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formulation. Finally results will be presented which compare the computation times for the custom 
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speed-up can be determined, that illustrate a speedup of up to 2 to 3 orders of magnitude is possible 
using current FPGAs devices. 
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INTRODUCTION 
 
Many practical optimization problems from business and 
industry can be formulated as standard mathematical 
programming problems using binary decision variables. 
Solution of these problems requires the use of heuristics 
or approximate algorithms due to the NP {(Neuro 
Psychology)-hard nature of their complexity; Fred and 
Gary, 1989}. Neural networks were proposed to solve 
such problems in 1985 (David, 1998), but the field has 
been plagued with problems of poor solution quality and 
inability to guarantee feasible final solutions (Hopfield and 
Tank, 1985). These initial problems have now been 
overcome. Techniques have been proposed to help the 
Hopfield neural network escape from local minima of its 
energy function and suitable construction of that energy 
function has been shown to guarantee the feasibility of 
solutions (Silvio, 1992). Using these improvements, 
neural network results have been obtained which 
compete effectively (and even outperform) other popular 
heuristics such as simulated annealing. 

While most of the literature has focused on using 
Hopfield networks to solve the famous traveling salesman 
problem, a range of practical problems have also been 
solved with neural networks (Dijin, 1995; Silvio, 1992). 
The   solutions   to   these   problems   were  obtained  by 

simulating the behavior of the Hopfield neural network 
(designed to be implemented in electrical hardware) on a 
conventional computer. However, while the algorithms 
generate good solutions, the computation times are 
extremely slow. If neural networks are to be applied 
routinely to practical problems, then the execution time 
must be reduced. There are a number of ways of 
accelerating the execution of the network algorithms, 
ranging from the use of high end parallel 
supercomputers, through to hardware implementations of 
the networks themselves using custom computing 
machines (CCMs). CCMs are attractive, because they 
have the potential to provide cheap high speed platforms 
for neural network based algorithms. However, until 
recently the cost of producing specific hardware has been 
high and the process errorprone. 

Recently, the advent of high density field 
programmable gate arrays (FPGAs), in combination with 
new synthesis tools, have made it relatively easy to 
produce programmable custom machines without 
building specific hardware. FPGA based CCMs can 
provide high performance on certain problems, 
demonstrating speedups of orders of magnitude over 
conventional   machines   (David,   1998;   Chen   and  du 
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Figure 1.  Components of a neuron. 
 

 
 

 
 

 
 
Figure 2. The synapse. 

 
 
 

Plessis, 2002). There is great potential to apply these 
techniques to neural network based algorithms, however, 
research must be conducted to determine the appropriate 
methods. 

This paper aims to demonstrate the potential of a 
custom computer based on FPGA technology for solving 
a classical constraint satisfaction problem: the N-Queen 
problem. The Hopfield neural network will be briefly 
described, and we will show how the N-Queen problem 
can be mapped onto the architecture. The issues 
involved in designing the custom computer will be 
discussed. Finally results will be presented which 
compare the computation times for the custom computer 
against the simulation of the Hopfield network run on a 
high endworkstation. In this way, the speed-up can be 
determined. 
 
 
HOPFIELD NEURAL NETWORKS 
 
Hopfield neural networks are a biologically inspired 
mathematical tool which can be used to solve difficult 
optimization problems. 

 
 
Artificial neurons 

 
In the human brain, a typical neuron collects signals from 
others through a host of  fine  structures  called  dendrites 

 
 
 
 

  
 

Figure 3. The neuron model. 
 

 
 

  
 
 Figure 4.  A simple neuron. 

 

 
 

shown in Figure 1. The neuron sends out spikes of 
electrical activity through a long, thin stand known as an 
axon, which splits into thousands of branches. At the end 
of each branch, a structure called a synapse (shown in 
Figure 2) converts the activity from the axon into 
electrical effects that inhibit or excite activity from the 
axon into electrical effects that inhibit or excite activity in 
the connected neurons. When a neuron receives 
excitatory input that is sufficiently large compared with its 
inhibitory input, it sends a spike of electrical activity down 
its axon. Learning occurs by changing the effectiveness 
of the synapses so that the influence of one neuron on 
another changes. 

We conduct these neural networks by first trying to 
deduce the essential features of neurons and their 
interconnections shown in Figure 3. We then typically 
program a computer to simulate these features. However 
because our knowledge of neurons is incomplete and our 
computing power is limited, our models are necessarily 
gross idealizations of real networks of neurons (Limin, 
2003). 
 
