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A numerical investigation of heat transfer characteristics of pulsating turbulent flow in a circular tube is 
carried out. The flow is thermally and hydrodynamically fully developed and the tube wall is subjected 
to a uniform heat flux. The flow inlet to the pipe consists of fixed component and pulsating component 
that varies sinusoidally with time. The flow and temperature fields are computed numerically using 
computational fluid dynamics (CFD) Fluent code. Prediction of heat transfer characteristics is 
performed over a range of 10

4 
≤ Re ≤ 4×10

4
 and 0 ≤ ƒ ≤ 70 Hz are observed. Results showed little 

reduction in the mean time-averaged Nusselt number with respect to that of steady flow. However, in 
the fully developed established region, the local Nusselt number either increases or decreases over the 
steady flow-values depending on the frequency parameter. These noticed deviations are rather small in 
magnitude for the computed parameter ranges. The characteristics of heat transfer are qualitatively 
consistent with the available experimental and numerical predictions. 
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INTRODUCTION 
 
The study of pulsating flow in pipe has been a subject of 
interest among many researches. The problem is 
important in biological applications in relation to blood 
flow and in industrial applications related to heat 
exchange efficiency, cavitation in hydraulic pipe lines, 
pressure surges and reciprocating machines. In general, 
pulsating flow filed is assumed to consist of a steady 
poiseuille flow part and purely oscillating part. Many 
experimental, analytical and numerical works studied the 
heat transfer in pulsating laminar flow but little in turbulent 
flow. One of the key issues concerning pulsating 
convection heat transfer in tubes is whether a 
superposed flow pulsation effects on heat transfers in the 
original steady flow. The answer to this question in the 
previous studies can be classified into four different 
opinions: (1) flow pulsation enhances heat transfer 
(Zheng et al., 2004; Xuefeng and Nengli, 2005; Faghri et 
al., 1979); (2) it deteriorates heat transfer (Mostafa, 
2005a, b; Hemeada et al., 2002; Guo and Sung, 1997); 
(3) it has no effect on heat transfer (Chattopadhyay et al., 
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2006); and (4) it either enhances or deteriorates heat 
transfer, depending on flow parameters (Al-Haddad and 
Al-Binally, 1989; Martineelli et al., 1943; Cho and Hyun 
1990; Gbadebo et al., 1999; Gupa et al., 1982; 
Moschandreou  and  Zamir, 1997; Said  et al., 2003; 
Scotti and Piomelli, 2001; Zhao and Cheng, 1998; Zohir 
et al., 2005). 

Numerical study presented by (Xuefeng and Nengli, 
2005) showed that in a pulsating turbulent flow there is 
an optimum Womersley number at which heat transfer is 
maximally enhanced. Experimental studies by (Al-
Haddad and Al-Binally, 1989; Habib et al., 1999; Barid et 
al., 1996; Habbib et al., 2002; Liao and Wang, 1985; 
Martineelli et al., 1943) showed that increment and 
reductions in mean Nusselt number depends on pulsation 
frequency, turbulent bursting frequency, amplitude, axial 
location, Reynolds number and Prandtl number. In order 
to understand these phenomena and to resolve the 
contradictory results, different models of turbulence for 
pulsating flows were considered. Two of these models 
are well known, the quasi-steady flow model (Shemer, 
1985) and the bursting model discussed by (Liao and 
Wang, 1985; Genin et al., 1992; Havemann and Rao, 
1954; Martineelli et al., 1943). 

Due   to   its   complexity,   studies  on  heat  transfer  in 
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Figure 1. Schematic diagram for the studied problem. 
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Figure 2. Variations of inlet velocity. 

 
 
 
work aims to numerically and experimentally investigate 
the characteristics of heat transfer in pulsating pipe flow 
and how it is affected by pulsation frequency as well as 
the value of Reynolds number. 

