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A concept for a new turbulence model, which combines the Low-Reynolds-Number (LRN) k–� model 
with a Length Scale Correction (LSC) term is proposed. The present model was developed for solving 
recirculating flow which is an important feature in many engineering applications. The LSC term 
employed here is �–LSC – a new LSC uses the analogy of Yap correction. By integrating the term with 
the conventional LRN k–� model, the turbulent length scale in the near-wall region is reduced which 
subsequently leads to better prediction of separations and reattachments that occur in this area. The 
developed model is validated with benchmark problems (the fully developed channel flow and 
backward-facing step flow) before being applied to the problem of recirculating flow over repeated 
square ribs. Performance of the model is investigated and compared with available experimental data, 
Direct Numerical Simulation (DNS) data and numerical results using other turbulence models. It is seen 
that the model gives superior results especially for the near-wall flow patterns. 
 
Key words: Low-Reynolds-number k–� model, recirculating flows, length scale correction, finite volume 
method  and  BLL model. 

 
 
INTRODUCTION 
 
Turbulence models are widely used for simulating 
complex heat transfer and flow phenomena in many 
engineering applications because of their simplicity and 
effectiveness. The most popular form is the one proposed 
by Launder and Spalding (1972), the so called the 
standard k–ε model (High-Reynolds model, High-Re). 
However, the disadvantage of the standard k–ε model 
with wall functions is the inability to predict accurate near-
wall flow characteristics. The lack of universality of the 
wall functions has been frequently criticized. Inaccuracy 
and numerical stiffness may arise when the wall function 
is employed (Patel et al., 1985). To solve the near-wall 
effect, a number of Low-Reynolds-Number models (LRN 
model) have been developed (Peng and Davidson, 1997). 

The first LRN k–ε model was developed by Jones and 
Launder (1973) and subsequently modified by many 
researchers. To get a better understanding of the near-
wall effect, many LRN models were proposed by 
introducing  the  damping  functions  and other  additional  
terms. Most of LRN models were developed based on the 
High-Re  k–ε model  (Lam  and  Bremhorst,  1981;  Chien,   
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1982; Abe et al., 1994; Chang et al.,1995). However, the 
LRN models shared a weak point with the LRN k–ε model 
which was the uncertainty of ε specification at the wall 
(Peng and Davidson, 1997).  In recent years, some new 
LRN two-equation models have been proposed as 
alternatives to the LRN k–ε models, e.g., the LRN k–τ 
model by Speziale et al. (1992) and  the standard k–� 
model and its LRN variant by Wilcox (1988, 1994). 
The standard k–� model was validated by a case of the 
boundary-layer and free shear flows. Patel and Yoon 
(1995) obtained accurate results using the standard k–� 
model to solve separated flows over rough surfaces. Abid 

(1993) used the k–� model in combination with an 
explicit algebraic stress model for recirculating flows, and 
obtained good agreement with the experiment. Larsson 

(1999) applied the k–� model to predict the turbine blade 
heat transfer and concluded that the k–� model 
performed as well as the k–ε model. Peng et al. (1997) 
modified the damping functions, the model constants of 
Wilcox’s LRN k–� model, and separated specific 
dissipation rate (�) into two parts. After that,    Peng and 
Davidson (1999) implemented the LRN k–� model (Abid, 
1993) by introducing a damping function into the turbulent 
kinetic energy term. Their model was compared with two  
LRN k–ε models and one LRN k–� model. 
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Several concepts were also used to increase model 
accuracy.  Menter (1992) proposed a model to resolve 
the free-stream dependency by blending the standard 
Wilcox model and the standard k–ε model (in a k–� 
formulation). Combining the High-Re k–� model with the 
k–ε model, Menter (1994) developed two new models and 
improved prediction of adverse pressure gradient flows. 
Wang and Mujumdar (2005) applied the Yap correction 
(Yap, 1987) to five versions of LRN k–ε models for the 
prediction of flow characteristics of a two-dimensional 
turbulent slot jet. The predicted results in both stagnation 
and wall jet regions are in good agreement with the 
experimental data. Jia et al. (2007) integrated the 
reformulated SSG model (Spezial et al.,1991) based on 
the �–equation and the SST model (Menter, 1994). The 
new model was called ‘SSG-SST model’. Three cases 
(fully developed channel flow, backward facing step flow 
and impinging jet) were presented to show the 
performance of this model. The obtained result was 
better than the previous one because the new model had 
good applicability for complex flow fields. 

