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Archaean komatiites of the greenstone belt in Manica area, western Mozambique contains accessory 
amount of disseminated chromite grains. The komatiite rocks comprise peridotitic and basaltic 
komtiite. These komatiites are affected by regional metamorphism as all of the studied area. It is 
observed that only chromian spinel is preserved as the primary mineral and that all the other primary 
minerals in the komatiite samples are completely altered. The present work gives first time data on the 
effect of metamorphism on texture and composition of chromite enclosed in komatiite, Manica area, 
Mozambique. The primary chromian spinel has high Cr

#
 (Cr/(Cr+Al) atomic ratio; approximate value = 

0.9, which is comparable with Cr
#
 value of chromian spinel in the worldwide komatiites. The chromian 

spinel have low Al and Mg value (up to 0.26 and 0.21 respectively, low Mg
#
 and high Cr

#
 and Fe

#
 values. 

Most of the studied spinel grains rimmed by ferritchromite which is transformed outwards to magnetite. 
Textural features and mineral chemistry of chromian spinel enclosed in these komatiites indicate 
postmagmatic alteration and metamorphism in greenchist to amphibolite transition facies. The 
metamorphism also involves reequilibration of the chromian spinel cores with the surrounding silicate 
assemblage.  
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INTRODUCTION 
 
Chromite in komatiites at low metamorphic grades can be 
useful indicator of crystallization environment, as 
described by Barnes (1998). The modification of chromite 
due to metamorphism is the subject of this paper. 
Metamorphic modification in the literature in the context 
mainly of ophiolitic or alpine ultramafic complex (Evans 
and Frost, 1975; Hoffman and Walker, 1978; Kimball, 
1990; Burkhard, 1993; Marina and Judith, 2010; Stephen 
et al., 2012) and a few studies of komatiitic rocks (Bliss 
and Maclean, 1975; Donaldson, 1983; Gole and Hill, 
1990) and in a detailed study of the Pechenga intrusions 
(Abzalov,  1998).  These  studies  indicate  that   chromite 

core composition become progressively modified during 
prograde metamorphism as a result of exchange of 
compounds with surrounding silicate minerals (Abzalov, 
1998). The present paper examines the nature and 
magnitude of these effects in komatiites from Archaean 
greenstone belt in Mozambique. 
 
 
GEOLOGY 
 
The Archaean rocks in Mozambique occur as small 
outcrops  in  the  marginal  region   of   the   Zimbabwean 
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craton, along the Zimbabwean border (Manica 
Provinces). According to Salman and Abdula (1995), the 
Archaean Mozambique structures include two major 
units: (1) Granite-gneiss complex in the Manica region 
and (2) Manica group structure (greenstone, banded iron 
formation of Macequece and M'Beza / Vengo formations. 
The Manica group is a structure unit of the Zimbabwe 
Craton. The geological map and the location of the 
studied area are indicated in Figure 1. A first genetic 
interpretation of the Manica greenstone belt was 
postulated by D' orey (1979) which considers the 
greenstone belt represents a formerly stretched basin 
filled by volcanosedimentary deposits 10 to 15 km in 
thickness. 
 
 
KOMATIITE PETROGRAPHY 
 
Microscopic investigation indicate that the studied 
komatiites underwent regional metamorphism under 
green schist – amphibolite transition condition as most of 
the primary magmatic minerals were fully replaced by 
secondary assemblages of actinolite – tremolite, 
actinolitic hornblende, serpentine, chlorite, epidote, 
chromite and magnetite. The studied thin sections 
contain relics of primary magmatic textures. All the 
studied samples are characterized by the common and 
distinctive spinifex texture, which consists of long acicular 
pseudomorphs of alteration minerals after olivine (Figure 
2) which gives the rock a bladed appearance. Relics of 
primary acicular olivine have sometimes survived 
alteration showing elongated or platy habit. 
 
 
METHODOLOGY 
 
Mineral analyses were carried out at the Center for Co-operative 
research of Kanazawa University, Japan, using a JOEL JXA – 8800 
electron probe microanalyzer. The analytical conditions were a 25 
kv accelerating voltage, 20 nA probe current and 3 µm probe 
diameter. The raw data were corrected using an on – line ZAF 
program, the ferrous iron of spinel were calculated assuming spinel 
stoichiometry. The Cr# is Cr/(Cr + Al) atomic ratio, the Mg# is 
Mg/(Mg+Fe) atomic ratio for spinel.  
 