In the present study, a pipe subjected to a constant 
heat flux from outside is considered. The governing 
equations are solved with the aid of CFD code (Fluent 
6·1, 2003). The obtained numerical results can be served 
as a useful source material against which the outcome of 
future analytical and experimental investigations can be 
checked. 

 
 
MATHEMATICAL FORMULATIONS 
 
Pipe geometry 
 
In the present study, the numerical solution of the 
pulsating turbulent flow through an externally heated pipe 
is analyzed. Air is selected as a working fluid. The radius 
and length of the pipe are R and L respectively. The 
thickness of the pipe is neglected and the thermal 
boundary condition on the pipe wall is assumed to be a 
uniform heat flux. The two-dimensional axisymmetric 
model of the considered pipe is shown in Figure 1. 

The pipe geometry at the inlet is long enough to assure 
a hydrodynamically fully developed flow at the heated 
section   and   simulated   to   the   experiential  facility  of 

 
 
 
 
Huseyin et al. (2005). Since the pipe cross-section is 
circular, it is assumed that the flow is axisymmetric. In 
cylindrical polar coordinates, this means that the flow 
variables depend only on the axial coordinate x and radial 
coordinate r. The pipe wall section is modeled as: 
unheated section of 2.6 m length and a heated one of 
1.16 m long. Sinusoidal pulsating flow is assumed to be 
entering to the pipe of fixed period (the velocity is only 
oscillates) as can be seen in Figure 2. 
 
 
The governing conservation equations 
 
The governing equations for transient turbulent 
incompressible flow and heat transfer in the flow region 
(0 ≤ x ≤ L and 0 ≤ r ≤ R) can be written as follows 
(Huseyin et al., 2005): 
 
Continuity: 
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Momentum in r-direction: 
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Energy: 
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Where   φ    is    viscous    dissipation    term,    which    is 
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and λeff is the effective thermal conductivity, and for 
standard k-ε model, is given by 
 
λeff = λ+ λt                                          (3c) 
 
λt = Cp μt /Prt                                           (3d)  
 
 

Turbulence model 
 
Among the available turbulent models, those based on 
Eddy viscosity are widely applied to the turbulent kinetic 
energy – turbulent energy dissipation rate (k-ε). Two 
additional equations for the standard k-ε turbulence 
model: the turbulence kinetic energy, k, and the 
dissipation rate, ε, are determined using the following 
transport equations, respectively. 
 
k – Equation: 
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Where  
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ε- equation: 
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The turbulent viscosity, μt is computed by combining K - ε 
as follows: 
 

)/( 2   kCt                                       (6) 

 
Where Cμ, C1ε, and C2ε are the model constant; σk and σε 
are turbulent Prandtl numbers for k and ε, respectively. 
These constants have the following default values 
(Launder and Spalding, 2006): σk =1.0, C1ε= 1.44, C2ε= 
1.92, σε =1.3, and Cμ= 0.09, respectively. 
 
 

Heat transfer coefficient and Nusselt number 
 
Due to the unique  characteristics  of  the  pulsating  flow, 
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several heat transfer coefficients have to be carefully 
defined. 

The instantaneous local heat transfer coefficient is 
given by 
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and the local heat transfer coefficient, defined as the 
average of heat transfer coefficient over a cycle, is 
formulated as 
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The instantaneous heat transfer coefficient, defined as 
the average of heat transfer coefficient over the whole 
length of pipe at a given moment, is expressed as 
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Subsequently, several relevant Nusselt numbers are 
rationally introduced. The instantaneous local Nusselt 
number is 
 

K

hD
txNu ),(                                                   (7d) 

 
The overall Nusselt number; Nu is given by 
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To ensure sufficient temporal resolution of the numerical 
solution, five to seven cycles are required to obtain a 
steady periodic solution with an acceptable accuracy. 
 
