasing Trend  
5 Upward Shift  
6 Downward Shift  

 

where  is the nominal mean value of the process variable under observation (set to 80),  is the standard deviation 
of the process variable (set to 5),  is the amplitude of cyclic variations in a cyclic pattern (set to 15 or less),  is the 
gradient of an increasing trend pattern or a decreasing trend pattern (set in the range 0.2 to 0.5),  indicates the shift 
position in an upward shift pattern and a downward shift pattern (  before the shift and  at the shift and 
thereafter),  is the magnitude of the shift (set between 7.5 and 20),  is a function that generates random 
numbers normally distributed between -3 and 3,  is the discrete time at which the monitored process variable is 
sampled (set within the range 0 to 20),  is the period of a cycle in a cyclic pattern (set between 4 and 12 sampling 
intervals) and  is the value of the sampled data point at time  . 

  
 
 
are often referred to as the third generation of neural 
networks which have potential to solve problems related 
to biological stimuli. They derive their strength and 
interest from an accurate modeling of synaptic 
interactions between neurons, taking into account the 
time of spike emission. SNNs overcome the 
computational power of neural networks made of 
threshold or sigmoid units. Based on dynamic event-
driven processing, they open up new horizons for 
developing models with an exponential capacity of 
memorizing and a strong ability to fast adaptation. 
Moreover, SNNs add a new dimension, the temporal 
axis, to the representation capacity and the processing 
abilities of neural networks (Meftah et al., 2008). 

One of the key problems with spiking neural networks 
is the training algorithm. Much research relied on 
biologically inspired local learning  rules,  but  these  rules  

can only be implemented using unsupervised learning. 
However, in supervised learning SpikeProp algorithm 
operates on networks of spiking neurons, that use exact 
spike time temporal coding. This means that the exact 
spike time of input and output spikes encode the input 
and output values (Bohte et al., 2000). SpikeProp is an 
error-back propagation learning rule suited for supervised 
learning of spiking neurons that use exact spike time 
coding. SpikeProp assumes a special network topology. 
Globally the network looks like a classical feedforward 
network, but every connection consists of a fixed number 
of delayed synaptic terminals, different weights and 
different delays. However, the delays are fixed, and only 
the weights can be trained. Because the delayed synaptic 
terminals are fixed, this network topology has to be 
largely over-specified to make all possible weight/delay 
combinations possible (Natschlager and Ruf, 1998).  



 
 
 
 

Enhancements to the SpikeProp algorithm such that, 
the delay and the time constant of every connection and 
the threshold of the neurons can be trained; because the 
delays can be trained, fewer synaptic terminals are 
necessary, effectively will reduce the number of weights 
and thus, the simulation time of the network. 
 
 
SPIKING NEURAL NETWORKS ARCHITECTURE 
 
Spiking neural networks (SNNs) have a similar architecture to 
traditional neural networks. Elements that differentiate in the 
architecture are the numbers of synaptic terminals between each 
layer of neurons and also there are synaptic delays. Several 
mathematical models have been proposed to describe the behavior 
of spiking neurons such as Leakey Integrate-and-Fire model (LIFN) 
(Mass, 1997) and Spike Response model (SRM) (Bialek et al., 
1991). Figures 2(a) and (b) show the network structure proposed by 
Natschlager and Ruf (1998). 

This structure consists of a feedforward fully connected spiking 
neural network with multiple delayed synaptic terminals. The 
different layers are labeled H,I and J for the input, hidden, and 
output layer respectively as shown in Figure 3. The adopted spiking 
neurons are based on the Spike Response Model (SRM) to 
describe the relationship between input spikes and the internal 
state variable. Consider a neuron J, having a set Dj of immediate 
pre-synaptic neurons, receives a set of spikes with firing times firing 
times . It is assumed that any neuron can generate at most 
one spike during the simulation interval and discharges when the 
internal state variable reaches a threshold. The dynamics of the 
internal state variable xj (t) are described by the following function: 
 

                                  (1) 
 
yj (t) is the un-weighted contribution of a single synaptic terminal to 
the state variable which described as a pre-synaptic spike at a 
synaptic terminal k as a PSP of standard height with delay . 
 

