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In a mining operation, any noticeable instability can pose a catastrophic threat to the lives of workers. 
Slope instability can also disrupt the chain of production in a mine, resulting in a loss to the business. 
Due to the potential threat associated with rock mass movement, it is necessary to be able to predict 
the time of slope failure. In the past couple of decades, innovations in slope monitoring equipment have 
made it possible to scan a broad rock face in a short period of time with sub-millimeter accuracy. The 
data collected from instruments such as Slope Stability Radar (SSR) are commonly used for slope 
failure predictions, however, it has been challenging to find a method that can provide the time of 
failure accurately. The aim of this paper is to demonstrate the use of different methods to optimize 
slope failure predictions. Various methods investigated for research presented in this article include: 
Minimum Inverse Velocity (MIV), Maximum Velocity (MV), Log Velocity (LV), Log Inverse Velocity (LIV), 
and Spline regression (SR). Based on the different methods investigated, the Minimum Inverse Velocity 
method provided the most consistent and accurate results. The use of MIV method resulted in about 
75% better predictions than the other methods. 
 
Key words: Monitoring, slope failure, slope instabilities, slope movement, rock failure. 

 
 
INTRODUCTION 
 
Monitoring slope instability and rock mass movements is 
a basic and prevalent practice in the field of 
geomechanics. In a mining environment, any noticeable 
instability could pose a potential threat to the lives of 
employees as well as the business. Most rock slope 
failures are associated with creep deformation and the 
causes of instability are often complex. It is, therefore, 
challenging to predict slope failure time accurately. 
However, with the capability and availability of the 
modern slope monitoring technology, it is now possible to 

scan large moving slopes in a matter of minutes with a 
sub-millimeter accuracy. Consequently, operators are 
better prepared to face the consequences of slope 
failures in open pit mines (Osasan and Stacey, 2014). 
Along with slope monitoring, early warning systems 
(EWS) help prepare for large slope failures. EWSs can 
be considered as a cost effective alternative that help 
reduce risks or help prepare for risks associated with 
large moving slopes that cannot be mitigated (Intrieri et 
al., 2012). EWSs are built into monitioring modern
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technology that alarm the users of any moving areas. The 
system can be set up to warn the user of any movement 
that seems to be higher than a set threshold based on 
the history and geological factors associated with the 
area. 

Over the years, many attempts have been made to 
develop a method to predict the time of failure. The 
challenge in predicting slope failure stems from the fact 
that factors influencing instability such as ground 
conditions, physical and geomorphological processes, 
along with human activities are either not known 
completely or difficult to determine continuously (Nie et 
al., 2016). Therefore, instead of developing a 
phenomenological model of slope failure, practitioners 
have relied on a detailed analysis of slope deformation 
(Chen et al., 2015). Calculating the factor of safety (FOS) 
of pit walls is crucial while designing mine slope walls and 
performing per failure slope analysis. Most mines require 
having a FOS of 1.0 or higher, whereas an FOS below 
1.0 is considered as unsafe work environment. A study 
was performed at Çöllolar mine in Elbistan that shows 
how important FOS is (Ozbay and Cabalar, 2014). There 
were two landslides at the Çöllolar mine within 4 days; 
one of the landslides was caused due to the high 
groundwater levels as well as an inappropriate FOS. The 
study concluded that the first landslide caused the 
second landslide (Ozbay and Cabalar, 2014). 

Deformation data collected by various instruments is 
the most important piece of information needed to 
perform time series analysis for slope failure predictions 
(Liu et al., 2014; Mazzanti et al., 2015). Both time and 
deformation data are readily available from the 
monitoring equipment used for geotechnical risk 
management analysis. Some of the traditional and more 
advanced technologies include but are not limited to 
survey network, tension crack mapping, wireline 
extensometers, ground-based real aperture radar, 
synthetic aperture radar, and satellite-based synthetic 
aperture radar (Chandarana et al., 2016). 