 
A simple neuron 
 
An artificial neuron is a device with many inputs and one 
output shown in Figure 4. The neuron has two modes of 
operation; the training mode and the using mode. In the 
training mode, the neuron can be trained to fire (or not), 
for particular input patterns. In the using mode, when a 
taught input pattern is detected at the input, its 
associated output becomes the current output. If the input 



 
 
 
 
pattern does not belong in the taught list of input patterns, 
the firing rule is used to determine whether to fire or not 
(Hopfield and Tank, 1985). 
 
 
Neural networks in business 
 
1) Marketing 
2) Credit evaluation 
 
 
Hopfield nets 
 
Mainly the Hopfield nets are used as autoassociators. In 
addition to serving as auto associators, Hopfield networks 
can be applied to optimization and constraint satisfaction 
problems (David, 1998; Hopfield and Tank, 1985). The 
idea is to encode each hypothesis as a unit and to 
encode constraints between hypotheses by weights. 
Positive weights encode mutual supporting relationships, 
where as negative weights encode incompatible 
relationships. As the Hopfieldnet settles into a stable 
state, the state reflects the assignment of truth and falsity 
to the various hypotheses under constraints. 

So, the Hopfield nets are useful both for auto 
association and for optimization tasks. It applies the 
concept of energy surface minimization in physics to 
finding stable solutions in the neural networks. Also, this 
network is relatively easy to implement in VLSI chips 
(Chen  and du Plessis, 2002). 
 
 

Architecture 
 
The main concept underlying the Hopfield network is that 
a single network of interconnected, binary-valued 
neurons can store multiple stable states. Suppose we 
create a network of binary-valued neurons, where each 
neuron is connected to the others but not back to it. 
Assume all the connection weights are symmetric. That 
isTjk=Tkj. This network can have a set of stable states. For 
each stable state, each binary neuron takes on a value 
(either 0 or 1) so that when it acts on its neighbors, the 
values of each neuron do not change. 

The architecture of the Hopfield net is shown in Figure 
5. The number of the network units is the same as that of 
the bits or values contained in each pattern (David, 
1998). Units update their states asynchronously or 
sychronously by receiving inputs from other units. Once 
set, the weights in the Hopfield net are not trainable 
(Hopfield and Tank, 1985). 
 
 
Hopfield net algorithm for optimization 
 
Weight assignments 
 
1) Write energy function based on problem constraints. 
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2) Compare the above energy function with the following 
energy function of the Hopfield net (a Liapunov function) 
to determine the weights  
 

 
 
 
Calculation of activation 
 
1) at time t=0, vj(0) = a randomized small value. Where 
vj(t) is the activation level of unit j at time t. 
2) At time t(t>0), 
 

 
 
vi(t+1) = g(ui) 
 
Where the function g (ui) is a hard-limiting function     
 

 
 
3) Repeat step 2 until equilibrium (that is, the activation 
levels of nodes remainunchanged with further iterations). 
Then, the pattern of activations upon equilibrium 
represents the optimized solution. 
 
 
Improving solution quality 
 
Many variations of the Hopfield network have been 
proposed for improving the solution quality. These 
approaches can be broadly categorized as either 
deterministic or stochastic. There have also been 
developments in hardware implementation that have 
enabled local minima to be avoided and problem-specific 
theoretical work on basins of attraction that enable the 
initial states of the network leading to good quality 
solutions to be calculated (Yegnanarayana, 2004). The 
deterministic approaches include problem-specific 
enhancements such as the “divide and conquer” method 
for solving the TSP, deterministic hill-climbing such as the 
“rock and roll” perturbation method and the use of 
alternative neuron models within the Hopfield network 
such as the winner-take-all neurons used to improve the 
feasibility of the solutions (Yegnanarayana, 2004). 
Stochastic approaches address the problem of poor 
solution   quality   by   attempting   to   escape  from  local 
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Figure 5. Architecture of Hopfield network. 
 

 
 

minima. There are basically four main methods found in 
the literature to embed stochastic (Yegnanarayana, 2004) 
into the Hopfield network: 
 
1) Replace sigmoid activation function with a stochastic 
decision-type activation function, 
2) Add noise to the weights of the network, 
3) Add noise to the external inputs (biases) of the 
network, and 
4) Any combination of the above methods. 
 