 
Mineral chemistry 
 
Selected microprobe analyses are listed in Table 1. In Figures 2 
and 3 the magnetite outer rim is low in Al, Mg and Mn and rich in 
iron but the inner rim is Cr-rich and iron and magnesium- poor 
spinel. Chromian spinel shows variable ranges of Cr2O3 contents in 
the studied samples from 4.11 to 23.64% due to differences in 
degree of metamorphism. TiO2 content of spinel is very low, < 0.2 
wt%. The majority of the studied spinel have very low MgO contents 
(0.02 to 0.21 wt%) and low Mg / (Mg + Fe2) values ranging from 
0.01 to 0.21. These low Mg# values reflect equilibrium temperature 
of metamorphism around 500°C resulted from a sequence of 
exchange of Mg2+ and Fe2+ between chromite and coexisting 
silicates, particularly olivine and chlorite. Al and Fe3 contents in 
spinel fall within the typical range for lower amphibolite facies. 
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Intensity of spinel alteration increase outward from the center of 
spinel grains which transformed to Cr – bearing magnetite and then 
completely transformed to magnetite (Figures 2 and 3). The spinel 
is depleted in Al2O3 < 0.3 wt% and this spinel plots along the Cr – 
Fe3+ join of Cr – Al – Fe3. It plots at the top right corner of the 
Cr/(Cr+Al) Vs (Fe3+ / (Fe3++Al+Cr), (Figure 4) and at the top left 
corner of the [Cr/(Cr+Al) Vs. [Mg/(Mg+Fe), (Figure 5). Magnetite 
and spinel tend to loose Al, relative to Cr during metamorphism and 
reaction with coexisting silicates through metamorphic fluids to form 
chlorite and or amphibole and the resulting spinel plots along the Cr 
– Fe3+ Join of the Cr – Al – Fe3+ diagrams. Textures in Figure 2 
indicate metamorphic origin for the spinel and magnetite which is 
supported by their low Al and high ferric and ferrous contents. 
Barnes (2000) suggested that the maximum Cr content in the 
magnetite rim is controlled by equilibrium with spinel cores across 
the miscibility gab between spinel and magnetite which widens 
rapidly below 600°C. 
 
 

DISCUSSION 
 
The studied komatiitic flows of Manica area, Mozambique 
are located near the Zimbabwean border and considered 
as a part of Zimbabwean craton (Afonso, 1995). These 
komatiitic massive rocks have small outcrops in remnant 
areas and were emplaced in a succession of 
volcanosedimentary rocks composed of sandstone, 
greywacke, conglomerate, banded iron formation with 
layers of lavas and conglomerate. Previous geological 
studies indicate that the volcaniclastic rocks are common 
in Manica greenstone belt. Therefore the studied 
komatiite may have erupted in shallow water under 
hydrostatic pressures low enough to permit 
phreatomagmatic eruption. Barnes and Often (1990) 
reported similar komatiites emplaced in greenstone belt 
rich in volcaniclastic rocks at Karasjok, Finland. These 
features provide evidence that the komatiitic units under 
investigation were emplaced in or on a series of 
sediments close to or on the sea floor. The Mineral 
chemistry and textures of chromite of the studied area 
provide a picture of the chemical modification of chromite 
during lower greenschist alteration and subsequent 
amphibolite facies metamorphism. 

Anomalously low Al and highly variable Fe
3+

 contents 
are observed in most of the studied samples, where the 
metamorphic effect are somewhat higher and 
metamorphic olivine is widespread (Fischer, 1979; 
McQueen, 1981). In some samples chromite underwent 
particular advanced replacement by magnetite, and these 
grains are commonly mantled by chlorite. This effect is 
restricted to a relatively small proportion of grains at each 
sample. The extent of reaction may be a function of fluid 
rock ratios and the extent to which the exchange and 
replacement reactions are driven by fluid influx (Barnes, 
1998). 

Arai (1992) reported that TiO2 content of spinel in 
magmas varies depending on the tectonic setting of 
magma generation: it is relatively low for arc magma, 
intermediate for MORB and high for intraplate magma. 
So, the depleted komatiite with high Cr

#
,  low  TiO2  spinel  
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Figure 1. Geology of the studied area. 
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Figure 2. Photomicrograph of spinifex texture consisting of long acicular 
pseudomorphs of alteration minerals after olivine, crossed polar (A) and back–
scattered electron micrographs of chromites and composite chromite–chromian 
magnetite grains, illustrating progressive replacement of chromite by magnetite 
during progressive metamorphism.  (B) Pristine euhedral igneous magnesiochromite, 
no magnetite. (C) Incipient development of outer crystal faces on magnetite rim, and 
sharp, lobate internal phase boundaries against chromite. (D), (E) and (F) Advanced 
replacement of chromite by zoned chromian magnetite. Inner boundary is a sharp 
phase boundary. 