                                    (2) 
 
The time   is the firing time of pre-synaptic neuron i, and  the 
delay associated with the synaptic terminal k. by considering the 
multiple synapses per a connection, the state variable  of 
neuron j is receiving inputs from all preceding neurons and then 
described as the weighted sum of the pre-synaptic contributions as 
follow: 
 

                                 (3) 
 
The effect of the input spikes is described by the function �(t) and 
so is called the spike response function, and is the weight 
describing the synaptic strengths. The spike response function �(t) 
is modeled with the �- function, thus implementing a leaky-
integrate-and-fire spiking neuron, is given by: 
 

, for  else               (4) 
                                            
Where � is the time constant, which defines the rise  and  the decay 
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time of the postsynaptic potential (PSP). The individual connection 
described in Jenn-Hwai and Miin-Shen (2005), consists of a fixed 
number of m synaptic terminals.  

Each terminal serves as a sub-connection that is associated with 
a different delay and weight (Figure 3b). The delay  of a synaptic 
terminal k is defined as the difference between the firing time of the 
pre synaptic neuron and the time when the postsynaptic potential 
starts rising. The threshold � is constant and equal for all neurons in 
the network. 
 
 
An overview of neural coding schemes 
 
In real biological systems, signals are encoded by information using 
specific coding methods. Basically, there are three different coding 
methods: rate coding, temporal coding, and population coding. Rate 
coding is the earliest neural coding method. The essential 
information is encoded in the firing rates and the rate is counted as 
a spike in an interval T divided by T (averaged over time). More 
recently, there has been growing recognition that the traditional 
view of mean firing encoding is often inadequate. Experiments on 
the visual system of a fly and studies of the middle temporal (MT) 
area of the monkey have indicated that the precise timing of spikes 
can be used to encode information. Such a scheme is called 
temporal coding (Bohte, 2002; Bohte et al., 2000). In temporal 
coding, the timing of single spikes is used to encode information. It 
is considered that, the timing of the first spike contains most of the 
relevant information needed for processing. Population coding is 
another coding scheme in which information is encoded in the 
activity of a given population of neurons firing within a small 
temporal window. This work adopts temporal coding as the code 
used by neurons to transmit information. 
 
 
Spiking neural network for supervised learning procedure 
 
Authors worked on supervised learning (Rumelhart et al., 1986) 
proposed a network of spiking neurons, that encodes information in 
the timing of individual spike times. They derived a supervised 
learning rule, SpikeProp, akin to traditional error back propagation. 
They utilized a fully connected feed-forward spiking neural network 
with layers labeled H(input), I (hidden) and J (output). Each 
connection between two neurons corresponds to multi sub-
connections. Each sub-connection is characterized with a different 
delay and weight. They demonstrated how networks of spiking 
neurons with biologically reasonable action potentials can perform 
complex non-linear classification in fast temporal coding just as well 
as rate-coded networks and the resulting algorithm can be applied 
equally well to networks with many hidden layers. The target of the 
algorithm is to learn a set of target firing times, denoted   at the 
output neurons j J for a given set of input patterns  
 

 
 
where defines a single input pattern described by single spike-times 
for each neuron h H . The least mean squares error is choosing as 

the error-function. Given the desired spike times  and actual firing 

times , this error-function is defined by: 
 

                    (5) 
 
The general form of the error derived by a connection’s weight is: 
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Figure 2. a) Feed forward spiking neural network b) Connection consisting of multiple 
synaptic terminals. 
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Figure 3. The MLP neural network structure for CCPR. 

 
 
 

������� (6) 
 

Here    is not the same for neurons in the output layer and 
neurons in the hidden layers. The set   is used to represent all the 
direct pre-synaptic neurons of neuron j, while the set   represents all 
the direct successors of neuron j. For a neuron in the output layer, 
j o , �_j is equal to: 
 

              (7) 
 
For hidden neurons  j H, is equal to: 

               (8) 
 
Here, the error-backpropagation is clearly visible because is 
dependent on all ’s of the successors neuron j. 
 