The Boltzmann machine utilizes the first method based 
on a discrete Hopfield model (Yegnanarayana, 2004). 
The inputs are fixed, but the discrete activation function is 
modified to become probabilistic. Much like simulated 
annealing, the consequence of modifying the binary 
activation level of each neuron is evaluated according to 
the criteria of the Boltzmann probability factor. This model 
is able to escape from local minima, but suffers from 
extremely large computation times (Yegnanarayana, 
2004). 

In order to improve the efficiency and speed of the 
Boltzmann machine, Akiyama et al. (1989) proposed 
Gaussian machines that combine features of continuous 
Hopfield networks and the Boltzmann machine 
(Yegnanarayana, 2004). Gaussian machines have 
continuous outputs with a deterministic activation function 
like the Hopfield network, but random noise is added to 
the external input (bias) of each neuron. This noise is 
normally distributed (or Gaussian) with a mean of zero 
and a variance controlled by a temperature parameter. 
However, based upon  fast simulated annealing, which 
uses Cauchy noise to generate new search states and 
requires only at/log(t) cooling schedule, the Cauchy 
machine was proposed as an improvement to solution 
quality (Yegnanarayana, 2004). The Cauchy distribution 
is said to yield  a  better  chance  of  convergence  to  the 

 
 
 
 
global minimum than the Gaussian distribution 
(Yegnanarayana, 2004). 

Furthermore, Cauchy noise produces both local 
randomwalks and larger random leaps in solution space, 
whereas Gaussian noise produces only local random 
walks. The noise is incorporated into the activation 
function, while the outputs of the Cauchy machine are 
binary. In the high-gain limit of the gradient of the 
stochastic activationfunction, the Cauchy machine 
approaches the behavior of the discrete (and 
deterministic) Hopfield network. Anotherstochastic 
approach that has been very successful is mean 
fieldannealing, so named because the model computes 
the mean activation levels of the stochastic binary 
Boltzmann machine. Often, however, stochastic neural 
networks designed to“kick” a solution out of a local 
minimum suffer from instability.In previous work, we have 
suggested a modification to the internal dynamics of the 
modified Hopfield network (with the feasibility 
guaranteed)that permits escape from local minima 
through hill climbing (Hopfield and Tank, 1985; 
(Yegnanarayana, 2004). 

Clearly, there are many approaches to improving 
thesolution quality of the Hopfield network through 
escape from local minima of the energy function and 
embedding stochastic into the dynamics of the network. 
The valid subspace approach has resulted in a guarantee 
of feasibility as well. Thus, the initial problems that have 
plagued the reputation of the Hopfield network have now 
been resolved. 

Many optimization problems can be readily represented 
on Hopfield nets, by transforming the problem into 
variables such that the desired optimization corresponds 
to the minimization of the respective Lyapunov function 
(Hopfield and Tank, 1985). In this representation, the 
dynamics of change in network state with time takes the 
system to a local energy minimum. If this local minimum 
is also the global minimum, the solution of the desired 
optimization task has been carried out by the 
convergence of the network state (Yegnanarayana, 
2004). Indeed, the energy function can be thought of as a 
programming language for transforming optimization 
problems into a solution method applying network 
dynamics. The resulting network could be either built in 
analog hardware or implemented in software on a digital 
machine. 

Linear programming, the worker assignment problem 
(Dijin, (1995), and decomposing signals into a basis set 
can all be solved exactly by Hopfield networks because 
the Lyapunov function for these problems can be 
constructed with a single (and thus global) minimum. 
When more computationally difficult problems are 
programmed using this approach, the Lyapunov function 
often has multiple local minima, and the dynamics of the 
network may converge to a local minimum rather than to 
the global minimum. Finding a good half-tone image from 
a    gray-scale    photograph   and  the   n-queens  chess 



 
 
 
 
problem can be programmed in this way (Limin, 2003). 
How effective such a network can be in finding a good 
solution is strongly dependent on the problem class. 

Biological modeling of the human brain is attempted by 
utilizing a fully inter-connected system of N neurons. 
Neuron i has internal state ui and output level vi (which 
can be either binary valued in the discrete model or real 
valued bounded by 0 and 1 in the continuous model). The 
internal state ui incorporates a bias current (or negative 
threshold) denoted by Ii, and the weighted sums of 
outputs from all other neurons. The weights, which 
determine the strength of the connections from neuron i 
to j, are given by Tij. The relationship between the internal 
state of a neuron and its output level is determined by an 
activation function g(ui). The nature of this activation 
function depends on whether the Hopfield network is 
discrete or continuous. 
 
Commonly, 
 

        (1) 
 

Is used for the continuous model, where is a 
parameter used to control the slope (or gain) of the 
activation function.  

