
Journal of Engineering and Technology Research Vol. 4(1), pp. 11-21, January 2012
Available online at http:// www.academicjournals.org/JETR
DOI: 10.5897/JETR11.077
ISSN 2006-9790 ©2012 Academic Journals

Full Length Research Paper

Digital very-large-scale integration (VLSI) Hopfield
neural network implementation on field programmable
gate arrays (FPGA) for solving constraint satisfaction

problems

A. Srinivasulu

Vaagdevi Institute of Technology and Science, Proddatur, India. E-mail: sreesri.avvaru@gmail.com.

Accepted 28 November, 2011

This paper discusses the implementation of Hopfield neural networks for solving constraint satisfaction
problems using field programmable gate arrays (FPGAs). It discusses techniques for formulating such
problems as discrete neural networks, and then it describes the N-Queen problem using this
formulation. Finally results will be presented which compare the computation times for the custom
computer against the simulation of the Hopfield network run on a high end workstation. In this way, the
speed-up can be determined, that illustrate a speedup of up to 2 to 3 orders of magnitude is possible
using current FPGAs devices.

Key words: Hopfield neural network, field programmable gate arrays (FPGA), N-Queen problem.

INTRODUCTION

Many practical optimization problems from business and
industry can be formulated as standard mathematical
programming problems using binary decision variables.
Solution of these problems requires the use of heuristics
or approximate algorithms due to the NP {(Neuro
Psychology)-hard nature of their complexity; Fred and
Gary, 1989}. Neural networks were proposed to solve
such problems in 1985 (David, 1998), but the field has
been plagued with problems of poor solution quality and
inability to guarantee feasible final solutions (Hopfield and
Tank, 1985). These initial problems have now been
overcome. Techniques have been proposed to help the
Hopfield neural network escape from local minima of its
energy function and suitable construction of that energy
function has been shown to guarantee the feasibility of
solutions (Silvio, 1992). Using these improvements,
neural network results have been obtained which
compete effectively (and even outperform) other popular
heuristics such as simulated annealing.

While most of the literature has focused on using
Hopfield networks to solve the famous traveling salesman
problem, a range of practical problems have also been
solved with neural networks (Dijin, 1995; Silvio, 1992).
The solutions to these problems were obtained by

simulating the behavior of the Hopfield neural network
(designed to be implemented in electrical hardware) on a
conventional computer. However, while the algorithms
generate good solutions, the computation times are
extremely slow. If neural networks are to be applied
routinely to practical problems, then the execution time
must be reduced. There are a number of ways of
accelerating the execution of the network algorithms,
ranging from the use of high end parallel
supercomputers, through to hardware implementations of
the networks themselves using custom computing
machines (CCMs). CCMs are attractive, because they
have the potential to provide cheap high speed platforms
for neural network based algorithms. However, until
recently the cost of producing specific hardware has been
high and the process errorprone.

Recently, the advent of high density field
programmable gate arrays (FPGAs), in combination with
new synthesis tools, have made it relatively easy to
produce programmable custom machines without
building specific hardware. FPGA based CCMs can
provide high performance on certain problems,
demonstrating speedups of orders of magnitude over
conventional machines (David, 1998; Chen and du

12 J. Eng. Technol. Res.

Figure 1. Components of a neuron.

Figure 2. The synapse.

Plessis, 2002). There is great potential to apply these
techniques to neural network based algorithms, however,
research must be conducted to determine the appropriate
methods.

This paper aims to demonstrate the potential of a
custom computer based on FPGA technology for solving
a classical constraint satisfaction problem: the N-Queen
problem. The Hopfield neural network will be briefly
described, and we will show how the N-Queen problem
can be mapped onto the architecture. The issues
involved in designing the custom computer will be
discussed. Finally results will be presented which
compare the computation times for the custom computer
against the simulation of the Hopfield network run on a
high endworkstation. In this way, the speed-up can be
determined.

HOPFIELD NEURAL NETWORKS

Hopfield neural networks are a biologically inspired
mathematical tool which can be used to solve difficult
optimization problems.

Artificial neurons

In the human brain, a typical neuron collects signals from
others through a host of fine structures called dendrites

Figure 3. The neuron model.