The adaptation rule for weights is 
 

                               (9)                                                                                                                               
 
Where T is the  step of algorithm (  is simulation interval), and 
 

                     (10) 
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Table 2. Control chart patterns and neural network outputs. 
 

ANNs outputs 
 

Node 
Pattern class Description 1 2 3 4 5 6 

1 Systematic 1 0 0 0 0 0 
2 Cyclic 0 1 0 0 0 0 
3 Increasing trend 0 0 1 0 0 0 
4 Decreasing trend 0 0 0 1 0 0 
5 Upward shift 0 0 0 0 1 0 
6 Downward shift 0 0 0 0 0 1 

                
 
 
 

                                           (11) 
 
The symbol � is the learning rate. The error is minimized by 
changing the weight according to the negative local gradient. 
 
 
Enhancements to SpikeProp algorithm 
 
The following enhancements have been proposed to provide 
additional learning rules for the synaptic delays, time constants and 
the neurons’ thresholds. 
 
 
Learning synaptic delays 
 
The partial derivative of the error function to the synaptic delay  

is determined:  
 

                              (12) 
 
The first two terms are the same as for the weight update rule, only 
the last term is different: 
 

                 (13) 

                 
                      
By substitution and using the definition of in Equation 8 (which is 
different for output neurons and hidden neurons) we can get: 
 

                   (14) 
 
The final update rule for the delays is: 
 

                                    (15) 

 
Where  is the learning rate for the delays. 
 
 
Learning synaptic time constants 
 
The partial derivative of the error function to the time constant of the 
�-function 
 

                           (16) 
  
The third term can be written as: 
 

         (17) 

                      
 
By substitution and using the definition of  in Equation 8 we can 
get: 
 

  (18) 
 
The final update rule for the synaptic time constants becomes: 
 

                                        (19) 
 
Where �_� is the learning rate for the synaptic time constants.  
 
 
Learning neuron’s threshold 
 
Last we derive the error function for the neuron’s threshold: 
 

                             (20) 
 

                                                  (21) 
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Table 3. The network parameters for CCPR. 
 
Parameters Values 
Number of input neurons 20 
Number of hidden neurons 6 
Number of output neurons 6 
Threshold  0.3 
Goal error 0.001 
Coding interval  0-20 ms 
Synaptic time constant  170 ms 
Number of synaptic terminals  3 
Learning rate for weight updating   0.0075 
Learning rate for delay updating   0.0065 
Learning rate for synaptic time constant updating   0.0055 
Learning rate for neuron threshold updating   0.0035 

 
 
 

Table 5. Targeted recognizer based on weight update with ANNs. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 86 2 0 0 0 12 
2 Cyclic 1 84 0 3 12 0 
3 Increasing trend 0 0 87 0 13 0 
4 Decreasing trend 0 0 10 88.1 0 1.9 
5 Upward shift 12 0 0.8 0 87.2 0 
6 Downward shift 0 0 10 1.7 0 88.3 

 
 
 

 
 
Figure 4. The proposed SNNs for CCPR with single synaptic termanial. 

 
 
 
By adding the first term, we can get the negative of  as learning 
rule: 
 

                                    (22) 
 
The final update rule for the neuron threshold is: 
 
 

                              (23)   

 Where   is the learning rate for the neuron’s threshold. 
 
 
ANN-Based CCPR schemes 
 
First, an artificial neural network has been developed for control 
chart pattern recognition for comparison with the spiking neural 
network. A multilayer perceptions (MLPs) architecture comprises an 
input layer with 20 neurons, one hidden layer with 6 neurons and an 
output layer with 6 neurons, one for each patterns of CCPs is used, 
as shown in Figure 3. Table 2 depicts the control chart patterns and 
representation of the desired neural network outputs.