For discrete Hopfield networks, the activation function 
is usually a discrete threshold function: 
 

                 (2) 

 

The neurons update themselves (either sequentially orin 
parallel) according to the following rule: 
 

         (3) 
 

 
 
and in doing so, the network of neurons will convergeto a 
local minimum of the following energy function overtime: 
 

               (4) 
 
Provided the weights are symmetric Tij = Tji . 
 

If neurons are updated in parallel (or synchronously) then 
the possibility of convergence to a two-cycle exists.Both 
of the network states which comprise the two-cyclewill be 
local minima of the energy function however. 

The discrete model has an advantage over the 
continuousmodel in terms of the number of updates 
required toconverge to a local minimum. For this  reason, 
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and others related to hardware constraints will be 
discussed, we have chosen to use a discreteHopfield 
network for solving the N-Queen problem. We have also 
chosen to update the neurons in a parallel operation 
rather than sequentially since it is our ultimate intention to 
solve large scale problems as rapidly aspossible. Parallel 
implementation involves calculating allof the U updates 
then all of the v updates, as opposed tothe sequential 
update which calculate the u and v updatefor each 
neuron one at a time. 

Hopfield and Tank (1985) showed that if a 0-1 
optimization problem can be expressed in terms of 
anenergy function of the form given by (4), then a 
Hopfield network can be used to find locally optimal 
solutions of the energy function. This may translate to 
local minimum solutions of the optimization problem. 

Typically, the network energy function is made 
equivalent to the objective function of the optimization 
problem, while the constraints of the problem are 
included in the energy function as penalty terms. The 
network parameters can then be inferred by comparison 
with the standard energy function given by (4). The 
weights of the network, Tij are then the coefficients of the 
quadratic term, vivj and the external bias currents,Ii, for 
each neuron i, are the coefficients of the linearterms vi, in 
the chosen energy function. The network can be 
initialized by setting the activity level vi, of each neuron to 
an unbiased state. Updating the network according to 
equation (3) will then allow a minimum energy state to be 
attained, since the energy level never increases during 
state transitions.  

However, these stable states may not necessarily 
correspond to feasible or good solutions of the 
optimization problem, and this is one of the major pitfalls 
of the H-T formulation. Because the energy function 
comprises several terms (each of which is competing to 
be minimized), there are many local minima, and a 
tradeoff exists between which terms will be minimized. An 
infeasible solution to the problem will arise when at least 
one of the constraint penalty terms is non-zero. If this 
occurs, the objective function term is generally quite 
small, because it has been minimized to the detriment of 
the constraint terms, thus the solution is “good” but not 
feasible. Alternatively, all constraints may be satisfied, 
but a local minimum may be encountered that does not 
globally minimize the objective function, in which case the 
solution is feasible but not “good.” Certainly, a penalty 
parameter can be increased to force its associated term 
to be minimized, but this generally causes other terms to 
be increased. The solution to this trade-off problem is to 
find the optimal values of the penalty parameters that 
balance the terms of the energy function and ensure that 
each term is minimized with equal priority. Only then will 
the constraintterms be zero (a feasible solution), and the 
objective function be also minimized (a “good” solution). 
The derivation of the weights and external biases for the 
N-Queen problem are provided subsequently. 
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Figure 6. Weight matrix. 

 
 
 

N-QUEEN PROBLEM 
 
The N-Queen problem is a classical constraint 
satisfaction problem, whose goal is to place N Queens on 
an NxN chess board in mutually non-attacking positions. 
Since a Queen can only attack horizontally, verticallyand 
diagonally, the constraints can be stated as: 
 
 there can be only one Queen in each row٭
 there can be only one Queen in each column ٭
 there can be only one Queen in each diagonal ٭
(ascending and descending). 
 
Suppose we define a binary decision variable: 
 
Xij=   1 if a Queen is positioned in row i and 0 otherwise 
 
There are several ways of combining all of 
theseconstraints in an objective function as penalty 
terms, andone such function is: 
 

(5) 
 

The first two terms ensure that the rows and columns 
sum to one, while the final term counts the cost of 
Queens on each diagonal (ascending and descending). 
The value of this function isexactly zero for a non-
attacking solution, and will be greater if some of the 
constraints are not satisfied. The values of A, B and C 
are selected to balance the relative importance of each 
constraint, and we have fixed these tounity. 