The current work presents a new-concept  turbulence 
model, namely Baseline-Low-Reynolds-Number k–� with 
Length scale correction term (BSL-LRN k–� with LSC 
model, BLL model). The developed model is expected to 
produce more accurate results for separated and 
reattached flows. The concept of the new model is based 
on a combination of accurate formulation of the Wilcox 
LRN k–� model, LSC term in the near-wall region and 
concept of Baseline model. The developed model is 
validated with available experimental data, DNS data and 
numerical results using other turbulence models. 
 
 
MATHEMATIC FORMULATIONS  
 
Governing equations 
 
The Reynolds-averaging principle is applied to the 
Navier-Stokes equations. After performing the averaging, 
the continuity and momentum equations can be shown as 
follows: 
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where jiuu ′′ρ  are the Reynolds stresses ( jiij uuR ′′= ρ ). 
 
 
Turbulence models 
 
In the present work, a new model called BLL model which 
is based on LRN k–ω  with LSC and transformed k–ε , is  

    
 
 
 
proposed. The standard k–ε  model (Launder and 
Spalding, 1992), LRN k–ε   model (Abe et al., 1994), 
High-Re k–ω  model (Wilcox, 1993) and LRN k–ω  model 
(Wilcox, 1994) are employed for results comparison.  

Standard k–ε  model: By using the Boussinesq approxi-
mation, the turbulent kinetic energy and its dissipation 
rate equations can be written as follows: 
 

( ) ( )
ρε

σ
µρρ −+

�
�

�

�

�
�

�

�

∂
∂

∂
∂=

∂
∂

+
∂

∂
k

jk

t

jj

j P
x
k

xx

ku

t
k ,    (3)  

 

( ) ( ) ( )ρεεε
σ
µερρε

εε
ε

21 CPC
kxxx

u

t k
j

t

jj

j −+
�
�

�

�

�
�

�

�

∂
∂

∂
∂=

∂
∂

+
∂

∂ ,        (4)           

 

where ερµ µ
2kCt = is the turbulent viscosity and kP is 

the production of the turbulent energy. For 
incompressible flow, kP  is written  
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The model constants are given by: 
 

µC =� 0.09, kσ  = 1.0, εσ  =1.3, 1εC  = 1.44 and� 2εC = 

1.92� 
 
LRN k–ω  model: Wilcox (1994) used the near-wall con-
cept to develop the LRN k–ω model. This model can be 
expected to show improved results for recirculating flow 
problems. The turbulent kinetic energy and its specific 
dissipation rate equations with the damping functions are 
shown as follows: 
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Where; tµ is the eddy viscosity ( ωρµ µµ kfCt = ) and 

the basic constants and the damping functions for the 
LRN k–ω  model are given as follows: 
 

0.1=µC , 09.0=kc , 56.01 =ωc , 075.02 =ωc , 

0.2=ωσ , 0.2=kσ , 

( ) ( ) 16/Re16/Re025.0 −++= TTf µ , 

( )[ ] ( )[ ] 144 8/Re18/Re287.0
−

++= TTkf , 

( ) ( )[ ] 17.2/Re17.2/Re1.0 −++= µω ff TT , 



 

 
 
 
 
where; � TRe �is the turbulent Reynolds number 

( ωµρ /Re kT = ). 
 
The BLL model: The basic idea of the new model is 
based on a combination of an accurate formulation of the 
Wilcox LRN k–� model and the concept of a Baseline 
model to reduce the sensivity to the freestream (in the 
outer part of the boundary-layer and in free-shear flows). 
In the near-wall region, the Length Scale Correction 
(LSC) term is employed. The equations of the proposed 
model are reformulated by multiplying the LRN k–� 
model with LSC term (Equations 7 and 8) by a function 
(1–Fb) and adding with the multiplication of the 
transformed High-Re k–ε equation (Eqs. (9) and (10)) 
and a function Fb.  Fb is a blending function (a simple 
exponential function is used at the beginning) which 
ensures that the model behaves as a High-Re model 
away from the surface and as the LRN model in the near-
wall region. For the dissipation rate equation (Equation 
10), the cross diffusion term is removed. To compensate 
for the inferior performance of the transformed k–ε , the 
LSC term ( ωS ) is employed. LRN k–� model with LSC 
term 
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Transformed k–ε  model (Jones and Launder, 1973) 
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After rearrangement, the new model can be shown as 
follows: 
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Where; ωρµ µ kft = is the turbulent viscosity and kP is 

the production of the turbulent energy which can be 
expressed as: 
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The model constant is blended by the relation of the 
model constants in the LRN k–� model and the 
transformed k–ε  model. If 1φ represent constants in the 