 
Boundary conditions 
 
The solution domain of the considered 2D, axisymmetric 
pipe flow is geometrically quite simple, which is a 
rectangle on the x-r plane, enclosed by the inlet, outlet, 
symmetry and wall boundaries. On walls no-slip condition 
are assumed for the momentum equations. The inlet 
velocity values have been derived from given Reynolds 
numbers. Inaccuracies due to an uncertainty in the shape 
of the inlet velocity profiles are not expected to play an 
important role, since all calculations were carried out at 
places   sufficiently  downstream  from  the  inlet,  so  that 
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quite fully-developed conditions should be expected at 
the calculating section. For pulsating cases, the inlet 
velocity is varied with time. The outlet boundary condition 
is called "outflow", which implies zero-gradient condition 
at the outlet. 
 
At the pipe inlet, (x=0): 
 
For steady flow condition, U (t) = Uin, and for 

0




x

 sinusoidal pulsating flow, U (t) = Um+ UA sin (ωt) 

 
At the pipe exit plane, (x = L): 
 

At the pipe axis, (r = 0): 0




r

  

 
At the pipe wall, (r = R): (u, v k, ε) = 0, a uniform heat flux 
is imposed, q" = qο for heated section and q" = 0 for the 
adiabatic wall. 

Values of k and ε are not known at the inlet, but, if they 
are not given by experimental data, some reasonable 
assumptions can be made. The kinetic energy of 
turbulence according to a certain value of the square of 
the average inlet velocity is expressed by Launder and 
Spalding (2006) as 
 
k=0.03 Uin

2
 

 
In addition, dissipation is calculated according to the 
equation 
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Simulation values 
 
In the analysis, the following simulation values are taken 
as: 
 
Uin = (12.7 to 42.8) m/s, Um =11.07 m/s, UA = (1.63 to 
31.81) m/s, ω = (41.9 to 427.25) rad/s, and q = 922 
W/m

2
. 

 

 
COMPUTATIONAL PROCEDURE 

 
Calculation tools 
 
Even the difficult general differential equations now yield to the 
approximating technique known as numerical analysis, whereby the 
derivates are simulated by algebraic relations between a finite 
numbers of grid points in the flow field which are then solved on a 
digital computer. A suitable CFD computer code is used to solve the 
governing equations numerically along with the boundary and the 
initial conditions. The CFD program is a process by which the fluid 
flow characteristics can be predicted through arbitrary geometries 
giving such information as:  flow  speed,  pressure,  residence  time, 

 
 
 
 
flow patterns, etc. The Fluent 6·1 (Fluent, 2003) program is chosen 
as the CFD computer code for this work because of the ease with 
which the analysis model can be created, and because the software 
allows users to modify the code for special analysis conditions 
through the use of user subroutines. The Fluent computer code 
uses a finite-volume procedure to solve the governing equations of 
fluid flow in primitive variables such as velocity components in axial 
and radial directions and pressure. A variety of turbulence models 
is offered by the Fluent computer code. The standard k–ε model 
was used as a turbulence model in this study. This model is a semi-
empirical one, based on model transport equations for the turbulent 
kinetic energy (k) and its dissipation rate (ε). The model transport 
equation for k is derived from the exact equation while the model 

transport equation for ε is obtained using physical reasoning and 
bears little resemblance to its mathematically exact counterpart. In 
the derivation of the k–ε model, it was assumed that the flow is fully 
turbulent, and the effects of molecular viscosity are negligible. The 
standard k–ε model is, therefore, valid only for fully turbulent flows. 
A detailed description of turbulence models and its applications to 
turbulence can be found in "Fluent (2003) (Launder and Spalding, 
2006). In the case of the standard k–ε models, two additional 
transport equations, (for the turbulent kinetic energy and the 

turbulence dissipation rate) are solved, and turbulent viscosity, µt, is 
computed as a function of k and ε. The solution method for this 
study is axisymmetric. In order to define the pulsating inlet velocities 
in all cases, a UDF (User-Defined Function) file was introduced to 
the prepared fluent case file. By using the results of the calculations 
performed with the fluent code. This program, written in FORTRAN 
77 language, calculates numerically the local and average Nusselt 
number. 
 