Awadalla et al.       11 
 
 
 

Table 6. Targeted recognizer based on weight update with SNNs single synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 90 2 0 0 0 8 
2 Cyclic 1 89 0 0 10 0 
3 Increasing trend 0 0 92.5 0.5 7 0 
4 Decreasing trend 0 0 2.9 91.1 0 6 
5 Upward shift 9 0 0.8 0 90.2 0 
6 Downward shift 0 0 7 0 0 93 

 

 

Table 7. Targeted recognizer based on synaptic delay update with SNNs single synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 92 0.8 0 0 0 7 
2 Cyclic 3 90 0 0 7 0 
3 Increasing trend 0 0 94.5 0.5 5 0 
4 Decreasing trend 0 0 0.8 93.2 0 6 
5 Upward shift 9 0 0 0 91 0 
6 Downward shift 0 0 6 0 0 94 

 
 
 
Sample patterns 
 
Sample patterns should be collected from a real manufacturing 
process. Since, a large number of patterns are required for 
developing and validating a CCP recognizer, and as those are not 
economically available, simulated data are often used. Since a 
large window size can decrease the recognition efficiency by 
increasing the time required to detect the patterns, an observation 
window with 20 data points is considered here. A set of 720 (120 x 
6) sample patterns are generated from 120 series of standard 
normal variants. It may be noted that each set contains equal 
number of samples for each pattern class. The equations used for 
simulating the six CCPs. Table 3 shows the network parameters 
that were used in our simulations for two proposed networks. 
 
 
SNN-Based CCPR schemes 
 
SNN with single connection and multi-synaptic terminals have been 
developed, as shown in Figures 4 and 5, respectively. Table 4 
depicts the control chart patterns and representation of the desired 
spiking neural network outputs. 
 
 
The proposed SNN network architecture 
 
Here, we proposed a new architecture for spiking neural network in 
application to control charts. The proposed architecture consists of 
a fully connected feed-forward network of spiking neurons. An 
individual connection consists of a fixed number of synaptic 
terminals, where each terminal serves as a sub-connection that is 
associated with a different delay and weight between the input, 
hidden and output layers. The weights of the synaptic terminals are 
set randomly between -1 to +1. The network adopted 20 input 
neurons in the input layer which mean that, the input patterns 
consisted of the 20 most recent mean values of the process 
variable to be controlled, therefore, one input neuron was dedicated 

for each mean value, six output neurons with one for each pattern 
category, and six hidden neurons where the numbers of the hidden 
neurons here adopted on the number of classes.  
 
 
RESULTS AND DISCUSSION 
 
CCPR using artificial neural networks 
 
Table 5 shows the obtained results of control chart 
pattern recognition based on artificial neural network. It 
was noted during training that ANN-based recognizers 
were more easily trained. This table shows that 86.76% 
of the patterns were correctly recognized. 
 
 
CCPR using single synaptic terminals SNN 
 
Synaptic weights update 
 
First, the synaptic weights only are updated while the 
other parameters are fixed. The achieved results are 
presented in Table 6. It is obviously that there is an 
improvement    in    the   performance   accuracy   for   all 
recognized patterns compared with ANN, the 
performance accuracy is increased to 90.9%. 
 
 
Updating of the synaptic delay  
 
Again, synaptic delays are updated while the other 
parameters are fixed and the values of the synaptic 
weights are optimum  weights  w_opt  obtained  from  the
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Figure 5. The proposed SNNs for CCPR with multi synaptic termanial. 