 

220          J. Geol. Min. Res. 
 
 
 

Table 1. Electron microprobe analyses of chromium spinel and altered olivine in the studied komatiite. 
 

M 
Chromite Ferritchromite Magnetite Altered olivine 

1 2 3 4 5 6 7 8 

SiO2 0.03 0.05 0.23 0.16 2.16 1.95 55.89 47.02 

TiO2 0.21 0.08 0.19 0.24 0.13 0.16 0.06 0.08 

Al2O3 6.70 7.02 0.36 0.47 0.02 0.05 0.98 0.06 

Cr2O3 53.00 52.01 32.27 31.98 4.76 4.38 0.01 0.02 

FeO 9.10 7.91 24.13 25.91 30.42 29.85 4.15 2.81 

Fe2O3 22.55 23.59 38.18 37.85 63.71 62.12 2.57 1.02 

MnO 0.74 00.14 00.81 0.76 0.07 0.08 0.33 0.18 

MgO 8.10 9.12 2.89 3.01 1.92 1.85 21.37 38.01 

CaO 0.04 0.03 0.01 0.02 0.04 0.02 13.44 9.56 

Na2O 0.01 0.02 0.03 0.01 0.01 0.02 0.00 0.01 

K2O 0.02 0.01 0.01 0.02 0.01 0.01 0.32 0.27 

NiO2 0.05 0.04 0.10 0.07 0.18 0.19 0.04 0.01 

Total 99.85 100.02 99.12 100.49 99.43 100.63 99.15 99.04 
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Figure 3. Typical quantitative electron microprobe analysis of a 
disseminated chromite grain is shown in Figure 2. 
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Figure 4. Variation of Cr# (Cr / (Cr + Al) atomic 'ratios) versus Mg# (Mg / (Mg+ 

Fe2+) atomic ratios) of the analyzed spinel grains of the studied komatiite 

samples. 

 
 

Figure 4. Variation of Cr# (Cr / (Cr + Al) atomic 'ratios) versus Mg# (Mg / (Mg+ 
Fe2+) atomic ratios) of the analyzed spinel grains of the studied komatiite samples. 

 
 
  

Figure 5. Variation of Cr* ( Cr / ( Cr + Al ) atomic ratios )  versus Fe# (Fe3+ / (Fe3+ 

Al + Cr) atomic ratios) of the analyzed spinel grains of the studied komatiite 

samples. 

 
 

Figure 5. Variation of Cr* (Cr / (Cr + Al) atomic ratios)  versus Fe# (Fe3+ / (Fe3+ Al 
+ Cr) atomic ratios) of the analyzed spinel grains of the studied komatiite 
samples. 

 
 
 
from Manica area, Mozambique suggests an origin from 
the mantle wedge or sub – arc mantle.  
 
 

Conclusions 
 
(1) Petrological   and   geochemical   studies   of   Manica  

komatiite indicated that they comprise peridotitic and 
basaltic komatites and are characterized by spinifex 
textured olivine. 
(2) Textural features and mineral chemistry of chromian 
spinel enclosed in these komatiite indicate postmagmatic 
alteration and metamorphism in the green schist to 
amphibolite transition. 
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(3) Metamorphism also involves reequilibration of the 
chromian spinel cores with the surrounding silicate 
assemblage. 
(4) The studied komatiites formed by partial melting of a 
depleted mantle under hydrous condition in subduction 
(arc) environment, confirming the existence of wet mantle 
in the Archaean era.  
(5) The evidences that these komatiites are formed from 
wet mantle are as follows: 
 
(i) The association of the komatiite with falsies and 
occurrence of volcanic tuffs and breccia indicating that 
those magmas contained volatiles (Schaeffer and Morton 
,1991). 
(ii) The presence of a distinctive spinifex texture 
consisting of long acicular phenocrysts of bladed olivine 
(or pseudo morphs of alteration mineral after olivine). 
Grove et al. (1997) proposed that elevated water content 
in komatiitic magmas would lead to the rapid growth of 
large crystals, and accompanying degassing of hydrous 
komatiites would generate a strongly super cooled liquid. 
(iii) The formation of ferritchromite rind around chromite 
cores as a result of aqueous mobilization of Cr during 
serpentinization. 
 
(6) Although recent data imply that many komatiites are 
derived from a dry mantle source, there are still some 
rocks that could be subduction-related such as komatiite 
from greenstone belt in South Africa, and the komatiite of 
Mozambique in the present study.  
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