 
Grid size 

 
Grid-independent tests were carried out to ensure grid 
independence of the calculated results; consequently, the grid size 
and the grid orientation giving grid independent results were 
selected, and thus a total cell number of 45000 cells (300 × 150) 
were adopted. The grid points are clustered in the radial direction 

so that the finer spacing is formed near the wall and at the inlet. 
Figure 3 shows the grid. 
 
 
RESULTS AND DISCUSSION 
 
Steady flow 
 
To validate the numerical calculations, the computational 
results for the fully developed steady turbulent pipe flow 
are compared with the experimental data observed in 
(Elshafei et al., 2006). For two different values of 
Reynolds number, the numerical results are in consistent 
with the experimental results; within about ±5% as can be 
noticed in Figure 4. The flow was observed to be 
thermally fully developed for X/D ≥ 20. 
 
 
Pulsating flow 
 
In the present work, investigations are performed within 
the ranges of 10

4 
≤ Re ≤ 4 × 10

4
, and 0 ≤ ƒ ≤ 70 Hz. 

The effect of pulsating frequency on the local time 
average Nusselt number at fixed Reynolds number of 
16.8 × 10

3
 is shown in Figure 5. It  can  be  seen  that,  as 
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Figure 3. Computational grid for pipe. 
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Figure 4. Variation of local Nusselt number at different Reynolds 

number. 

 
 
 
the axial location moves downstream, the time average 
local Nusselt number for both pulsating and steady flows 
decays rapidly from a very large value near the entrance 
and the axial decrease becomes less step in the bulk of 
the pipe soon after leaving this entrance region. 

The variation of the time averaged local Nusselt 
number for pulsating turbulent air flow exhibits a similar 
trend to that of the steady air flow case, but generally with 
lower values than that of the steady flow for f < 61.13 Hz. 
The maximum reduction of about 6% in the local Nusselt 
number was predicted in the thermal entrance region. For 
f ≥ 61.13 Hz, little enhancement in the local time average 
Nusselt number of about 8% for X/D ≥ 50 was detected. 

Figure 6 illustrates the variation of the ratio of the local 
Nusselt number value for pulsating flow to that of the 
steady flow value; η with the axial distance at Re = 22.5 × 
10

3
 . For f ≤ 39.3 Hz, it can be observed from Figure 6a 

that the ratio η starts rising rapidly in the entrance zone of 
the thermally developed region (X/D<20) and becomes 
nearly fixed below unity where its value in the bulk of the 
pipe soon after leaving the entrance length (X/D≥20) 
implies that the effect of pulsation on the local heat 
transfer diminishes. 

For f ≥ 42.5 Hz, the value of η close to the end of the 
pipe enhanced by about 4% as shown in Figure 6b. 
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Figure 5. Distrbution of Nux at different frequency, Re=16800. 

 
 
 

The impacts of other relevant parameters on heat 
transfer are illustrated in Figure 7a and b. The detected 
values of η due to the variation of pulsation frequency is 
at higher value of Reynolds number (Re = 31.6 × 10

3
). At 

lower frequency (ƒ ≤ 39.3 Hz), a small change in heat 
transfer ratio is visible near the entrance region. At 
ƒ=13.3 Hz, a rapid increases in η can be observed up to 
X/D =20, after which it seems to be unchanged and 
generally, the value of η is less than unity. The same 
trends can be seen for ƒ = 28.3 Hz and ƒ = 39.3 Hz. 
However, in the downstream region the value of η 
reaches about unity. 

The effect of changing pulsation frequency on the ratio 
η seems to be negligible specially, for higher values of 
pulsation frequency as can be noticed in Figure 7b. 

At high values of Reynolds number; Re ≥ 37 × 10
3
, 

certain qualitative trends can be shown in Figure 8a and 
b, which are similar to those described in the previous 
figures. For all studied values of pulsation frequency, the 
values of the ratio η are always less than unity. 
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Figure 6. Distrbution of η at different frequency, Re=22500. 
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Figure 7. Distribution of η x at different frequency, Re=31600. 