 
 
 

Table 8. Targeted recognizer based on synaptic time constant update with SNNs single synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 94 0.8 0 0 0 5.2 
2 Cyclic 2 91 0 0 7 0 
3 Increasing trend 0 0 94.8 0.2 5 0 
4 Decreasing trend 0 0 0.7 94.3 0 5 
5 Upward shift 7 0 0.7 0 92.3 0 
6 Downward shift 0 0 5.4 0 0 94.6 

 
 
 

Table 9. Targeted recognizer based on neurons threshold update with SNNs single synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 95 0.8 0 0 0 4.2 
2 Cyclic 3 91.4 0 0 5.6 0 
3 Increasing trend 0 0 9 0.2 4.8 0 
4 Decreasing trend 0 0 0.8 95.2 0 4 
5 Upward shift 7 0 0.2 0 92.8 0 
6 Downward shift 0 0 5 0 0 95 

 
 
 
previous learning part. Table 7 shows the obtained 
results based on the adaptation of the synaptic delay. 
The achieved results show that 92.4% of the patterns 

were correctly recognized. It is obviously that there is an 
increment in the performance accuracy for all recognized 
patterns;   the   performance  accuracy  is  getting  better,
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Table 10. Targeted recognizer based on weight update with SNNs multi synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 97 0.8 0 0 0 2.2 
2 Cyclic 3 93 0 0 4 0 
3 Increasing trend 0 0 96 4 0 0 
4 Decreasing trend 0 0 0.8 96.2 0 3 
5 Upward shift 4 0 0.6 0 95.4 0 
6 Downward shift 3 0 0.5 0 0 96.5 

 
 
 

Table 11. Targeted recognizer based on synaptic delay update with SNNs multi synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 98 0.6 0 0 0 1.4 
2 Cyclic 3 95 0 0 5 0 
3 Increasing trend 0 0 96.4 3.6 0 0 
4 Decreasing trend 0 0 0.2 96.8 0 3 
5 Upward shift 3 0 0.6 0 96 0.4 
6 Downward shift 3 0 0.1 0 0 96.9 

 
 
 
increased to 92.4%. 
 
 
Synaptic time constant update 
 
The synaptic time constant is updated only while other 
parameters are fixed, synaptic weights are the optimum 
weights w_opt and the synaptic delay is the optimum 
synaptic delay d_opt obtained in previous steps. Table 8 
shows the obtained results based on the adaptation of 
the synaptic time constant.  

Again, the performance accuracy for all recognized 
patterns is improved; the performance accuracy is 
increased to 93.5%. 
 
 
Neuron threshold update 
 

The neuron’s threshold is updated while the other 
parameters are fixed. Synaptic weights, synaptic delay, 
and synaptic time constant are the optimum values 
previously obtained; the obtained results are shown in 
Table 9. Also there is a remarkably improvement 
especially for downward shift pattern. From Table 9, we 
can observe that the recognition rate is still increasing 
with neuron threshold updating about 94.06%. 
 
 
SNNs for CCPR with multi synaptic terminals 
 
The existence of multiple synapses is biologically 
plausible, since in brain areas like  the neocortex a single  

pre-synaptic axon makes several independent contacts 
with the pot-synaptic neuron. Instead of a single synapse, 
with its specific delay and weight, this synapse model 
consists of many sub-synapses, each one of them has its 
own weight and delay as shown in Figure 2b. The use of 
multiple synapses enables an adequate delay selection 
using the learning rule. In this proposed SNN, multiple 
synapses per a connection are used. The network 
topology is feed-forward SNN with multiple synaptic 
(seven sub-connections per synaptic terminal, k=3) 
terminals per connection with different weights and 
delays.  

Again the same procedure conducted in the SSN with 
single synaptic connection is repeated with the same 
chosen parameters. 
 
 
Synaptic weights update 
 
The obtained results with the proposed architecture and 
the SpikeProp learning procedure for control chart pattern  
recognition are presented in Table 10. It is obviously that 
there better performance accuracy for all recognized 
patterns. The results from Table 10 shows that, the 
accuracy of the network is still increasing from 94.06 to 
95%. 
 
 
Updating of the synaptic delay  
 
Again Table 11 shows the obtained results based on the  
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Table 12. Targeted recognizer based on synaptic time constant update with SNNs multi synaptic. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6 

1 Systematic 98 0.6 0 0 0 1.4 
2 Cyclic 3 96 0 0 4 0 
3 Increasing trend 0 0 97 3 0 0 
4 Decreasing trend 0 0 0 98 0 2 
5 Upward shift 3 0 0.5 0 96.5 0 
6 Downward shift 3 0 0 0 0 97 

 
 
 

Table 13. Targeted recognizer outputs based on neuron’s threshold update. 
 

