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Detecting uterine electromyography (EMG) signals can yield a promising approach to determine and 
take actions to prevent preterm deliveries. This paper objective is to predict this risk using such uterine 
signals. Previous classification studies have used only linear signal processing which depends on the 
spectral characteristics of the uterine EMG signals that did not give clinically acceptable results. On the 
other hand some studies have made linear and non-linear analysis for the signals and have found that 
the non-linear parameters can distinguish the preterm delivery in better way than the linear parameters. 
In this research, two methods will be taken; the first method is to take some linear parameters to a 
suitable neural network and the second one is to take some non-linear parameters to the same network. 
Then, the two results are compared by calculating parameters False Positive Rate, False Negative Rate, 
True Positive Rate, True Negative Rate and Accuracy to evaluate the classification performance. 
Besides, a linear parameter, discrete cosine transform, which depends on the spectral characteristics 
of the signals, is taken as an additional feature to the same network so the research will have a third 
method to illustrate the difference between the traditional previous classification method and the 
proposed ones. Applying the second method gives better results than the first and the third methods. 
The paper can propose a method depends on the uterine EMG nonlinearity which gives best results to 
detect preterm delivery compared with those used in previous studies. 
  
Key words: Uterine electromyography (EMG) signals, term-preterm deliveries prediction, neural network 
performance evaluation, discrete cosine transform. 

 
 
INTRODUCTION 
 
A most urgent challenge in healthcare currently is the 
phenomenon of preterm labor, or labor prior to 37 
completed weeks of gestation. Preterm labor leaves 
serious impacts on economy and society as a whole. The 
complications of preterm birth include significant 
neurological, mental, behavioral and pulmonary problems 
in later child’s life (Diab et al., 2010). So any promising 

technique that could improve the chances of preterm birth 
prediction is required. Analysis of uterine 
electromyography (EMG), termed as electrohysterogram 
(EHG), records is one such technique. 

Uterine EMG has been the subject of research for 
many years from 1950. The uterine EMG has been 
proved to be of interest for pregnancy and parturition  
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monitoring (Diab et al., 2007). Uterine EMG classification, 
in previous researches, depends on the spectral 
characteristics of EMG activity. Wavelet transform is a 
tool that has been used to describe the uterine EMG 
activity and Power Spectral Density (Diab et al., 2007) as 
well as the Wavelet Packet Transform (Moslem et al., 
2012). Most of the used signal-processing techniques 
were linear which rely on the changes in the frequency 
power spectrum of the uterine activity and included the 
following: the peak frequency of the power spectrum 
(Garfield et al., 2005); the burst energy levels (Maul et al., 
2004); the mean power frequency (Hassan et al., 2010), 
the use of the peak frequency, the duration and number 
of bursts, the means and deviations of the frequency 
spectrum (Maner and Garfield, 2007); and the 
approaches of analyzing contractions using multiple 
techniques such as the kurtosis and skewness 
coefficient. Other approaches included calculating the 
root mean square of the signals and the median 
frequency of the power spectrum and the autocorrelation 
zero-crossing (Fele-Žorž et al., 2008). 

It is known that the underlying physiological 
mechanisms of biological systems are non-linear 
processes (Akay, 2001). As the uterus is composed of 
billions of intricately interconnected cells whose 
responses are non-linear, it may be regarded as a 
complex, non-linear dynamic system. To analyze the 
outputs of such a system, non-linear signal processing 
techniques are applicable. Therefore, one can 
hypothesize that non-linear signal processing techniques 
may yield better results in analysis of the EHG than linear 
ones (Naeem et al., 2013). These techniques included 
time reversibility and approximate entropy (Hassan et al., 
2010), another research estimated Max-Lyapunov 
exponent, correlation dimension and sample entropy 
(Fele-Žorž et al., 2008). 

In this research, a combination between most of these 
previous techniques is done as some of the linear 
techniques and some of non-linear techniques are used 
in order to estimate their ability to recognize uterine EMG 
records of term and preterm deliveries using artificial 
neural networks ANNs. 

