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Compared with non-auxetic materials, auxetic materials have special and desirable mechanical 
properties. For example, if the material has a crack, when it is being pulled apart, it expands and closes 
up the crack. In other words, this type of material has more crack resistance to fracture. Also, it has 
high material resistance to shear strain. Shear resistance is particularly important in structural 
components such as sheets or beams in buildings, cars and aircraft. In the present paper strain energy 
density, temperature variation, thermal stresses and total stresses in an infinite plate of auxetic material 
with a line crack, subjected to the mechanical and thermal loading in the context of thermo elastic 
theory are studied. 
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INTRODUCTION 
 
Materials with negative Poisson’s ratio characterized as 
auxetic materials have been of significant scientific 
interest and also have considerable practical 
applications. A number of potential applications of the 
auxetic behavior for the design of innovative materials 
and structural elements or for new processing techniques 
have been outlined in the engineering literature. The 
importance of using cork, which is a material with nearly 
zero Poisson’s ratio, for sealing wine bottles, is well 
known. Another class of applications is based on the 
sound-absorbing properties of auxetic materials, which 
make them interesting for both civil and military 
applications. Furthermore, several authors speculate 
auxetic behaviour in biomechanics (for example, for the 
spongy part of the bones), with obvious implications for 
the efficient design of prostheses. Recently, European 
patents have proposed annuplastry prostheses that 
provide plastic repair of a cardiac valve.             
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behaviour for the design of innovative materials and 
structural elements or new processing techniques have 
been outlined in the engineering literature. Lam et al. 
(1992) studied the perturbation effects caused by the 
presence of a crack on thermal stresses, displacements 
and stress intensity factors in an isotropic linear elastic 
medium with varying crack surface heat conductivity 
under uniform heat flow. Minguez (1993) analyzed elastic 
behavior and some fracture mechanics concepts, such as 
the geometry factor and the fracture toughness of an 
infinite plate and a finite plate with a central crack. Shindo 
et al. (1998) analyzed the scattering of time harmonic 
flexural waves by a thorough crack in a symmetric piezo-
electric laminated plate subjected to electric field loading 
in the context of dynamic theory of linear piezoelectricity. 

The transient thermal conduction problem of a finite 
plate with multiple insulated cracks and a dynamic 
problem for two equal rectangular cracks in an infinite 
elastic plate are studied by Chang and Ma (2001) and 
Itou (2002) respectively. Coker et al. (2003) presented 
experimental and numerical results for a dynamic crack 
growth along the interface of a fiber-reinforced polymer 
composite-Homalite bimaterial subjected to impact shear 
loading. A periodic group crack problems in an infinite 
plate is studied by Chen and Lin, (2005) while Yetmet 
and Gecit (2005) investigated normal and shearing stress 
distributions  and  the stress intensity factors at the edges  
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Figure 1. The geometry of the problem. 

 
 
 
of the crack and at the corners of the finite strip. 
Ayatollahi and Aliniaziazi (2006) investigated the effect of 
the load applied parallel to the crack (or the lateral load) 
in prestressed square plate containing a center crack. Wu 
(2006) evaluated stress intensity factor distribution for a 
surface crack under Mode-I loading conditions. An exact 
closed-form stress intensity factor solutions have been 
developed through-thickness cracks in an infinite plate by 
Lee-Tan et al. (2007) and Feng and Su (2007) obtained 
solution for the dynamic anti-plane problem for a 
functionally graded magneto-electro-elastic plate 
containing an internal or an edge crack parallel to the 
graded direction. De Matos and Nowell (2008) presented 
three-dimensional finite element analyses of a plate with 
a central crack to investigate the effect of corner point 
singularities. Bogdan (2009) studied a problem of a thin 
plate made of a piezoelectric ceramic material containing 
a crack perpendicular to its surfaces. Also, Guo et al. 
(2009) obtained an analytical solution for an eccentric 
crack loaded by shear forces in a finite width plate using 
crack line analysis method. 