LRN k–� model ( ...,, 11 kk fσ ), 2φ  represent constants in 

the transformed k–ε  ( ...,, 22 kk fσ ) and φ  represent the 

corresponding constants of the new model ( ...,, kk fσ ), 

the φ  relation can be written as: 
 

( ) 211 φφφ bb FF +−= .                     (13) 
                       
Two sets of model constants are given as follows:  
 
Set 1 (LRN k–�) (Wilcox, 1994)  
 

09.0* =β , ( )[ ] ( )[ ] 144
1 8/Re18/Re278.0

−
++= TTkf , 

5.01 =kσ 56.01 =γ , 

( ) ( )[ ] 1
1 7.2/Re17.2/Re1.0 −++= µω ff TT , 

075.01 =β , 0.21 =ωσ  and 

( ) ( ) 16/Re16/Re025.0 −++= TTfµ � 
 
Set 2 (High k–ε) (Jones and Launder, 1973)    
 

09.0* =β , 0.12 =kf , 

0.12 =kσ , 44.02 =γ , 0.12 =ωf , 

0828.02 =β  and 856.02 =ωσ . 
 
The blending function (Fb) is selected to ensure 
asymptotic consistency with the near-wall behavior of the 
equation of motion. The value of function Fb will be 
designed to be zero in the near-wall region (activating the 
LRN model) and set to unity away from the surface 
(switching to the High-Re model) as shown in Figure 1. 
For the present model, the blending function from the 
LRN two-equation model of Abe et al. (1994) has been 
tentatively adopted, as expressed in Equation 14: 
 

( )( ) ( )( )2200/Re75.0214/* Re511 TeeF T
y

b
−−− +−= ,        (14) 

 

Where; ( ) ννω /* 25.0 yky = and ωµρ /Re kT = . 
 
 
Length scale correction term (LSC term)  
 
The LSC term has been well known for turbulent 
separated flows. Launder (1993) applied the Yap correction 
(Yap, 1987) as an extra term to the ε–equation of LRN k–
ε model. The Yap correction can be written as the ratio of 
the computational length scale to the local equilibrium 
length scale as follows: 
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Figure 1. Blending function Fb versus y+. 

 
 
 

 
 
Wilcox (1993) has shown that an extra cross-diffusion 
term appears in the resultant ε–equation. This term, 
similar to the so-called “Yap correction”, helps sup-
pressing the rate of the near-wall turbulent length scale. 
In the present work, the turbulent length scale 
( ω09.021kLt = ) is applied to the Yap correction con-
cept. A new length scale correction for �–equation (LSC–
�) can be expressed as follows:  
 

 
 

Where; �� is� the near-wall equilibrium length scale 

, yn is the distance from the wall, the 
turbulence scale constant (C) is equal to 

495.275.0 =µκ C , and κ  is the von Kárman constant. 

 
 
NUMERICAL PROCEDURES 
 
The finite volume method (FVM) is used to solve the set 
of governing equations on a staggered grid. To obtain the  

 
 
 
 
solution that couples the pressure and velocity, the 
SIMPLE algorithm (Patankar, 1980) is employed to cal-
culate the pressure correction terms. Then, the resulting 
algebraic equations are iteratively solved with a line-by-
line TDMA procedure. The convection terms are approxi-
mated by the second-order upwind scheme. The hybrid 
differencing scheme is employed in the turbulence-
transport equations to ensure a stable solution procedure. 
The convergence criterion utilized in this work is that the 
maximum normalized sum of the absolute residual 
source for all the computed nodes is less than 10-6. For 
all the investigated cases, the number of sufficiently small 
grids is ensured from the grid-independency tests. 

The inlet boundary values are prescribed for all varia-
bles. At the outlet, the streamwise gradients of the flow 
variables are set to zero. The wall boundary conditions 
are applied: u = v = 0 and k = 0. The use of LRN models 
requires a fine grid to minimize the dependence of the 
solution on the grid. The boundary condition of ω at the 
first grid point in the near-wall region is given as (Wilcox, 
1994): 
 

2
12

6
ycω

νω =  as 01 →y .   (17)  

 
 
RESULTS 
 
The present test cases are selected on the important 
criterion that the near-wall and low-Reynolds number 
effects need to be solved. Evidence of acceptable agree-
ment with the available experimental or DNS data are 
expected. In the present work, calculations have been 
performed for the following test cases; 1) Fully developed 
channel flow by Moser et al. (1999), 2) Flow past 
backward-facing step by Jovic et al. (1994) and 3) Flow 
over repeated square ribs by Drain and Martin (1985). 
 