The following linear features are chosen: the mean 
power frequency, the root mean square, the peak and 
median frequencies of the power spectrum and the 
autocorrelation zero-crossing and taking them into a 
suitable ANN to calculate the classifier parameters; while 
the non-linear features are: time reversibility, approximate 
entropy, the  Max-Lyapunov exponent, the correlation 
dimension, phase space reconstruction based on the 
derivatives  approach and singular spectrum analysis, 
adjusted amplitude Fourier transform and the sample 
entropy of the signal and also taking them into the same 
ANN to calculate the classifier parameters. Finally, 
compare the results to estimate the ability of linear and 
non-linear techniques to differentiate uterine EMG 
records of term and  preterm  deliveries.  It  is  expectable 

 
 
 
 
that the classification method depends on the nonlinear 
uterine EMG features gives better results. 

In addition that, using a linear parameter discrete 
cosine transform (DCT) which depends on the spectral 
characteristics and the frequency contents of the uterine 
EMG signals and is taken as an additional linear feature 
to the same ANN to illustrate the difference between the 
traditional previous classification method and the 
proposed ones. The results show that this method is 
better than the linear method but the non-linear one is still 
the best. 
 
 
MATERIALS AND METHODS 

 
Database description 

 
This research uses Term Preterm ElectroHysteroGram Data Base 
(TPEHG DB). The records were obtained during regular check-ups 
either around the 22

nd
 week or around the 32

nd
 week of gestation at 

the University Medical Centre Ljubljana, Department of Obstetrics 
and Gynecology, Slovenia

 
(PhysioBank database Website [Online], 

2011) and used for studies by Ivan Verdenik (Fele-Žorž et al., 
2008). The DB used contains 300 uterine EMG records of which: 
 
(i)  262 records were obtained where delivery was on term  
(ii)  143 before the 26

th
 week of gestation.  

(iii)  119 during-after the 26
th
 week of gestation. 

(iv)  -38 records were obtained during pregnancies which ended 

prematurely 
(v)  19 before the 26

th
 week of gestation. 

(vi) 19 during-after the 26
th
 week of gestation. 

 
Each record is composed of three channels, recorded from four 
electrodes as shown in Figure 1. The differences in the electrical 
potentials of the electrodes produced three channels: S1 = E2–E1, 
S2 = E2–E3 andS3 = E4–E3. 

In this paper, used records were digitally filtered using band pass 
filter (0.3 to 3 Hz) neglecting either these records were taken after 
or before the 26

th
 week of gestation but the research uses them 

generally to make a classification into two classes, term and 
preterm signals. 
 

 
Feature extraction 

 

Linear features 
 
Mean power frequency: The mean power frequency (MPF) is the 

frequency at which the average power within the epoch is reached 
(Frequency signal analysis-BIOPAC Systems Inc. [Online] (2012)  
and computed from the power spectral density (PSD) of the signal 
obtained by Welsh's averaged periodogram method (Hassan et al., 
2010). 
 

Peak frequency: The peak frequency is the frequency at which the 
maximum power occurs during the epoch (Maner and Garfield, 
2007). For each signal, x (t), the peak frequency, fmax, is calculated 
as following (Akay, 2001): 
 

                                                 (1) 
 
Where fs and N denotes the sampling frequency and the number of 
samples, respectively. P is the frequency-power spectrum. 



Naeem et al.            109 
 
 
 

 
 

Figure 1. The placement of the electrodes on the abdomen, above the uterine 
surface. 

 
 
 
Root mean square: The root mean square value (RMS) of a 
signal, x(i), with length N is the root of the mean of the squares of 

all samples in a signal (Fele-Žorž et al., 2008): 
 

                                                               (2) 

 
Median frequency: The median frequency was defined as the 

frequency just above where the sums of the parts above and below 
in the frequency-power spectrum, P, are the same (Fele-Žorž et al., 
2008) or it is the frequency at which 50% of the total power within 
the epoch is reached (Frequency signal analysis-BIOPAC Systems 
Inc. [Online] (2012). 

 
Autocorrelation zero-crossing: The autocorrelation zero-crossing, 

τRxx, is defined as the first zero-crossing starting at the peak in the 

autocorrelation, Rxx (τ), of the signal x(t) (Fele-Žorž et al., 2008): 

 

                      (3) 

 
Discrete cosine transform (DCT): DCT generates real spectrum 

of a real signal and thereby avoids redundant data and 

computation. The DCT of a real sequence, x(n), with length N is 
defined as: 

 

                 (4) 
 

                      (5) 

Non-linear features 
 
Approximate entropy: As mentioned by Pincus (1991) the 

approximate entropy, ApEn, is defined as a measure that quantifies 
the regularity and predictability of the signals. The ApEn value is 
low for regular time series and high for complex, irregular ones 
(Hassan et al., 2010). This paper uses the method applied in [6] to 
compute the ApEn. 
 