There are two basic ways in which a volume element 
can store energy, by dialation which is associated with 
change in volume and distortion which is associated with 
the change in shape. When an element of the material 
exceeds a certain energy threshold fracture could occur. 
Auxetic   materials   possess  more   crack   resistance  to 

fracture. Thus, if this type of material has a crack, when it 
is being pulled apart, it expands and closes up the crack. 
In this paper strain energy density, temperature variation, 
thermal stresses and total stresses in an infinite plate of 
auxetic material with a line crack, subjected to the 
mechanical and thermal loading in the context of thermo 
elastic theory is studied.             
 
 
MODEL AND METHODS 
 
An analytical solution is obtained under the boundary 
condition that the constant temperature is retained on the 
crack surfaces while the remote uniform heat flow is 
applied. For this purpose an infinite plate with a central 
crack of length , is considered and a uniform heat flow 
and the uniform tensile stress ∞σ  is applied at infinity. 
There is an angle between the directions of heat flow and 
crack line. The heat flow vector can be resolved into two 
parts, respectively, along two co-ordinate axis. Two 
temperature gradient components along two co-ordinate 

axis at infinity are denoted by ∞Θ
1,

 and ∞Θ
2, and the heat 

flow is proportional to the negative temperature gradient. 
The geometry of the problem is shown in Figure 1. 

In this case thermal loading only induces the modeI 
stress  intensity  factor.  The  heat  flow  along the vertical  
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direction has no influence on the thermal stress intensity 
factor. The problem is typical modeI crack problem. 
There is no heat source in the plate, thus governing 
differential equation in this case is: 
 

02 =Θ∇             (1)             
 
Assume that the temperature on the upper and lower 
surfaces of the crack remains constant 
 

,0Θ=Θ=Θ −+
LL  on L.      (2) 

 
The symbol “L” denotes the crack and “+” and “-” stand 
for, respectively, the upper and lower crack surfaces.         
is the constant temperature on the upper and lower crack 
surfaces. Further, the full field temperature solution is 
given by Tang (2009): 
 

( ) 02,
2222

1, 22
1 Θ+−Θ−�

�
�

�
�
� −+−Θ=Θ ∞∞ zzazaz

ι                                         

                                                                               (3) 
 
and the asymptotic solution of the temperature near the 
crack tip is expressed as 
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Where, R is the distance from the crack tip,  and  are 
complex conjugate.  

Also, the asymptotic solution of the thermal stresses 
and the expression of the stress intensity factor are: 
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Where, ,  and  are linear expansion  
 
coefficient, Young’s modulus, Poisson’s ratio and stress 
intensity factor,  respectively. The  superscript   denotes  

 
 
 
 
the thermal effect. As this problem is a typical crack 
problem of mode I, the stress intensity factor is only 
related to the heat flow along - direction. The heat flow 
along - direction does not produce thermal stresses. 
Further under the combination of thermal and mechanical 
loading, the asymptotic solution of total stress field in the 
vicinity of crack tip is:  
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Where,  total stress intensity factor is the sum of the 
mechanical and thermal parts,  and  are the polar 
coordinates measured from the crack tip as shown in 
Figure 1. The term  in equation (13) is nonsingular 
because the temperature field is nonsingular at the crack 
tip in view of equations (3)-(4). It can be omitted.         
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Equation (14) indicate that the temperature gradient  
can be regarded as an equivalently applied stress at 

infinity denoted by   which is written as 
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Therefore, the total applied stress at infinity is equal to 
 

∞
Θ

∞ += σσσ                         (16) 
 

Where,  is the mechanical part and  is the thermal 
part. Bodies having large volume to surface ratio 
dissipate more energy by dilatation in contrast to 
distortion. The dominance of dilatation tends to exhibit 
brittle behavior. As the volume to surface ratio is de-
creased, energy dissipation via distortion would overtake 
that of dilatation and a unit volume of the same material 
become more ductile. The ductile-brittle transition 
depends on the material microstructure, specimen shape  
and size, temperature and rate of deformation.  

Regardless  of  nonlinearity,   the  proportion  of energy  
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Table 1. Material properties. 
 