 
Fully developed channel flow 
 
The results are compared with the existing DNS data 
( τRe = 395) (Moser et al., 1999)  and the predictions 
obtained with other models, including the results of Abe-
Kordoh-Nagano LRN k–ε  model (AKN (Abe et al., 1994) 
and Wilcox’s High-Re k–� model (Wilcox, 1993). The 
distributions of normalized streamwise velocity and 
turbulent kinetic energy compared with DNS data and 
other numerical results are shown in Figures 2 and 3 
respectively. 

For the normalized mean velocity, the proposed model 
and AKN model show reasonable agreement with the 
DNS data, whereas the Wilcox model (High-Re k–�), 
with extended-to-wall method, produces noticeable 
underprediction in the region of  10010 << +y . 

The turbulent kinetic energy  profiles  ( 2
τukk =+ )  are 
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Figure 2. Normalized stream velocity profiles in near-wall region ( τRe = 395). 

 
 
 

 
 

Figure 3. Turbulent kinetic energy profiles in near-wall region ( τRe  = 395). 

 
 
 

 
 

shown in Figure 3. It can be seen that the results from all 
models are in good agreement with the DNS data 
especially for 30>+y . The proposed model gives better 
results than other models at peak interval. 
 
 
Flow past backward-facing step (BFS) 
 
The backward-facing step flow demonstrates complex 
flow phenomena including redeveloping boundary layers 
such as recirculation, separation and reattachment. It is 
typically considered as a suitable test case for turbulence 
model validation. 

The ability of the proposed model is shown through 
simulations for double-sided BFS flows at Reh = 5,000. 
The backward-facing step configuration is symmetric 
about the centerline of the channel. Thus, only half of the 
channel is employed as the computational domain 
(Figure 4). The fully-developed flow profile at the inlet is 
set according to the experimental data of Jovic et al. 

(1994). 
Figure 4 illustrates the geometry of the backward-

facing-step domain (a symmetrically sudden double-sided 
expansion). Following the experimental data of Jovic et al. 
(1994), interest in this flow with the DNS method was 
revived by Le et al. (1997) The  step  height  (h)  on  each 
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Figure 4. Backward facing step configuration. 

 
 
 

 
 

Figure 5. Normalized mean stream wise velocities ( )∞Uu  for BFS flow,  

. 
 
 
 
side is 9.6 mm. The test section length is 12h. The 
Reynolds number based on the reference flow velocity 
and step height ( )νhUh ∞=Re  is 5,000. 

Figure 5 shows model comparisons of the mean 
streamwise velocity (normalized by the reference flow 
velocity ( ∞Uu )) at the locations x/h = 4.0, 6.0, 10.0 and 
15.0, respectively – x = 0.0 is the location of the sudden 
expansion. 

The obtained results can be divided into two regions. In 
the recirculation region, 0.60.0 ≤≤ hx , the proposed 
model presents obviously improved prediction compared 
with those of other turbulence models. In the redeve-
loping region, 0.10≥hx , all models give fair consistency 
with DNS data. The reattachment length parameter (Xr) is 
employed to designate the improved performance  of  the  

turbulence model. The dimensionless reattachment 
length of the primary recirculation (Xr/h) from DNS data is 
6.28 and the results from AKN, Wilcox and the proposed 
models are, Xr/h = 5.7, 7.8 and 6.8, respectively. 

Figure 6 illustrates the normalized turbulent kinetic 
energy profiles ( 2

∞Uk ) at different locations. Better 
prediction can obviously be seen here. In the recirculation 
region (at Xr/h = 4.0 and 6.0), all models underpredict the 
turbulence level. The low level of turbulence implies that 
the recirculation size is large (the proposed model and 
Wilcox model). 

The skin friction coefficient distribution ( ( )22 ∞= UC wf ρτ ) 

is shown in Figure 7. The coefficient in the redeveloping 
zone ( )0.10≥hx  presents some dis-crepancies. The 

overestimated fC  may  arise  from  high level of recovery  
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    Figure 6. Turbulent kinetic energy ( )2

∞Uk  for BFS flow, 

    . 
 
 
 

 
 
Figure 7. Skin friction coefficients for BFS flow, 
  

 
 
 
of the developed turbulent flow in this area. 
 
 
Flow over repeated square ribs 
 
The final test case is the flow over repeated square ribs. 
Cui et al. (2003) used Large Eddy Simulation (LES) to 
study the flow in a two-dimensional channel with ribs, and 
investigated the results of various pitch-to-height ratios. 
Repeated studies were indicated by Miyake et al. (2002), 
Ikeda and Durbin (2002) (using DNS) and Ryu et al. 
(2007)  (using the LRN k–ω model). 