In the past decade, there has been an increased use of 
ground-based radars, both real and synthetic aperture. 
Coupled with simple and cost-effective technologies such 
as wireline extensometers, prisms and tension crack 
mapping enhance active slope monitoring. The top three 
advantages of ground-based radars as stated by Dick et 
al. (2015) include: (i) broad area coverage, (ii) near real-
time slope movement data, and (iii) no additional 
equipment installation is needed, reducing the risk of 
workers being exposed to rock fall hazard. As the radar 
technology becomes prevalent in the mining industry for 
monitoring slope movements, it is essential to understand 
the basics of its use. The ground-based radars provide a 
Line-Of-Sight (LOS) data set that is used to monitor 
slopes as well as make necessary slope failure 
predictions (Harries et al., 2006). Usually, the data sets 
provided by the monitoring systems are large; it is 
important   to   narrow   down   to   the   time  window that 

 
  
 
 
demonstrates any accelerating trends to make failure 
predictions. Accelerating trends in deformation are an 
indicator of possible unstable slopes leading to slope 
failures. It is also crucial to reduce the size of the data 
being used by only focusing on consecutive and 
neighboring pixels that demonstrate movement instead of 
a large cluster of pixels. Using a large area of the slope 
will produce misleading failure predictions times or show 
that the slopes are steady, as a larger data set will 
average the moving and nonmoving pixels together. It is 
a common practice to select a single pixel or a small 
cluster of pixels for analysis instead of utilizing the whole 
data set provided by the radar systems (Dick et al., 
2015). While choosing the correct area for slope failure 
analysis, it is important to remember that the true 
magnitude of the deformation data is based on the LOS 
between the radar and the area being monitored. If the 
area of interest is not in the direct LOS, the amount of 
deformation being measured will be smaller than the real 
deformation (Carlá et al., 2017a). With this downside in 
the data acquired from monitoring systems, there will 
always be some room for error of a failure time 
prediction. There are many examples of the use of 
monitoring data demonstrated by different authors (Cahill 
and Lee, 2006; Carlá et al., 2017b; Crosta and Agliardi, 
2003; Day and Seery, 2007; Federico et al., 2012; 
Harries and Roberts, 2007; Little, 2006; Ramsden et al., 
2015; Rose and Hungr, 2006). 

The most common form of data acquired from 
monitoring systems consists of time and 
deformation/displacement data. Monitoring systems will 
typically record an increase in deformation data until the 
slope collapses or until the slope movement is too fast for 
the monitoring system to capture (Chandarana et al., 
2016). The time and deformation data will help identify if 
the slope movement resembles progressive, steady or 
regressive deformation (Figure 1). Zavodni and 
Broadbent (1978) used the empirical data from several 
open pit mines to identify the difference between 
progressive and regressive slope movement (1978). The 
terms progressive and regressive displacement can 
cause confusion, hence the alternative names are 
unstable and stable displacement, respectively. 
Progressive displacement is seen when a slope starts to 
deform at a slow rate and then start to accelerate till the 
point of collapse. Steady displacement is what the name 
suggests, when a slope deforms at a constant rate it is 
known as steady displacement. A slope with decelerating 
movement is referred to as regressive displacement; this 
type of movement usually does not cause any failures. If 
a regressive movement results in a failure, it is usually a 
response to some mining activity (Call et al., 2000). 

Predicting slope failure time has become a common 
practice at all active mining sites. If the observed slope 
movement is deemed to cause an imminent collapse, it 
becomes critical to be able to predict a conservative time 
of the failure. In  order  to  make a  prediction  that  allows



 
 
 
 

 
 

Figure 1. Progressive, steady, and regressive displacement. 

 
 
 

 
 

Figure 2. Distinction between safe and unsafe failure prediction. 

 
 
 
ample evacuation time, the forecast should allow for a 
time before the actual slope failure. If the projected time 
of failure is earlier than the real time of failure, it is 
referred to as a safe prediction. Figure 2 displays a visual 
diagram of safe and unsafe prediction. The line AB 
represents the life expectancy of the moving slope. At 
point B, Tf represents the time of the collapse. If the 
slope failure prediction is made at a time below the line 
AB, it will be recognized as a safe prediction, and if the 
time estimate falls in the area above the line AB, it is 
regarded an unsafe prediction. In Figure 2, the x-axis 
represents the time at any instance of failure prediction, 
and the y-axis represents predicted life expectancy at tm, 
using Tf - tm. A safe prediction allows for evacuation or 
emergency preparedness before the actual event 
(Mufundirwa et al., 2010). If the prediction is in the unsafe 
zone, it physically means that the failure will occur prior to 
the predicted time giving limited or no time to anyone 
working in the hazardous area to evacuate (Mufundirwa 
et al., 2010). 
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In the past, many attempts have been made to developa 
reliable method for predicting the time of slope failure. 