Targeted recognizers outputs (%) 
 

Node 
Pattern class Description 1  2  3  4  5  6  

1 Systematic 99 0.6 0 0 0 1 
2 Cyclic 2 98.2 0 0 0.8 0 
3 Increasing trend 0 0 98 0 0 2 
4 Decreasing trend 0 0 0 98.5 0 1.5 
5 Upward shift 0 0 1 0 99 0 
6 Downward shift 0.4 0 0 0.6 0 99 

 
 
 

adaptation of the synaptic delay. From the results 
shown in Table 11, there is an increment in the 
performance accuracy for all recognized patterns. 
The network performance still increases. 
 
 

Synaptic time constant update 
 

Table 12 shows the obtained results based on the 
adaptation of the synaptic time constant. The 
obtained results show that, there is an 
improvement in the performance accuracy. 
 
 
Neuron threshold update 
 
The obtained results are shown in Table 13.  Also,  

there is an improvement especially for downward 
shift pattern. Generally,   the  results   of   the   
overall  percentages  of correct recognition of 
random patterns in Tables 10  (95.68%), 11 
(96.51%), 12 (97.08%) and Table 13 (98.61%) 
suggest that, there are better performance 
accuracy for all recognized patterns with the 
proposed architecture of SNNs with multi-
connection compared with SNN-based 
recognizers with single connection. Table 14, 
shows the comparison between three networks 
topologies for performance accuracy of six 
unnatural patterns.  

Furthermore, Table 15 shows the comparison 
between spiking neural networks based on LVQ 

algorithm and the work presented in this paper for 
control chart pattern recognition. From Table 15, it 
can be summarized that the SNNs with three 
synaptic terminals achieve better performance in 
the control chart pattern recognition. 
 
 
Conclusion 
 

In this paper, a spiking neural network 
architecture is developed and used for control 
charts pattern recognition (CCPR). It has a good 
capability in data smoothing and generalization. 
The    overall    mean    percentages    of    correct 
recognition of SNN-based recognizers were 
98.61%.   This  shows  clearly  that,  the   superior  
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Table 14. Recognition performance comparison between ANN and SNN recognizers. 
 

Percentage correction recognition 
SNNs single connection SNNs Multi Connections Patterns 

ANNs (%) 
Weight (%) Delay (%) Time constant (%) Neuron threshold (%) Weight (%) Delay (%) Time constant (%) Neuron threshold (%) 

Systematic 86 90 92 94 95 97 98 98 99 
Cyclic 84 89 90 91 91.4 93 95 96 98.2 
Inc. Trend 87 92.5 94.5 94.8 95 96 96.4 97 98 
De. Trend 88.1 91.1 93.2 94.3 95.2 96.2 96.8 98 98.5 
Up. Shift 87.2 90.2 91 92.3 92.8 95.4 96 96.5 99 
Dow. Shift 88.3 93 94 94.6 95 96.5 96.9 97 99 

 
 
 

Table 15. Results of four different pattern recognizers applied to control chart data set. 
 

Pattern recognizers No. of training epochs Learning performance (%) Test performance (%) 
SNN-based LVQ 20 100 97.70 
ANN-based CCPR 100 98 86.76 
SNN-based CCPR Single Connection 150 99 94.06 
SNN-based CCPR Multi Connection 200 100 98.61 

 
 
 

performance of the spiking neural networks 
technique in an application to control chart data 
over the other procedures using traditional neural 
network. Furthermore, enhancements to the 
SpikeProp learning algorithm are presented. 
These enhancements provide additional learning 
rules for the synaptic delays, time constants and 
for the neurons thresholds. Experiments have 
been conducted and the achieved results show a 
remarkable improvement in the overall per-
formance.  This work can also be extended to 
investigate online learning and address the effect 
of costs on the decisions in terms of 
computational time and complexity. 
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