                                     (6) 

 

                          (7) 
 
Where r, the filter parameter value, is r=0.2*SD, SD is the standard 

deviation of the signal and  is the correlation sum. 

 
Sample entropy: The sample entropy, SampEn, is a measure of 

complexity that can be easily applied to any type of time series 
data. It is conceptually similar to approximate entropy (ApEn), but 
SampEn does not depend on the data size as much as ApEn does 
(Lee, 2010). 
 
 

Phase space reconstruction 
 
Reconstruction based on derivative approach: The phase space 
dimension or reconstruction dimension, usually symbolized by letter 
d or E, is defined as the number of states that can be displayed in 
phase space. Phase space in d- dimensions will display a number 
of points {x (n)} of the system, where each point is given by: 
 

                       (8) 
 

Where n is a moment in time of a system variable, and T is a period 
between two consecutive measurements of the variable. There is a 
problem with the phase space graphical presentation, if it has more  
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than three dimensions (Jovic and Bogunovic, 2007). Phase space 
reconstruction is a standard procedure when analyzing chaotic 
systems. It shows the trajectory of the system in time. Here the 
phase space reconstruction is obtained by a method based on 

derivatives approach (Packard et al., 1980) that is, by taking , 

,…etc. 

 
Reconstruction based on the singular spectrum approach 
(SSA): SSA is a method of decomposition of time-series into the 

sum of a small number of independent components. The basic SSA 
algorithm has two stages: decomposition and reconstruction. The 
decomposition stage requires embedding and singular value 
decomposition (SVD). Embedding decomposes the original time 

series into the trajectory matrix; SVD turns the trajectory matrix into 
the decomposed trajectory matrices which will turn into the trend, 
seasonal, monthly components, and white noises according to their  
singular values. The reconstruction stage demands the grouping to 
make subgroups of the decomposed trajectory matrices and 
diagonal averaging to reconstruct the new time series from the 
subgroups that is, the concept of SSA consists of four steps: 
embedding, SVD, grouping, and diagonal averaging and all these 

steps mentioned in details (Yung, 2009). 
 
 

Amplitude adjusted Fourier transform (AAFT) 
 
The AAFT algorithm generates surrogate data set and this paper 
takes the same steps mentioned in Garfield et al. (2005) to create 
the AAFT for uterine EMG data. The idea is to first rescale the value 
in the original time series so they are Gaussian. Then the FT 

algorithm can be used to make surrogate time series which have 
the same Fourier spectrum as the rescaled data. Finally, the 
Gaussian surrogate is then rescaled back to have the amplitude 
distribution as the original time series. 
 
 

Time reversibility 

 
A time series is said to be reversible only if its probabilistic 

properties are invariant with respect to time reversal (Hassan et al., 
2010). In this research a simple equation described in Hassan et al. 
(2010) is used to calculate the time reversibility TR for a signal X: 
 

                                          (9) 
 
Where N is the signal length and in this paper we used τ=1. Time 
irreversibility can be taken as a strong signature of nonlinearity. 

 
 
Maximal Lyapunov exponent and correlation dimension 

 
To calculate both parameters a practical method in Fele-Žorž et al. 
(2008) is used which is based on input data, represented in a phase 
space. The phase space is a construct which demonstrates or 
visualizes the changes of the dynamical variables of a system. For 
any time series, the phase space which is the same as original 
phase space of the system is reconstructed by using time-delayed 
samples as the coordinates of the new system.  

The maximal Lyapunov exponent estimates the amount of chaos 
in a system and represents the maximal velocity with which 
different, almost identical states of the system, diverge (Fele-Žorž et 
al., 2008). Then the Lyapunov exponent can be calculated as the 

following equation as the maximum Lyapunov exponent, , is a  

measure of how fast a trajectory converges from a given point into 
some other trajectory: 

 
 
 
 

                                                 (10) 
 
Where ||∆y0||represents the Euclidean distance between two states 

of the system at some arbitrary time t0 and ||∆yt|| represents the 
Euclidean distance between the two states of the system at some 
later time t.  