Most of these studies have used the inverse velocity 
method. Another method that has gained popularity in the 
past decade is the Fuzzy Neural Network Approach. The 
failure prediction methods are briefly discussed below. 
This paper investigates different methods of predicting 
the time of slope failure based on historical data. Along 
with the various methods tried, another important goal of 
this study is to make a time prediction that falls in the 
safe zone as identified above. All the data used for the 
analysis have been obtained from mines with an active 
ground-based radar program. 
 
 
MATERIALS AND METHODS 
 
Current analysis approaches 
 
When a geomechanical failure will occur at an active mine site is 
the critical question for the geotechnical group that focuses on the 
slope stability monitoring (Mufundirwa et al., 2010). It is important to 
get an approximate time of failure at active mines mainly as it will 
help avoid human loss, reduce damages to property and provide 
sufficient time to take necessary countermeasures (Federico et al., 
2012). It is important to understand the structural geology of the 
area, climate, groundwater, in situ stress conditions, rock mass 
strengths and seismicity to assess rock failure mechanism (Rose 
and Hungr, 2006). Monitoring is used at all active mining sites to 
watch for fast moving slope mass or possible accelerating rock 
mass movement. Despite the availability of technologies such as 
global positioning systems (GPS), slope stability radars (SSR), 
prisms, extensometers and many more, for monitoring slope 
stability, there is always an uncertainty as to when an actively 
moving area might collapse (Chandarana et al., 2016). Due to this 
uncertainty, it is important to have a method that can help predict 
the time of failure based on the rate of movement to achieve safe 
and manageable slopes, as well as preventing catastrophes. 
Catastrophic accidents caused by slope failures have become more 
manageable with the advent of modern monitoring equipment that 
have the capability to scan a large slope face within minutes and 
detect sub-millimeter displacement (Ossan and Stacey, 2014). 
Described below are the two widely used methods for predicting the 
time of failure based on deformation data from the modern 
monitoring systems. 
 
 
Inverse velocity method (IV) 
 
In 1985, Fukuzono developed the concept of inverse-velocity for 
predicting the time of slope failure with the help of tests performed 
in a well-instrumented laboratory while inducing a landslide in soil 
like material under the influence of water seepage (Fukuzono, 
1985). IV method requires the measurement of deformation over 
time. When a significant acceleration is detected in the deformation 
rate, an inverse velocity versus time graph is used to make a failure 
time prediction. A trend line of the inverse velocity is projected to 
intersect with the time axis. The point at which the trend line 
crosses the x-axis is the failure time prediction. Fukuzono fitted 
three types of trend lines, namely: concave, convex and linear 
curves to the data accumulated from the laboratory tests 
(Fukuzono, 1985). Based on many tests Fukuzono concluded that 
the linear trend line gave the best estimate of the failure prediction 
time (Fukuzono, 1985). The four simple steps below describe IV 
method: 
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Figure 3. Deformation and inverse velocity of a moving area 24 h before a failure. The blue line represents deformation, red 
line represents inverse-velocity averaged over 60-min, and green line represents inverse-velocity averaged over 1440 min. 

 
 
 

 
 

Figure 4. Deformation and inverse velocity of a moving area 24 h before a failure. The blue line represents deformation, red 
line represents inverse-velocity averaged over 60-min, and green line represents inverse-velocity averaged over 1440 min. 
Black and blue lines represent the extended best fit lines of the data to help predict the time of failure. The red dotted line 
represents actual time of failure. 

 
 
 
1) Use the deformation and time data to calculate the inverse rate 
of displacement. 
2) Perform a simple linear regression of the inverse rate of 
displacement. The simple equation y = mx + b is used.  
3) Fit a regression line through the inverse velocity versus time 
data. 
4) Extend the best fit line to intersect the time axis to get the time of 
slope failure prediction. 
 
The most common form of data that radars can produce is 
deformation and time. Based on the deformation and time data, 
acceleration, velocity, and inverse velocity can be easily calculated. 
Often, the radar software readily provides the inverse velocity to 
use for the analysis. The inverse velocity and deformation data can 
be plotted together, once a significant rock mass movement is 
observed (Figure 3). Linear regression and determination of the 
best fit line in the inverse velocity curve are the next steps in 
predicting the time of failure. The visual illustration (Figure 3) shows 
a graph with visible acceleration in the deformation curve. In the 
example below the graph is based on an actual rock mass failure. 
The data is a representation of the data collected in a 24-h period 

before the actual failure time. The best fit line for the averaged 
inverse velocity is extended to intersect the time-axis (Figure 4). 
The point at which the inverse velocities intersect the x-axis is the 
predicted time of slope failure. In the demonstration below, two 
inverse velocities have been used: one uses an averaging of 1-h 
time intervals and the other uses averaging of the 24-h time 
interval. Data smoothing is done to reduce the noise in the data 
caused by weather or any unintended human interaction. It is easy 
to make slope failure predictions with data that clearly 
demonstrates a progressive trend. Slope failure predictions are 
hard if there is an unclear trend or a trend that lasts for a very short 
period (Osasan and Stacey, 2014). 
 