 Figure 4. A simple neuron.

shown in Figure 1. The neuron sends out spikes of
electrical activity through a long, thin stand known as an
axon, which splits into thousands of branches. At the end
of each branch, a structure called a synapse (shown in
Figure 2) converts the activity from the axon into
electrical effects that inhibit or excite activity from the
axon into electrical effects that inhibit or excite activity in
the connected neurons. When a neuron receives
excitatory input that is sufficiently large compared with its
inhibitory input, it sends a spike of electrical activity down
its axon. Learning occurs by changing the effectiveness
of the synapses so that the influence of one neuron on
another changes.

We conduct these neural networks by first trying to
deduce the essential features of neurons and their
interconnections shown in Figure 3. We then typically
program a computer to simulate these features. However
because our knowledge of neurons is incomplete and our
computing power is limited, our models are necessarily
gross idealizations of real networks of neurons (Limin,
2003).

A simple neuron

An artificial neuron is a device with many inputs and one
output shown in Figure 4. The neuron has two modes of
operation; the training mode and the using mode. In the
training mode, the neuron can be trained to fire (or not),
for particular input patterns. In the using mode, when a
taught input pattern is detected at the input, its
associated output becomes the current output. If the input

pattern does not belong in the taught list of input patterns,
the firing rule is used to determine whether to fire or not
(Hopfield and Tank, 1985).

Neural networks in business

1) Marketing
2) Credit evaluation

Hopfield nets

Mainly the Hopfield nets are used as autoassociators. In
addition to serving as auto associators, Hopfield networks
can be applied to optimization and constraint satisfaction
problems (David, 1998; Hopfield and Tank, 1985). The
idea is to encode each hypothesis as a unit and to
encode constraints between hypotheses by weights.
Positive weights encode mutual supporting relationships,
where as negative weights encode incompatible
relationships. As the Hopfieldnet settles into a stable
state, the state reflects the assignment of truth and falsity
to the various hypotheses under constraints.

So, the Hopfield nets are useful both for auto
association and for optimization tasks. It applies the
concept of energy surface minimization in physics to
finding stable solutions in the neural networks. Also, this
network is relatively easy to implement in VLSI chips
(Chen and du Plessis, 2002).

Architecture

The main concept underlying the Hopfield network is that
a single network of interconnected, binary-valued
neurons can store multiple stable states. Suppose we
create a network of binary-valued neurons, where each
neuron is connected to the others but not back to it.
Assume all the connection weights are symmetric. That
isTjk=Tkj. This network can have a set of stable states. For
each stable state, each binary neuron takes on a value
(either 0 or 1) so that when it acts on its neighbors, the
values of each neuron do not change.

The architecture of the Hopfield net is shown in Figure
5. The number of the network units is the same as that of
the bits or values contained in each pattern (David,
1998). Units update their states asynchronously or
sychronously by receiving inputs from other units. Once
set, the weights in the Hopfield net are not trainable
(Hopfield and Tank, 1985).

Hopfield net algorithm for optimization

Weight assignments

1) Write energy function based on problem constraints.

Srinivasulu 13

2) Compare the above energy function with the following
energy function of the Hopfield net (a Liapunov function)
to determine the weights

Calculation of activation

1) at time t=0, vj(0) = a randomized small value. Where
vj(t) is the activation level of unit j at time t.
2) At time t(t>0),

vi(t+1) = g(ui)

Where the function g (ui) is a hard-limiting function

3) Repeat step 2 until equilibrium (that is, the activation
levels of nodes remainunchanged with further iterations).
Then, the pattern of activations upon equilibrium
represents the optimized solution.

Improving solution quality

Many variations of the Hopfield network have been
proposed for improving the solution quality. These
approaches can be broadly categorized as either
deterministic or stochastic. There have also been
developments in hardware implementation that have
enabled local minima to be avoided and problem-specific
theoretical work on basins of attraction that enable the
initial states of the network leading to good quality
solutions to be calculated (Yegnanarayana, 2004). The
deterministic approaches include problem-specific
enhancements such as the “divide and conquer” method
for solving the TSP, deterministic hill-climbing such as the
“rock and roll” perturbation method and the use of
alternative neuron models within the Hopfield network
such as the winner-take-all neurons used to improve the
feasibility of the solutions (Yegnanarayana, 2004).
Stochastic approaches address the problem of poor
solution quality by attempting to escape from local

14 J. Eng. Technol. Res.

Figure 5. Architecture of Hopfield network.

minima. There are basically four main methods found in
the literature to embed stochastic (Yegnanarayana, 2004)
into the Hopfield network:

1) Replace sigmoid activation function with a stochastic
decision-type activation function,
2) Add noise to the weights of the network,
3) Add noise to the external inputs (biases) of the
network, and
4) Any combination of the above methods.