For the unity aspect ratio (channel height-to-width ratio), 
the side-wall effects  can  be  neglected  and  the  flow  is  

considered to be a 2-D simulation. The report of Ooi et  al.  
(1998, 2000) confirms that the numerical method produce 
accurate results. The experimental data from Drain and 
Martin (1985) are used for validating flow over a smooth 
wall with square sectioned ribs (experimental data 
available on URL shown in Drain and Martin (1985)). The 
spanwise square ribs are mounted on the bottom wall of 
a channel as shown in Figure 8. The Reynolds number 
(ReDe = 37,200) is calculated with respect to the bulk 
velocity (Ub) and the hydraulic diameter (De). A 2-D 
Cartesian grid is employed, as shown in Figure 9. To solve 
the near-wall flow problem, fine-grid spacing is applied in 
the region next to the channel walls and rib surfaces. 

Dimensions of the test case are  given  as  follows:  the  
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Figure 8. (a) Computational domain (b) Repeated square ribs 
configuration. 

 
 
 

 
 
Figure 9. (a) Computational domain (b) Repeated square ribs 
configuration. 

 
 
 
size of each rib is 8 × 8 mm, the pitch-to-height ratio (Pi/h) is 
 7.2 and the channel-to-rib height ratio (H/h) is 5.0. The 
inlet and outlet sections are prescribed with periodic 
boundary conditions. 

The normalized streamwise velocity profiles at different 
locations (x/h = 0.0, 3.68, 4.82 and 6.80) are presented in 
Figure 10. It can be seen that the numerical results are in 
satisfactory agreement with the experimental data of 
Drain and Martin (1985) in all region. Some discrepancies 
are found in the region above rib surfaces. Manceau et al. 
(2000) in noting these types of discrepancies, suggested 
that the experiment probably exhibited 3-D effects such 
as counter rotating eddies in the x-direction located 
between the top surface of the ribs and the upper chan-
nel wall. These effects might induce flow acceleration on 
the measurement plane where they converge  and  dece- 

 
 
 
 

 
 
Figure 10. Normalized mean streamwise velocities (u/Ub) for flow 
over repeated square ribs,     

 
 
 
 

 
 
Figure 11. Predicted Streamlines from BLL model 
(ribbed-channel flow at ReDe = 37,200). 

 
 
 
leration where they diverge. 

In the region between two ribs, two recirculation zones 
can be observed. These recirculation regions may be 
merged as illustrated in Figure 11. The experiment re-
ports the reattachment of the ribbed channel flow at 
about 4.32 h, whereas the proposed model gives the 
value of approximately 4.59 h. Thus, the present simu-
lations with the BLL turbulence model indicate a 6.3 % 
overprediction of the reattachment length compared  to 
the experimental result. For High-Re model results, the 
small separated bubbles were observed (not shown here). 

The normalized turbulent shear stress profiles 

 at various locations are plotted as shown in 
Figure 12. The predicted profiles at the location, x/h = 
3.68 and 4.82 are in good agreement. However, at x/h = 
6.80 (rib-top region), the turbulent shear stresses given 
by all models are quit different from the experimental 
results. This discrepancy  may  be  attributed  to  the  3-D 



 

 
 
 
 

 
 

Figure 12. Normalized turbulent shear stress  ( )2
bUuv−  for 

flow over repeated square ribs,      
   . 

 
 
 
effects as found in the case of the velocity distribution 
(Figure 10). 
 
 
Conclusions 
 
In this study, a new-concept turbulence model for recir-
culating flows is presented. The proposed model 
combines new LSC term, �–LSC term, using an analogy 
to the Yap correction to correct the result in the near-wall 
region, and the concept of a Baseline model to reduce 
the sensivity to the freestream. Performance of the model 
is validated by three well-known test cases: fully 
developed channel flow, BFS flow, and flow over 
repeated square ribs. The results are satisfactory for all 
test cases. The prediction reproduces the correct wall-
limiting behaviors of the flow field. However, 
discrepancies exist in some cases (BFS flow and flow in 
ribbed channel) because of the 3-D effects such as 
counter-rotating eddies in the x-direction located between 
the  top  surface  of  the  ribs   and  upper  channel  wall. 

The combined low-Reynolds number k–� model and 
the new LSC term have demonstrated their performance 
for accommodating the near-wall low-Reynolds number 
effect for turbulent recirculating flows. Examples of three 
flows may be found in combustors, heat exchangers, 
electronic circuit cooling systems and complex geometri-
cal features of the cooling passages in gas turbine blades. 
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