 
Fuzzy neural network 
 
Geology and environmental conditions that occur naturally cannot 
be assigned a numerical value to solve slope stability problems as 
this uncertainty keeps slope stability as a fascinating subject for 
research (Chandarana et al., 2016). The fuzzy set theory has been 
gaining interest for the past couple of decades, especially in civil  



 
 
 
 

 
 

Figure 5. Primary stages of pre-failure evolution. 

 
 
 
engineering and has been slowly adapted for slope stability 
research. Many successful types of research have been performed 
for slope stability analysis using the fuzzy neural network (Hwang et 
al., 2009; Lin et al., 2009; Ni et al., 1996;  Sakellariou and 
Frentinou, 2005; Wang et al., 2005). Besides these, there are many 
more studies that use the neural networks to assess slope 
instability. The studies show that this method helps with the 
preparedness for a potential slope failure, but this approach cannot 
be used to predict the time of slope failure. 

Zadeh introduced the fuzzy set theory as a class of objectives 
with a continuum of grades of membership (Zadeh, 1965). In the 
fuzzy set theory, a set is categorized by a membership function that 
assigns each object in the set; a grade ranging between zero and 
one. In machine learning, the fuzzy set theory or neural network is a 
system adopted from the biological neural network, a system that 
uses a large number of inputs to solve and estimate different 
functions. The artificial neural networks are a simplified version of 
the biological version, but it retains a good structure to provide 
information on how the neural networks might work (Sakellariou 
and Frentinou, 2005). In 1992, the fuzzy sets were adopted by 
Juang et al. for mapping the potential of slope failure (Juang et al., 
1992). The primary function of a neural network is to gain 
experience and accumulate knowledge from the unknown inputs; 
due to this ability, the artificial neural networks are sometimes used 
to evaluate the failure potential of moving slopes (Juang et al., 
1992). 

The basis of the neural network approach is the function of a 
neuron. A neuron is a unit with the ability to perform a function  
based on an input X to produce an output Y. Defined below is the 
relationship between X and Y (Juang et al., 1992): 
 
    (    )                     (1) 
 
      ∑ (         )                 (2) 

 
where:      = weighted input from all ith neurons.    = output value 
of ith neuron.     = Weight of input data (  ) from the jth neuron.    

= input value of the jth neuron.    = weighted biases of the ith 
neuron.   = transfer or activation function. 
 
A conventional neural network includes three layers: input, output 
and a hidden layer. Neural networks are categorized into two forms: 
supervised or unsupervised. A supervised neural network is trained 
to produce desired outputs based on a set of inputs, whereas an 
unsupervised  network  is  created  by  letting  the network adjust to  
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new input data (Sakellariou and Frentinou, 2005). Juang et al. 
demonstrated a successful use of neural network based on the 
model defined above for slope stability analysis (Juang et al., 
1992). They conducted several trial and error attempts with the 
parameters for the use in the study before establishing the network 
topology. 
 
 
NEW PROPOSED APPROACH 
 
Minimum inverse velocity method (MIV) 
 
There have been many studies that have used the inverse velocity 
method for time of slope failure prediction analysis. The proposed 
method of using the MIV is a subtle but significant modification of 
the inverse velocity method. Most of the active mines have radar 
monitoring systems for geotechnical risk management analysis. The 
radar systems provide the deformation data of the area being 
scanned. The radar system is fitted with either a two-dimensional 
(2-D) or one- dimensional (1-D) scanning antenna. The system 
scans a region of the wall being monitored by transmitting a pulse 
and recording the phase of the return signal. While the system 
scans an area of the slope, it compares the reflected signal from 
each scan with the waveform from the previous scan in order to 
determine the amount of deformation that has taken place in the 
slope between the two scans (Chandarana et al., 2016). The radar 
data provide the opportunity to observe the pre-failure evolution 
from the initial small movements all the way up to failure. Three 
stages describe the pre-failure deformation process: primary, 
secondary and tertiary. These stages are like the ones observed in 
creep studies of geomaterials (Crosta and Agliardi, 2003; Federico 
et al., 2012; Saito 1996; Xu et al., 2011). The primary stage of the 
pre-failure evolution displays a decreasing strain rate, the 
secondary stage displays a constant strain rate, and the tertiary 
stage shows a rapidly increasing strain rate leading to failure 
(Figure 5). The primary, secondary and tertiary stages represent 
regressive, steady and progressive movements, respectively of a 
moving rock mass. When a displacement versus time graph 
displays the tertiary stage, it tends to infinity over a short time, 
indicative of a slope failure (Nie et al., 2016). 