The Boltzmann machine utilizes the first method based
on a discrete Hopfield model (Yegnanarayana, 2004).
The inputs are fixed, but the discrete activation function is
modified to become probabilistic. Much like simulated
annealing, the consequence of modifying the binary
activation level of each neuron is evaluated according to
the criteria of the Boltzmann probability factor. This model
is able to escape from local minima, but suffers from
extremely large computation times (Yegnanarayana,
2004).

In order to improve the efficiency and speed of the
Boltzmann machine, Akiyama et al. (1989) proposed
Gaussian machines that combine features of continuous
Hopfield networks and the Boltzmann machine
(Yegnanarayana, 2004). Gaussian machines have
continuous outputs with a deterministic activation function
like the Hopfield network, but random noise is added to
the external input (bias) of each neuron. This noise is
normally distributed (or Gaussian) with a mean of zero
and a variance controlled by a temperature parameter.
However, based upon fast simulated annealing, which
uses Cauchy noise to generate new search states and
requires only at/log(t) cooling schedule, the Cauchy
machine was proposed as an improvement to solution
quality (Yegnanarayana, 2004). The Cauchy distribution
is said to yield a better chance of convergence to the

global minimum than the Gaussian distribution
(Yegnanarayana, 2004).

Furthermore, Cauchy noise produces both local
randomwalks and larger random leaps in solution space,
whereas Gaussian noise produces only local random
walks. The noise is incorporated into the activation
function, while the outputs of the Cauchy machine are
binary. In the high-gain limit of the gradient of the
stochastic activationfunction, the Cauchy machine
approaches the behavior of the discrete (and
deterministic) Hopfield network. Anotherstochastic
approach that has been very successful is mean
fieldannealing, so named because the model computes
the mean activation levels of the stochastic binary
Boltzmann machine. Often, however, stochastic neural
networks designed to“kick” a solution out of a local
minimum suffer from instability.In previous work, we have
suggested a modification to the internal dynamics of the
modified Hopfield network (with the feasibility
guaranteed)that permits escape from local minima
through hill climbing (Hopfield and Tank, 1985;
(Yegnanarayana, 2004).

Clearly, there are many approaches to improving
thesolution quality of the Hopfield network through
escape from local minima of the energy function and
embedding stochastic into the dynamics of the network.
The valid subspace approach has resulted in a guarantee
of feasibility as well. Thus, the initial problems that have
plagued the reputation of the Hopfield network have now
been resolved.

Many optimization problems can be readily represented
on Hopfield nets, by transforming the problem into
variables such that the desired optimization corresponds
to the minimization of the respective Lyapunov function
(Hopfield and Tank, 1985). In this representation, the
dynamics of change in network state with time takes the
system to a local energy minimum. If this local minimum
is also the global minimum, the solution of the desired
optimization task has been carried out by the
convergence of the network state (Yegnanarayana,
2004). Indeed, the energy function can be thought of as a
programming language for transforming optimization
problems into a solution method applying network
dynamics. The resulting network could be either built in
analog hardware or implemented in software on a digital
machine.

Linear programming, the worker assignment problem
(Dijin, (1995), and decomposing signals into a basis set
can all be solved exactly by Hopfield networks because
the Lyapunov function for these problems can be
constructed with a single (and thus global) minimum.
When more computationally difficult problems are
programmed using this approach, the Lyapunov function
often has multiple local minima, and the dynamics of the
network may converge to a local minimum rather than to
the global minimum. Finding a good half-tone image from
a gray-scale photograph and the n-queens chess

problem can be programmed in this way (Limin, 2003).
How effective such a network can be in finding a good
solution is strongly dependent on the problem class.

Biological modeling of the human brain is attempted by
utilizing a fully inter-connected system of N neurons.
Neuron i has internal state ui and output level vi (which
can be either binary valued in the discrete model or real
valued bounded by 0 and 1 in the continuous model). The
internal state ui incorporates a bias current (or negative
threshold) denoted by Ii, and the weighted sums of
outputs from all other neurons. The weights, which
determine the strength of the connections from neuron i
to j, are given by Tij. The relationship between the internal
state of a neuron and its output level is determined by an
activation function g(ui). The nature of this activation
function depends on whether the Hopfield network is
discrete or continuous.

Commonly,

 (1)

Is used for the continuous model, where is a
parameter used to control the slope (or gain) of the
activation function.