In chaos theory, the correlation dimension, Dcorr, is a measure of 
the dimensionality of the space occupied by a set of random points, 
often referred to as a type of fractal dimension. It is proportional to 
the probability of the distance between two points on a trajectory 
being less than some r [8]: 
 

                                                              (11) 
 
Where C(r) is the correlation integral. 
 
 
Principal component analysis 
 
PCA is an orthogonal linear transformation that transforms the 
original time series by projecting it to a new set of coordinates in 
order of decreasing variance. The transformation is by definition an 
optimum transformation in the least squares sense. This method 
reduces the dimension of the representation space to keep only the 
most important information represented in fewer dimension space 
domains (The iPredict website [Online], 2012). 

The PCA is applied for the parameters (AAFT, derivative phase 

space reconstruction, SSA and DCT) to obtain only ten features 
from 24001, 24000, 23999 and 24001 features respectively. To 
explain why only 10 features are chosen, two notes must be taken 
in consideration. First, the principal component coefficients for a 
M×N matrix - where M is the number of patterns and N is the 
number of features- are a N×N matrix. Second, the condition for 
classifier pattern matrix construction is that the term and preterm 
signals must have the same number of features. An explanation 
example, a 150×24001 matrix is the PCA input obtained from 

applying the AAFT on the training term signals and a 19×24001 
matrix from the training preterm ones. After applying the PCA, a 
24001×24001 matrix is obtained from the term AAFT spectrum and 
a 24001×24001 matrix from the preterm one. Then we can take 
only the first ten most principal components that have the highest 
variance into the ANN pattern matrix. 
 
 

Artificial neural network 
 
An important step is the classification step and actually, in this 
research, three types of artificial neural network ANNs are used to 
reach best results. One of them is unsupervised learning method 
(Kohonen self-organizing network) (Goyal and Goyal, 2011) and the 
others are supervised learning methods (feed-forward back 
propagation network and trainable cascade-forward back 
propagation network) (Goyal and Goyal, 2011). Each one of the 

previous networks is used for linear and non-linear features 
separately and gives its own parameters to compare. In the 
research a training data of 150 term signals and 19 preterm ones 
are used in addition to testing data of 111 term signals and 19 
preterm ones. 
 
 

RESULTS AND DISCUSSION 
 
For each classifier, some parameters can be calculated 
to evaluate its performance. These parameters are: 
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Table 1. Resulting values of the used classifiers (linear). 
 

Used classifier 
Resulting values 

FP FN TP TN 

Kohonen 12 52 7 59 

Feed-forward 19 0 0 111 

Cascade-forward 19 0 0 111 

 
 
 

Table 2. Comparison of calculated parameters for the three used classifiers (linear). 

 

Used classifier 
Calculated parameter 

FPR FNR TPR TNR ACC (%) 

Kohonen 0.17 0.88 0.12 0.83 50.7 

Cascade-forward 0.15 0.00 0.00 0.85 85.3 

feed-forward 0.15 0.00 0.00 0.85 85.3 

 

 
 

                          (12) 
 

                        (13) 
 

                                         (14) 
 

Where TP, TN, FP and FN stand respectively for True 
Positive, True Negative, False Positive and False 
Negative values. The values of FPR, FNR, TPR, TNR 
and ACC stand respectively for False Positive Rate, 
False Negative Rate, True Positive Rate (Sensitivity), 
True Negative Rate (Specificity) and Accuracy. 

In the linear method as shown in Table 1 the Kohonen 
network can recognize 59 signals from 111 and seven 
signals from 19 for term and preterm uterine EMG 
respectively while the feed-forward and the cascade-
forward networks cannot recognize any preterm uterine 
EMG signal. From these values Table 2 can be created 
and it indicates that the Kohonen network has a low 
sensitivity (0.12) which is higher than the feed-forward 
and cascade-forward networks’ sensitivities (0.00) and it 
also has high FNR (0.88) while it is the opposite for the 
other classifiers with no FNR (0.00). From these values, 
we can observe that no one of the three used classifiers 
can separate between term and preterm deliveries in a 
perfect way where the Kohonen network can recognize 
some of the preterm records but also it classifies many 
term records as preterm ones. On the other hand the 
feed-forward and the cascade-forward networks cannot 
recognize any preterm record although they classify all 
the term records correctly. Figure 2 shows the 
representation of the results on the ROC graph. 