Expanding and  rearranging  this  objective  function  so 

 
 
 
 
that it is expressed as the sum of a linear component and 
quadratic components yield: 
 

 

 

 

 

   (6) 
 
Where δij, is the Kronecker-delta symbol equivalent to 
unity only if i =j and is zero otherwise. Comparing this 
expansion to the standard Hopfield network energy 
function (4), and noting the double subscript for this N 
Queen formulation, the weights and external biases can 
be read off as: 
 

 
And  Iij = A+B                                                            (7) 
 
In this project we are designing Hopfield network for 
solving 4 – Queen problem. So, the weight matrix order 
becomes 16 × 16 (as N increases the weight matrix order 
becomes N

2 
× N

2
) and the matrix shows the derived 

weight matrix from equation (7) (Figure 6). 
  
(Where i, j, k, l are from 1 to 4 ),  
 
And the bias current, from Equation (7) is, 
 
Iij = 1 + 1 = 2.                
 
Since the parameters A, B, Cand D are taken as unity. 
Therefore 
 

Iij = 2. 
 

Where the negative sign indicates incompatibility 
(inhibition or weak) relationship between the neurons. 
According to the derived weights the connections are 
made. Once the weights are set, the adaptation of 
weights does not exist. Because we are implementing a 
Hopfield network, the interconnection between neurons is 
fixed and dictated by the nature of the constraints in the 
problem. This means that it can be wired into the 
implementation, which is particularly relevant for FPGA 
based machines. This not only reduces the amount of 
interconnection hardware required, but also reduces the 
time spent accumulating the input values to a neuron 
(Chen and du Plessis, 2002). 

After designing the weights, the initial state of each 
neuron is selected randomly, and then the weighted sum 
of each neuron is calculated. Since we are designing the 
digital network, the step function is chosen as the 
nonlinear activation function to decide the state of each 
neuron whether it is fired or not. By applying this  weights 



 
 
 
 
and bias to the network we can get the solution to our (4 
– Queen) problem. But this may not be the optimal 
solution to the problem. That means we may get the local 
minima value, which is the disadvantage in the Hopfield 
neural network. To get the global or optimal solution to 
the problem, we have to eliminate the local minima. The 
techniques to overcome the local minima problem are 
already mentioned. So, by using one of those techniques 
we can eliminate local minima problem. In this project we 
are just designing the Hopfield network for solving 4-
Queen problem and implementing on FPGA. 
 
 

IMPLEMENTATION USING FPGAS 
 

Architecture 
 

There has been much architecture proposed for the 
implementation of neural networks over the years, 
including both digital and analogue circuits (Chen and du 
Plessis, 2002; Silvio, 1992). Most of these have 
concentrated on a hardware implementation of the 
neuron evaluation function, which consists of computing 
number ofmatrix-vector products. Thus, these systems 
involve the parallel and pipelined executions of a number 
of multiply operations together with a reduction sum 
operator. A small amount of work has been focused on 
the training aspects of networks, which can be extremely 
time consuming. 

The work described in this paper differs from general 
neural networks in three important ways. The weights are 
small and can be represented using smallintegers. This 
means that the hardware responsible for the 
accumulation can be optimized for small integer values. 
This not only reduces the size of the arithmeticunits, but 
also reduces the carry propagation delays. 
 

1) The neuron values are restricted to 0 or 1, rather than 
general fixed or floating point numbers.Consequently, the 
vector product becomes a set of conditional additions 
without the need to perform any multiplication operations. 
Multiplier units normally consume large amounts of logic, 
thus the savings hereare dramatic. 
2) Because we are implementing a Hopfield network, the 
interconnection between neurons is fixed and dictated by 
the nature of the constraints in the problem. This means 
that it can be wired into the implementation, which is 
particularly relevant for FPGA based machines. This not 
only reduces the amount of interconnection hardware 
required, but also reduces the time spent accumulating 
the input values to a neuron. 
 

The architecture chosen for this work consists of set of 
neurons, as described by the VHDL code, which are then 
interconnected when the weights are non-zero. Thus, 
neurons which have zero weights between them are not 
connected, limiting the number of inputs to a neuron to 
O(n) instead of O (N²), where N is the number of neurons 
in the system. 
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Whilst the code for each neuron is identical, each one 
is specified with a different Weight-array, and thus the 
hardware generated for each will be slightly different. 
 