For discrete Hopfield networks, the activation function
is usually a discrete threshold function:

 (2)

The neurons update themselves (either sequentially orin
parallel) according to the following rule:

 (3)

and in doing so, the network of neurons will convergeto a
local minimum of the following energy function overtime:

 (4)

Provided the weights are symmetric Tij = Tji .

If neurons are updated in parallel (or synchronously) then
the possibility of convergence to a two-cycle exists.Both
of the network states which comprise the two-cyclewill be
local minima of the energy function however.

The discrete model has an advantage over the
continuousmodel in terms of the number of updates
required toconverge to a local minimum. For this reason,

Srinivasulu 15

and others related to hardware constraints will be
discussed, we have chosen to use a discreteHopfield
network for solving the N-Queen problem. We have also
chosen to update the neurons in a parallel operation
rather than sequentially since it is our ultimate intention to
solve large scale problems as rapidly aspossible. Parallel
implementation involves calculating allof the U updates
then all of the v updates, as opposed tothe sequential
update which calculate the u and v updatefor each
neuron one at a time.

Hopfield and Tank (1985) showed that if a 0-1
optimization problem can be expressed in terms of
anenergy function of the form given by (4), then a
Hopfield network can be used to find locally optimal
solutions of the energy function. This may translate to
local minimum solutions of the optimization problem.

Typically, the network energy function is made
equivalent to the objective function of the optimization
problem, while the constraints of the problem are
included in the energy function as penalty terms. The
network parameters can then be inferred by comparison
with the standard energy function given by (4). The
weights of the network, Tij are then the coefficients of the
quadratic term, vivj and the external bias currents,Ii, for
each neuron i, are the coefficients of the linearterms vi, in
the chosen energy function. The network can be
initialized by setting the activity level vi, of each neuron to
an unbiased state. Updating the network according to
equation (3) will then allow a minimum energy state to be
attained, since the energy level never increases during
state transitions.

However, these stable states may not necessarily
correspond to feasible or good solutions of the
optimization problem, and this is one of the major pitfalls
of the H-T formulation. Because the energy function
comprises several terms (each of which is competing to
be minimized), there are many local minima, and a
tradeoff exists between which terms will be minimized. An
infeasible solution to the problem will arise when at least
one of the constraint penalty terms is non-zero. If this
occurs, the objective function term is generally quite
small, because it has been minimized to the detriment of
the constraint terms, thus the solution is “good” but not
feasible. Alternatively, all constraints may be satisfied,
but a local minimum may be encountered that does not
globally minimize the objective function, in which case the
solution is feasible but not “good.” Certainly, a penalty
parameter can be increased to force its associated term
to be minimized, but this generally causes other terms to
be increased. The solution to this trade-off problem is to
find the optimal values of the penalty parameters that
balance the terms of the energy function and ensure that
each term is minimized with equal priority. Only then will
the constraintterms be zero (a feasible solution), and the
objective function be also minimized (a “good” solution).
The derivation of the weights and external biases for the
N-Queen problem are provided subsequently.

16 J. Eng. Technol. Res.

Figure 6. Weight matrix.

N-QUEEN PROBLEM

The N-Queen problem is a classical constraint
satisfaction problem, whose goal is to place N Queens on
an NxN chess board in mutually non-attacking positions.
Since a Queen can only attack horizontally, verticallyand
diagonally, the constraints can be stated as:

 there can be only one Queen in each row٭
 there can be only one Queen in each column ٭
 there can be only one Queen in each diagonal ٭
(ascending and descending).

Suppose we define a binary decision variable:

Xij= 1 if a Queen is positioned in row i and 0 otherwise

There are several ways of combining all of
theseconstraints in an objective function as penalty
terms, andone such function is:

(5)

The first two terms ensure that the rows and columns
sum to one, while the final term counts the cost of
Queens on each diagonal (ascending and descending).
The value of this function isexactly zero for a non-
attacking solution, and will be greater if some of the
constraints are not satisfied. The values of A, B and C
are selected to balance the relative importance of each
constraint, and we have fixed these tounity.

Expanding and rearranging this objective function so

that it is expressed as the sum of a linear component and
quadratic components yield:

 (6)

Where δij, is the Kronecker-delta symbol equivalent to
unity only if i =j and is zero otherwise. Comparing this
expansion to the standard Hopfield network energy
function (4), and noting the double subscript for this N
Queen formulation, the weights and external biases can
be read off as:

And Iij = A+B (7)

In this project we are designing Hopfield network for
solving 4 – Queen problem. So, the weight matrix order
becomes 16 × 16 (as N increases the weight matrix order
becomes N

2
× N

2
) and the matrix shows the derived

weight matrix from equation (7) (Figure 6).