Material parameter Copper foam Steel alloy 
E, Young’s modulus 30 (GPa) 200GPa 
Linear thermal expansion α 0.55×10-6 (1/0C) 12.94 × 10-6 (1/0C) 
Poisson’s ratio -0.7 0.33 

 
 
 
expanded by dilatation and distortion can be assessed 
from the stationary values of the energy density function. 
The strain energy density criterion can be applied to 
predict the crack initiation and extension in isotropic 
materials. Making use of the stress and strain 

components and  the strain energy density given by 
Carloni and Nobile, 2008: 
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Further, for linear elasticity the above equation is 
expressed as 
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Constitutive relation of linear thermoelasticity is 
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Where, Θ stands for the temperature to the reference 
temperature. The expressions obtained (see Appendix I) 
for strain energy density, dialation part and distortional 
part of strain energy density are as follows: 
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In the linear elastic fracture mechanics theory, the strain 

energy density factor S is defined as 
1r
S

dV
dW =  

And the strain energy density factor S is in form of 
(Appendix I) 

( ) ( )2
1,221,12

2
11 2 ∞∞∞∞ Θ+Θ+= AAAS σσ                         (22)  

 
( )( )( )

E
a

A
8

cos43cos11
11

θνθν −−++
=                   (23) 

  

( )( )( )
( )ν

αθνθν
−

−−++=
132

cos43cos11 2

12
a

A                     (24)  

  

( )( )( )
( )ν

αθνθν
−

−−++=
132

cos43cos11 32

22
Ea

A                (25)                                                 

 
 
RESULTS AND CONCLUDING REMARKS  
 
The problem of an infinite plate with a central crack 
subjected to the remote uniform heat flow along any 
direction has been solved by the complex function 
method. To study the auxetic behavior of an infinite plate 
with a central crack of length 2a the results for tempera-
ture variation, stress field, strain energy distribution-the 
dilatational and distortional part of strain energy function 
and strain energy factor are obtained and are shown 
graphically. The copper foam and steel alloy are the 
material chosen to perform the numerical calculations 
and the material parameters are given in Table 1. The 
temperature gradient components along two co-ordinate 

axis at infinite are taken as ∞Θ
2,  =100K/m= ∞Θ

2,  , 

constant temperature Ko 100=Θ , mma 10=  and the 

uniform tensile stress applied at infinite,

 

∞σ  =10MPa . 

The temperature variation versus angle  (radians) in the 

crack region due to non-dimensional distance, 
a
r

r 1= , is 

illustrated in Figure 2. By the combination of mechanical 
and thermal loading the total stress field in the 
neighborhood of crack tip is shown in Figures 3 to 6 and 
symmetrical behavior is observed. It is noticed that for the 
stress component  in Figure 6, the pattern of curves is 
the same as in the case of temperature distribution but in 
opposite direction. 

The contours of strain energy density, distortional part  
and dilatational part of strain energy  density  are  shown  in  
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Figure 2. Temperature variation near the crack due to normalized distance. 
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Figure 3.  Stress component , near crack tip. 
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Figure 4. Stress component , near crack tip. 
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Figure 5. Stress component , near crack tip. 
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Figure 6. Stress component , near crack tip. 
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Figure 7a. Strain energy density crack tip. 
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Figure 7b. Strain energy density (dilatational) near crack tip.  
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Figure 7c. Strain energy density (distortional) near crack tip. 

 
 
 

 
 
Figure 8. Comparison of strain energy density factor, S. 
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The comparison of strain energy factors S for non- 
auxetic and auxetic material is shown in Figure 8. It is 
observed that maximum value of S occurs at angle,  
in the case of auxetic material and the local minimum 
value of S in the case of non-auxetic material. It is clear 
when compared with non-auxetic materials that auxetic 
materials have almost twice crack resistance to fracture.         
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Appendix 1 
 
By making use of equations (17) - (18) we have obtained 
following equation: 
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Upon using equation (13), above equation takes the form 
for plane strain 
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Equation (1) can also written as  
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Where,  
3
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σσ =  and 
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εε =  are hydrostatic stress 

and strain; ijs
and ijε

are deviatoric stress and strain.        
The dilatational part and distortional part of strain energy 
density are: 
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By application of equation (18) in equations (4)-(5) we 
get: 
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