In the non-linear method as shown in Table 3, the 
Kohonen network can recognize 80 signals from 111  and 

nine signals from 19 for term and preterm uterine EMG 
respectively and the feed-forward network can recognize 
107 signals from 111 and seven signals from 19 for term 
and preterm uterine EMG respectively while the cascade-
forward networks can recognize 110 from 111 term 
signals and ten from 19 preterm ones. From these 
values, Table 4 can be created and it indicates that the 
Kohonen network has a low sensitivity (0.22) and high 
specificity (0.89) but it also has high FNR (0.78) while the 
feed-forward network has moderate sensitivity (0.64), 
high specificity (0.90) and low FNR (0.36).The cascade-
forward network has high sensitivity (0.91) and high 
specificity (0.92) which are higher than the other used 
classifiers and it also has low FNR (0.09) and low FPR 
(0.08) which are lower than the others. From these 
values, we can observe that the cascade-forward network 
gives the best results where the Kohonen network can 
recognize some of the preterm records but also it 
classifies many term records as preterm ones. On the 
other hand the feed-forward network recognizes term and 
preterm records with lower errors than the Kohonen 
network but higher than these for the cascade-forward 
network. Figure 3 shows the representation of the results 
on the ROC graph. 

In the additional linear method as shown in  Table 5, 
the Kohonen network can recognize 77 signals from 111 
and seven signals from 19 for term and preterm uterine 
EMG respectively and the feed-forward network can 
recognize 108 signals from 111 and five signals from 19 
for term and preterm uterine EMG respectively while the 
cascade-forward networks can recognize 109 from 111 
term signals and eight from 19 preterm ones. From the 
above values, Table 6 can be created and it indicates 
that the Kohonen network has a low sensitivity (0.17) and 
high specificity (0.87) but it also has high FNR (0.83) 
while the feed-forward network has moderate sensitivity 
(0.63), high specificity (0.89) and moderate FNR (0.37).  
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Figure 2. Representation of the results on ROC (Linear). 

 
 
 

Table 3. Resulting values of the used classifiers (non-linear). 

 

Used classifier 
Resulting values 

FP FN TP TN 

Kohonen 10 31 9 80 

Feed-forward 12 4 7 107 

Cascade-forward 9 1 10 110 

 
 
 

Table 4. Comparison of calculated parameters for the three used classifiers (non-linear). 

 

Used classifier 
Calculated parameter 

FPR FNR TPR TNR ACC (%) 

Kohonen 0.11 0.78 0.22 0.89 68.5 

Cascade-forward 0.10 0.36 0.64 0.90 87.7 

Feed-forward 0.08 0.09 0.91 0.92 92.3 

 
 
 
For the cascade-forward network, a sensitivity of (0.80) is 
obtained which is better than that in the previous linear 
method as it can recognize eight preterm signals from 19 
ones and also it has low FNR (0.20) which is higher  than 

that shown in Table 2 as it cannot recognize two term 
signals from 111 ones. In spite of that, the non-linear 
method shown in Table 4 is still the best. Figure 4 shows 
the representation of the results on the ROC graph. 
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Figure 3. Representation of the results on ROC (Non- Linear). 

 
 
 

Table 5. Resulting values of the used classifiers (linear+ DCT feature). 

 

Used classifier 
Resulting values 

FP FN TP TN 

Kohonen 12 34 7 77 

Feed-forward 14 3 5 108 

Cascade-forward 11 2 8 109 

 
 
 

Table 6. Comparison of calculated parameters for the three used classifiers (linear+ DCT feature). 

 

Used classifier 
Calculated parameter 

FPR FNR TPR TNR ACC (%) 

Kohonen 0.13 0.83 0.17 0.87 64.6 

Cascade-forward 0.11 0.37 0.63 0.89 86.9 

feed-forward 0.09 0.20 0.80 0.91 90 

 
 
 
Conclusion 
 
From the above results presented in this research some 
observations can be inferred. Firstly, using non-linear 
parameters of uterine EMG signals as ANN  features  can 

separate between term and preterm uterine EMG signals 
with results which are better than these for linear ones 
even if a spectral characteristic linear parameter (DCT) is 
used. Secondly, to get best classification accuracy with 
minimum error,  you  should  use  the  trainable  cascade- 
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Figure 4. Representation of the results on ROC (Linear+ DCT feature). 

 
 
 
forward back propagation network. Finally, the Kohonen 
network gives worse results in using both linear and non-
linear parameters. 
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