(Where i, j, k, l are from 1 to 4),

And the bias current, from Equation (7) is,

Iij = 1 + 1 = 2.

Since the parameters A, B, Cand D are taken as unity.
Therefore

Iij = 2.

Where the negative sign indicates incompatibility
(inhibition or weak) relationship between the neurons.
According to the derived weights the connections are
made. Once the weights are set, the adaptation of
weights does not exist. Because we are implementing a
Hopfield network, the interconnection between neurons is
fixed and dictated by the nature of the constraints in the
problem. This means that it can be wired into the
implementation, which is particularly relevant for FPGA
based machines. This not only reduces the amount of
interconnection hardware required, but also reduces the
time spent accumulating the input values to a neuron
(Chen and du Plessis, 2002).

After designing the weights, the initial state of each
neuron is selected randomly, and then the weighted sum
of each neuron is calculated. Since we are designing the
digital network, the step function is chosen as the
nonlinear activation function to decide the state of each
neuron whether it is fired or not. By applying this weights

and bias to the network we can get the solution to our (4
– Queen) problem. But this may not be the optimal
solution to the problem. That means we may get the local
minima value, which is the disadvantage in the Hopfield
neural network. To get the global or optimal solution to
the problem, we have to eliminate the local minima. The
techniques to overcome the local minima problem are
already mentioned. So, by using one of those techniques
we can eliminate local minima problem. In this project we
are just designing the Hopfield network for solving 4-
Queen problem and implementing on FPGA.

IMPLEMENTATION USING FPGAS

Architecture

There has been much architecture proposed for the
implementation of neural networks over the years,
including both digital and analogue circuits (Chen and du
Plessis, 2002; Silvio, 1992). Most of these have
concentrated on a hardware implementation of the
neuron evaluation function, which consists of computing
number ofmatrix-vector products. Thus, these systems
involve the parallel and pipelined executions of a number
of multiply operations together with a reduction sum
operator. A small amount of work has been focused on
the training aspects of networks, which can be extremely
time consuming.

The work described in this paper differs from general
neural networks in three important ways. The weights are
small and can be represented using smallintegers. This
means that the hardware responsible for the
accumulation can be optimized for small integer values.
This not only reduces the size of the arithmeticunits, but
also reduces the carry propagation delays.

1) The neuron values are restricted to 0 or 1, rather than
general fixed or floating point numbers.Consequently, the
vector product becomes a set of conditional additions
without the need to perform any multiplication operations.
Multiplier units normally consume large amounts of logic,
thus the savings hereare dramatic.
2) Because we are implementing a Hopfield network, the
interconnection between neurons is fixed and dictated by
the nature of the constraints in the problem. This means
that it can be wired into the implementation, which is
particularly relevant for FPGA based machines. This not
only reduces the amount of interconnection hardware
required, but also reduces the time spent accumulating
the input values to a neuron.

The architecture chosen for this work consists of set of
neurons, as described by the VHDL code, which are then
interconnected when the weights are non-zero. Thus,
neurons which have zero weights between them are not
connected, limiting the number of inputs to a neuron to
O(n) instead of O (N²), where N is the number of neurons
in the system.

Srinivasulu 17

Whilst the code for each neuron is identical, each one
is specified with a different Weight-array, and thus the
hardware generated for each will be slightly different.

Implementation

The consequence of the issues discussed in the earlier
on means that it is possible to implement the neural
network using FPGA devices. FPGAs, like the Xilinx
family of parts, consist of a number of configurable logic
blocks (CLBs) connected using a hierarchical, bus based,
and wiring scheme. The neurons and their
interconnections are specified in VHDL, which is
synthesized and simulated using Xilinx ISE simulator and
Spartan 3E tools for FPGA mapping and routing. Our
hardware platform, an FPGA Spartan 3E reconfigurable
logic board, routes the neuron outputs either to an array
of LEDs or back to a host work station for display. Since
all the weights are known at synthesis time, the synthesis
tool's optimization features are exploited to automatically
remove any additions involving zero-valued weights. The
use of VHDL has a number of advantages over
conventional hardware design techniques like schematic
capture.