 

Implementation 
 

The consequence of the issues discussed in the earlier 
on means that it is possible to implement the neural 
network using FPGA devices. FPGAs, like the Xilinx 
family of parts, consist of a number of configurable logic 
blocks (CLBs) connected using a hierarchical, bus based, 
and wiring scheme. The neurons and their 
interconnections are specified in VHDL, which is 
synthesized and simulated using Xilinx ISE simulator and 
Spartan 3E tools for FPGA mapping and routing. Our 
hardware platform, an FPGA Spartan 3E reconfigurable 
logic board, routes the neuron outputs either to an array 
of LEDs or back to a host work station for display. Since 
all the weights are known at synthesis time, the synthesis 
tool's optimization features are exploited to automatically 
remove any additions involving zero-valued weights. The 
use of VHDL has a number of advantages over 
conventional hardware design techniques like schematic 
capture. 
 
1) Its high level syntax is not very different from 
conventional imperative programming languages, thus 
the design effort is not significantly different from writing a 
software simulation of a neural network. This is an 
important design consideration when considering the 
development cost of application specific hardware. 
2) The VHDL software supports extensive optimizations, 
thus the performance of the underlying hardware is 
optimized for each neuron depending on the weights on 
its inputs. 
3) The VHDL compiler analyses the domain of the 
variables and generates optimal hardware without any 
further user interaction. For example, if the range of a 
variable is limited to the values from0 to 3, then the data 
path used to transmit and manipulate the variable will be 
automatically constrained to 2 bits. 
 
 
PERFORMANCE RESULTS 
 
We have performed experiments using 4, 8, and 16 - 
Queen’s problem. This code resembles the structure of 
the hardware solution. Using Xilinx 9.2i software the 
results are simulated on ISE simulator and implanted on 
FPGA Spartan 3E, xc 3s500e devices. The simulation 
result and the synthesis report is given as Figure 7 and 
the synthesis report is given as Figure 8. 
 
 
Timing summary 
 
Speed Grade: -4 
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Figure 7. Simulation results 

 
 
 

Minimum period: 64.978 ns  
(Maximum Frequency: 15.390 MHz) 
Minimum input arrival time before clock: 5.153 ns 
Maximum output required time after clock: 8.180 ns 
Maximum combinational path delay: No path found 
 
 
Device utilization summary 
 
Selected device: 3s500epq208-4  
Number of slices: 4693 out of 4656; 100% (*) 
Number of slice flip flops: 542 out of 9312; 5% 

Number of 4 input LUTs: 8812 out of 9312; 94%   
Number of IOs: 35 
Number of bonded IOBs: 19 out of 158; 12%   
Number of GCLKs: 1 out of 24; 4%   
 
 
HDL synthesis report 
 
Macro Statistics 
# Adders/Subtractors: 256 
32-bit adder: 256 
# Accumulator: 16 
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Figure 8. Synthesis report. 

 
 
 
32-bit up accumulator: 16 
# Registers: 1 
16-bit register: 1 
# Comparators: 16 
32-bit comparator greater: 16 
 
 

Advanced HDL synthesis 
 

Advanced HDL synthesis report 
Macro statistics 
# Adders/sub tractors: 256 
32-bit adder: 256 
# Accumulators: 16 
32-bit up accumulator: 16 
# Registers: 16 
Flip-flops: 16 
# Comparators: 16 
32-bit comparator greater: 16 

Figures 9 and 10 shows the computational time and 
speed up of the hardware over each of the software 
approaches written in VHDL and C code. 

The results indicate that it is possible to gain between 2 
and 3 orders of magnitude speed up, which is significant. 
The computation time and speed of the network depend 
on the number of iterations and N in N-Queen problem. 
As either number of iterations or N increases, the 
computation time increases and speedup decreases. 

 
 
Conclusions 

 
The aim of this work was to establish whether it was 
possible to achieve a reasonable speed up by 
implementing FPGA based Hopfield neural networks for 
some simple constraint satisfaction problems. The results 
are significant our  initial  implementation  using  standard
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Figure 9. System performance based on computational time. 

 
 

 

 
 
Figure 10. System performance based on speed. 

 
 
 
XilinxFPGAs yielded 2 to 3 orders of magnitude speed up 
over the Sun Blade 2000 workstation comes with 1.2-
GHz version of the 64-bit UltraSPARC III Cu processor. 

The main problem with the work to date is that the 
problems are both unrealistically small and simplistic. 
That is the constraint on the N-Queen problemare simpler 
than those found in many real world scheduling 
applications. Thus, it is not clear whether we will be able 
to optimize the neuron structure for more complex 
problems since the  weights  matrix  may  not  contain  as 

many zero elements. 
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