Journal of
Engineering and Technology Research

  • Abbreviation: J. Eng. Technol. Res.
  • Language: English
  • ISSN: 2006-9790
  • DOI: 10.5897/JETR
  • Start Year: 2009
  • Published Articles: 200

Full Length Research Paper

An improved frequency based agglomerative clustering algorithm for detecting distinct clusters on two dimensional dataset

Madheswaran M.
  • Madheswaran M.
  • Department of Electronics and Communication Engineering (ECE), Mahendra Engineering College, Mallasamudram-637503, Tamilnadu, India.
  • Google Scholar
Sreedhar Kumar S.
  • Sreedhar Kumar S.
  • Department of Computer Science and Engineering (CSE), KS School of Engineering and Management, Bangalore-560062, India.
  • Google Scholar


  •  Received: 12 July 2017
  •  Accepted: 11 October 2017
  •  Published: 31 December 2017

References

Cadez I, Smyth P, Mannik H (2001). Probabilistic modeling of transactional data with applications to profiling, visualization and prediction, Proceedings of the Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. pp. 37-46.

 

Chih-Tang C, Lai JZC, Jeng MD (2010). Fast agglomerative clustering using information of k-nearest neighbors. Pattern Recogn. 43(12):3958-3968.
Crossref

 
 

De Amorim RC (2015). Feature Relevance in Ward's Hierarchical Clustering Using the Lp Norm. J. Classif. 32(1):46-62.
Crossref

 
 

Defays D (1977). An efficient algorithm for a complete link method. Comput. J. (British Computer Society) 20(4):364-366.
Crossref

 
 

Douglass RC, David RK, Jan OP, John WT (1992). Scatter / Gather: A Cluster-based approach to Browsing Large Document Collections, Proceedings of the 15th annual international ACM SIGIR Conference on Research and Development in Information Retrieval pp. 318-329.

 
 

Fionn M, Legendre P (2014). Wards hierarchical agglomerative clustering method: which algorithms implement wards criterion. J. Classif. 31(3):274-295.
Crossref

 
 

Fogs A, Warg W, Zaane O (2001). A non-parametric approach to web log analysis, First SAMICDM Workshop on Web Mining, Chicago pp. 41-50.

 
 

Franti P, Kaukoranta T, Sen DF, Chang KS (2000). Fast and memory efficient implementation of the exact PNN, IEEE Trans. Image Process. 9(5):773-777.
Crossref

 
 

Frigui H, Krishnapuram R (1997). Clustering by competitive agglomeration, Pattern Recogn. 30(7):1109-1119.
Crossref

 
 

Han J, Kamber M (2006). Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, CA.

 
 

Jain AK (2010). Data clustering: 50 Years beyond K-means. Pattern Recogn.Lett. 31(8):651-666.
Crossref

 
 

Jain AK, Murty MN, Flynn PJ (1999). Data Clustering: A Review, ACM Computer Surveys 31(3):264-323.
Crossref

 
 

Krishnamoorthy K, Sreedhar KS (2016). An Improved Agglomerative Clustering Algorithm for Outlier Detection. Appl. Math. Inform. Sci. 10(3):1125-1138.

 
 

Lai JZC, Tsung-Jen H (2011). An agglomerative clustering algorithm using a dynamic k-nearest-neighbor list. Inform. Sci. 181(9):1722-1734.
Crossref

 
 

Lin CR, Chen MS (2005). Combining partitional and hierarchical algorithms for robust and efficient data clustering with chesion self-merging, IEEE Trans. Knowl. Data Eng. 17(2):145-159.
Crossref

 
 

Pakhira KAM (2009). Modified k- means Algorithm to avoid empty clusters. Int. J. Recent Trends Eng. 1:1-8.

 
 

Martin E, Alexander F, Hans-Peter K, Jörg S (2000). Spatial Data Mining: Database primitives, Algorithms and Efficient DBMS Support. Data Min. Knowl. Discov. 4(2-3):193-216.

 
 

Murtagh F (1984). Complexities of Hierarchic Clustering Algorithms: the state of the art. Comput. Stat. Q. 1:101-113.

 
 

Qi Y, Xumin L, Xiangmin Z, Andy S (2015). Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 42(5):2785-2797.
Crossref

 
 

Sibson R (1973). SLINK: an optimally efficient algorithm for the single-link cluster method. Comput. J. (British Computer Society) 16:30-34.
Crossref

 
 

Wei Z, Gongxuan Z, Yongli W, Zhaomeng Z, Tao L (2015). NNB: An Efficient Nearest Neighbor Search Method for Hierarchical Clustering on Large Datasets. IEEE International Conference on Semantic Computing (ICSC). pp. 405-412.