1) Its high level syntax is not very different from
conventional imperative programming languages, thus
the design effort is not significantly different from writing a
software simulation of a neural network. This is an
important design consideration when considering the
development cost of application specific hardware.
2) The VHDL software supports extensive optimizations,
thus the performance of the underlying hardware is
optimized for each neuron depending on the weights on
its inputs.
3) The VHDL compiler analyses the domain of the
variables and generates optimal hardware without any
further user interaction. For example, if the range of a
variable is limited to the values from0 to 3, then the data
path used to transmit and manipulate the variable will be
automatically constrained to 2 bits.

PERFORMANCE RESULTS

We have performed experiments using 4, 8, and 16 -
Queen’s problem. This code resembles the structure of
the hardware solution. Using Xilinx 9.2i software the
results are simulated on ISE simulator and implanted on
FPGA Spartan 3E, xc 3s500e devices. The simulation
result and the synthesis report is given as Figure 7 and
the synthesis report is given as Figure 8.

Timing summary

Speed Grade: -4

18 J. Eng. Technol. Res.

Figure 7. Simulation results

Minimum period: 64.978 ns
(Maximum Frequency: 15.390 MHz)
Minimum input arrival time before clock: 5.153 ns
Maximum output required time after clock: 8.180 ns
Maximum combinational path delay: No path found

Device utilization summary

Selected device: 3s500epq208-4
Number of slices: 4693 out of 4656; 100% (*)
Number of slice flip flops: 542 out of 9312; 5%

Number of 4 input LUTs: 8812 out of 9312; 94%
Number of IOs: 35
Number of bonded IOBs: 19 out of 158; 12%
Number of GCLKs: 1 out of 24; 4%

HDL synthesis report

Macro Statistics
Adders/Subtractors: 256
32-bit adder: 256
Accumulator: 16

Srinivasulu 19

Figure 8. Synthesis report.

32-bit up accumulator: 16
Registers: 1
16-bit register: 1
Comparators: 16
32-bit comparator greater: 16

Advanced HDL synthesis

Advanced HDL synthesis report
Macro statistics
Adders/sub tractors: 256
32-bit adder: 256
Accumulators: 16
32-bit up accumulator: 16
Registers: 16
Flip-flops: 16
Comparators: 16
32-bit comparator greater: 16

Figures 9 and 10 shows the computational time and
speed up of the hardware over each of the software
approaches written in VHDL and C code.

The results indicate that it is possible to gain between 2
and 3 orders of magnitude speed up, which is significant.
The computation time and speed of the network depend
on the number of iterations and N in N-Queen problem.
As either number of iterations or N increases, the
computation time increases and speedup decreases.

Conclusions

The aim of this work was to establish whether it was
possible to achieve a reasonable speed up by
implementing FPGA based Hopfield neural networks for
some simple constraint satisfaction problems. The results
are significant our initial implementation using standard

20 J. Eng. Technol. Res.

1000000

100000

10000

1000

100

10

Conventional

Spartan 3E tools

Virtex tools

4-Queen 5-Queen 8-Queen

Time to process

T
im

e
 (

s
)

1

Figure 9. System performance based on computational time.

Figure 10. System performance based on speed.

XilinxFPGAs yielded 2 to 3 orders of magnitude speed up
over the Sun Blade 2000 workstation comes with 1.2-
GHz version of the 64-bit UltraSPARC III Cu processor.

The main problem with the work to date is that the
problems are both unrealistically small and simplistic.
That is the constraint on the N-Queen problemare simpler
than those found in many real world scheduling
applications. Thus, it is not clear whether we will be able
to optimize the neuron structure for more complex
problems since the weights matrix may not contain as

many zero elements.

REFERENCES

Chen YJ, du Plessis WP (2002). “Neural network implementation on

FPGA.” IEEE, pp. 337-342.

David A (1998). “FPGA based implementation of a Hopfield neural
network for constraint satisfaction Problems.” IEEE, pp. 688-692.

Dijin G (1995). ”Neural network Approach for General Assignment

Problem.” IEEE, 4: 1861 - 1866

Fred G, Gary AK (1989). “ Handbook of Mataheuristics.” By Kluwer

International Series.
Hopfield JJ, Tank D (1985). “Neural computation of decisions in

optimization problems.” “Artificial neural networks“, Yegnanarayana.
Biol. Cybernet., 52: 141-152.

Srinivasulu 21

Limin F (2003). “Neural networks in computer intelligence.” By McGraw-

Hill International Editions. Computer Science Series.
Silvio PE (1992).”Analog VLSI Neural networks: Implementation issues

and examples in Optimization and Supervised learning.” IEEE, 39(6):
552 – 564.