 
 
 

This global behavior of pulsating flow is consistent with 
the analytical and numerical results  of  (Mostafa,  2005b; 
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Figure 8. Distribution of η at different frequency, Re=37000. 

 
 
 

Chattopadhyay et al., 2006; Lee et al., 1998; Shemer, 
1985; Kim et al., 1993; Jie-Chang et al., 2004; Elshafei et 
al., 2006). The overall patterns of η curves are 
qualitatively similar as discussed earlier. 
 
 

Number and pulsation frequency 
 
The third set of results pertains to the effect of the 
Reynolds number on the relative mean time- averaged 
Nusselt; ηm in case of pulsating flow in pipes. The 
calculated data for ηm versus Re are described in Figure 
9a and b. In the range of pulsating frequency; ƒ ≤ 39.3 
Hz, it is found that Reynolds number strongly affects the 
heat transfer ratio; ηm when Reynolds number is relatively 
low; Re < 25 × 10

3
 as can be noticed in Figure 9a. The 

heat transfer ratio sharply increases with Reynolds 
number up to nearly unity. However, when Reynolds 
number exceeds this value, the effect of increasing 
Reynolds number diminishes and the value of ηm remains 
nearly constant. It is also noticed that the variation of the 
imposed pulsating frequency has a relatively small effect 
on ηm. These computed results are in consistent with that 
reported in (Xuefeng and Nengli, 2005). 

For higher pulsation frequency; ƒ ≥ 42.5 Hz, the value 
of the ratio ηm increases also with the increase of 
Reynolds number. As ηm reaches to its peak value at Re 
≈ 22.5 × 10

3
, it then smoothly decreases with increasing 

Reynolds number up to 33 × 10
3
 where ηm value is held 

nearly constant for higher values of Reynolds number  as 
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Figure 9. Heat transfer ratio for different Reynolds. 

 
 
 
can be noticed in Figure 9b. 

The behavior of Nusselt number corresponding to the 
variation in both Reynolds number and pulsation 
frequency can also be explained in view of the bursting 
phenomena (Liao and Wang, 1985; Genin et al., 1992). 
The bursting model defines certain regions on frequency-
Reynolds number plane, where, the bursting frequency 
can be dependent or independent of the pulsation 
frequency. 

The present results showed that the heat transfer 
coefficient may be increased or decreased with the 
change of both Reynolds number and frequency. The 
mean bursting frequency may be subdued to the 
pulsation frequency leading to the occurring of resonance 
that is dependent only on the pulsation frequency. 
Accordingly, the heat transfer process is expected to be 
affected resulting in either reduction or enhancement in 
the rate of heat transfer. These results are consistent with 
those reported by Habbib et al. (2004), and Liao and 
Wang (1985). 

A comparison between the present numerical results 
with the experimental ones [32] over a ranges of 16 × 10

3
 

< Re< 38 × 10
3
 and 6.67 ≤ ƒ ≤ 68 Hz are described in 

Figure 10. The data are presented in the form of ηm as a 
function of bursting frequency ω

*
. It can be observed that 

for all values of Reynolds number, the numerical 
predictions of ηm as a function of ω

* 
have the same

 
trend 

as those for the experimental data. The discrepancies 
between the experimental data and the computed ones at 
low bursting turbulent frequency are of about 10%. As  ω

*
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Figure 10. Comparison of the experimental data with numerical 

data at different (ω*). 

 
 
 
increases, the computed results closes to the 
experimental ones, specially, at higher value of Reynolds 
number. 

In summary, the present elaborated numerical results 
for heat transfer characteristics of turbulent pulsating flow 
are useful. It can serve as a source of materials against 
which further analytical data may be checked for 
consistency. 
 