The main focus of analyzing slope stability is the progressive 
movement or the tertiary stage of the pre-failure evolution process, 
as these characteristics represent rapid change and a possible 
failure. A progressive displacement prompts the need for a closer 
look at the slopes. As the slopes move faster, it is important to 
make predictions of a possible slope failure time continuously. One 
of the commonly used methods is IV method. For IV method, the 
displacement over time data is used to calculate the velocity 
followed by the inverse velocity rate calculation. When the velocity 
and inverse velocity curves are plotted against time, it is evident 
that velocity follows the deformation curve and points towards 
infinity, whereas the inverse velocity curve approaches zero. The 
fact that the inverse velocity approaches zero provides the 
possibility to predict the time of slope failure at the point where the 
inverse velocity curve intersects the time axis. 

In reality, there is conceivably no situation where a deformation 
would take place for ever. Hence, there is no possibility that the 
inverse velocity would reach exactly zero. The radar systems 
currently in use have a limitation on the range of movement that 
they can measure in each scan. The amount of deformation that 
can be measured in a single scan is roughly equal to half the 
wavelength of the radar signal (or its frequency). In other words, if 
the deformation taking place is larger than half the wavelength, the 
radar system will not be able to capture the entire movement, 
effectively causing a phase ambiguity. Due to this downside of all 
monitoring radar equipment, there is a limit on the maximum 
deformation measured in each scan. Therefore, we can calculate 
the   maximum  velocity  that  can   be   measured   each   day   and  
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Figure 6. Demonstration of the use of minimum inverse velocity to analyze a failure 2 h before the failure at location X 
The blue line represents deformation; orange line represents inverse-velocity averaged over 60 min, the gray line 
represents inverse-velocity averaged over 1440 min. Dotted orange and gray lines represent the extended best fit lines 
of the data to help predict the time of failure. The red dotted line represents actual time of failure. The yellow horizontal 
line represents the minimum inverse velocity. 

 
 
 

Table 1. IV vs. MIV failure time prediction for data in Figure 6. 
 

Prediction IV over 60 IV over 1440 

IV Prediction 5/6/2014 2:41 AM 5/6/2014 4:41 AM 

MIV Prediction 5/4/2014 8:23 PM 5/5/2014 4:38 AM 
 

Scan time: 16 min; Failure time: 05/05/2014 5:04 AM; Minimum inverse velocity: 0.035773 
day/in. 

 
 
 
subsequently determine the minimum inverse velocity that is 
physically possible to obtain. 

We now describe the process of calculating the MIV. We use the 
four steps described above to determine the inverse velocity, 
however, we also introduce an additional step that entails the 
determination of the minimum inverse velocity that the radar system 
would be able to measure in a given area being scanned. The 
minimum inverse velocity can be calculated as defined: 
 

     
(   ⁄ )    

 
                                (3) 

 
                            (4) 
 
                              (5) 
 
Where:   = velocity (in/h);   = number of scans per hour;   = speed 
of light;    = radar frequency of the radar being used to monitor;    

= conversion factor from m to in (required if readings are in inches) 
     = maximum velocity (in/day) 
 
When the minimum inverse velocity is calculated it should be set as 
the y-value in the equation y = mx + b of the best fit line instead of 
using y=0. 
The use of IV method had been successful in the past; however, 
often the predictions made fall in the unsafe zone, that is, the 
predicted time is located beyond the life expectancy of the slope or 
the actual failure time. A data set acquired from a mine site in 

Arizona is used to illustrate the process: the visual aid will show the 
difference between the predictions in the safe and unsafe zone. 
Figure 6 illustrates the use of the MIV method, where a horizontal 
orange line is drawn to mark the location of the minimum inverse 
velocity. One can observe that the best fit line for the smoothed 
inverse velocity intersects the time axis past the red dotted line that 
represents the time of failure. However, the same best fit inverse 
velocity line intersects the minimum inverse velocity before the time 
of the failure, therefore providing a safe prediction. 