 
Conclusion 
 
Simulation was performed to describe heat transfer in 
pulsating turbulent air flow in a pipe using CFD code. The 
simulation results on the fully developed pulsating 
turbulent flow and heat transfer are compared with the 
available experimental data. The findings suggest that 
the heat transfer augmentation in the established flow 
regions   takes    place   only    for   a    certain   band    of 
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frequencies. For extreme low and high frequencies, heat 
transfer is actually reduced below that of steady flow. The 
following may be concluded from this study: 
 
i) At all values of pulsation frequency, the variations in the 
local time-averaged Nusselt number exhibit similar trends 
to the steady flows. 
ii) The local time-averaged Nusselt number either 
increases or decreases than steady flow values 
depending on the frequency and Reynolds number. 
iii) Frequency has little effect on the values of mean time-
averaged Nusselt number especially at higher values of 
pulsation frequency. 
iv) The presence of any pulsation frequency has a 
notable effect on the heat transfer coefficient in 
comparison with that of steady flow, even at a very small 
value of pulsation frequency. However, the change of the 
value of pulsation frequency has relativity small effect on 
the heat transfer rates. 
v) No increase in the mean time averaged-Nusselt 
number for frequency f ≤39.34 Hz. For f ≥ 42.5 Hz, little 
increase in time averaged-Nusselt number is detected at 
Re ≈ 22.5 × 10

3
. 

 
 

Nomenclature 
 
Cp:            Specific heat at constant pressure (J/Kg K) 
C1, C2, Cμ: Empirical constant of k-ε model. 
D:             Diameter of pipe (m) 
G:             The production of turbulent kinetic energy 
                 (Kg/m s

3
)  

h(x,t):      Instantaneous local heat transfer coefficient 
                 (W/m

2 
K) 

h(t):           Instantaneous heat transfer coefficient which 
                  is the average of heat transfer coefficient over 
                 the whole length of pipe at given moment 
                 (W/m

2 
K) 

h(x):          Local heat transfer coefficient which is the 
                 average of heat transfer coefficient over a 
                 cycle (W/m

2 
k). 

p:      Pressure (Pa)  
K:      Thermal conductivity (W/m K) 
k:      Turbulent kinetic energy (m

2
/s

2
) 

L:      Length of pipe (m) 
Nu:      Overall Nusselt number 
Nu t:        Instantaneous Nusselt number 
Nu x:        Local Nusselt number 
Pr:      Prandtl number (υ/α) 
q:      Heat flux per unit area (W/m

2
) 

r:      Radial coordinate (m) 
R:      Radius of pipe (m) 
Re:      Reynolds number (UD/υ) 
Tav:        Average bulk temperature along cross- 
                 sectional area of the pipe (°C) 
Tin:        Inlet temperature of the pipe (°C) 
Uin        Average of mean velocity at x=0 (m/s) 
                 Uin =Um+ UA 

 
 
 
 
Um:  Mean velocity of pulsating component, (m/s) 
UA:   Amplitude velocity of pulsating component, (m/s) 
UDF:  User defied function 
u:  Velocity component in the axial direction (m/s) 
v:  Velocity component in the radial direction (m/s) 
x:  Axial distance(m) 
t:  Time (s). 
 
 
Greek symbols 
 
α: Thermal diffusivity of fluid K/ρCp (m

2
/s) 

ε: Turbulent energy dissipation rate (W/kg) 
φ: Viscous dissipation 
μ: Dynamic viscosity (kg/m s) 
μt: Eddy (or turbulent) viscosity (kg/m s) 
υ: Kinematics viscosity (m

2
/s) 

ρ: Density (Kg/m
3
) 

σk: Turbulent Prandtl number for k 
σT: Turbulent Prandtl number for T 
σε: Turbulent Prandtl number for ε 
ω: Angular frequency (1/s) 
ω*:  Dimensionless frequency; (ω D/U

*
), U* is the 

            fraction velocity described as U* =0.199 Um 
            /Re

-0.125 

η: Relative local Nusselt number = (Nupx/Nusx). 
 
 
Subscripts 
 
s: Steady state 
p: Pulsation 
m: Mean. 
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