While performing the analysis of data from a moving area, it is 
common practice to use a moving-average filter to smooth out the 
velocity (and inverse velocity) time series. This process reduces the 
high frequency noise which is the direct consequence of 
differentiating a time series. For the purposes of this paper, 60-min 
and 1440-min windows have been used for smoothing (Table 1). 

The recorded time of failure at mine X was 5:04 AM on 5th May. 
To make a prediction, the best fit lines were used to calculate the 
time of failure with both the IV and MIV methods and using data 
from two hours before the failure. Using the inverse velocity 
averaged over 60 min, places the time of failure for the IV method 
at 6th of May 2:41 AM which is after the actual failure, whereas the 
prediction for the MIV method is May 4th at 8:23 PM which is before 
the actual failure. Smoothing the velocity curve with a 1440-min 
window, yields a predicted time of 4:41 AM on May 6th which is 
after the actual failure, whereas the prediction for the MIV method is 
4:38 AM on May 5th which places the forecast in the safe zone 
(prior to the actual time of failure). The results of the two methods 
are displayed in Table 1. The above example  clearly  demonstrates  
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Figure 7. Demonstration of the use of minimum inverse velocity to analyze failure 4 h before the failure at location Y. The 
blue line represents deformation; orange line represents inverse-velocity averaged over 60 min, the gray line represents 
inverse-velocity averaged over 1440 min. Dotted orange and gray lines represent the extended best fit lines of the data to 
help predict the time of failure. The red dotted line represents actual time of failure. The yellow horizontal line represents 
the minimum inverse velocity. 

 
 
 

Table 2. IV vs. MIV failure time prediction for data in Figure 7. 
 

Prediction IV over 60 IV over 1440 

IV Prediction 8/3/2013 10:16 PM 8/4/2013 8:46 PM 

MIV Prediction 8/3/2013 8:47 PM 8/4/2013 6:20 PM 
 

Scan time: 5 min; Failure time: 08/03/2013 10:06 PM; Minimum inverse velocity: 0.011179 
days/in. 

 
 
 
that using the MIV method has the potential to turn an unsafe 
prediction into a safe prediction. The prediction times for the IV 
method might be closer to the actual time of failure; however, a 
disadvantage of the method is that it provides a prediction time that 
is past the failure leaving no room to remove employees and 
equipment from any hazardous areas. 

In another case study related to the application of the MIV 
method, we show the data collected from site Y (Figure 7 and Table 
2). In this case, the recorded failure time was 10:06 PM on 3rd 
August, 2013 with a scan period of 5 min per scan and a calculated 
minimum inverse velocity of 0.011179 day/in. While analyzing the 
inverse velocity data averaged over 60 min, the IV method gave a 
prediction of 10:16 PM on 3rd August, 2013 whereas the MIV 
method gave a prediction of 8:47 PM on 3rd August 2013. For this 
site, the IV method’s forecast falls in the unsafe zone, while the MIV 
method provides a safe prediction. When the same dataset is 
analyzed using a moving-average window of 1440 min, the 
prediction with the IV method yields a value of 8:46 PM on 4th 
August 2013, and 6:20 PM on 4th August 2013 with MIV method. 
With the 1440-min window, neither method provides a safe 
prediction; however, the MIV method is closer to the actual time of 
failure. 
 
 
Maximum velocity method (MV) 
 
No evidence has been found in the literature for velocity being used 
to predict the time of slope failure. An attempt has been made in 
this paper to demonstrate that velocity can be used to get an 

estimate of the time of slope failure similar to the use of inverse 
velocity. Similar to the MIV method, the MV method uses the 
frequency of the radar, the wavelength and the time per scan to 
calculate the maximum velocity. 

It is noteworthy to reiterate that the IV method has become 
popular because of the fact that the inverse velocity of an 
accelerating slope approaches zero. However, the tendency of the 
velocity curve to follow the shape of the deformation curve and 
approach infinity makes it difficult to get a close fit straight line to 
the data and obtain a reliable prediction. 
The effort to use velocity for predicting the time of failure follows the 
use of minimum inverse velocity. We mentioned previously that 
radar systems have a limit on the range of deformation they can 
measure during a given scan. The maximum deformation that can 
be obtained in a day, from a radar scan is calculated based on the 
maximum allowance of measurement per scan. In most cases, the 
radar readings will approach the maximum velocity only if the slope 
is moving too fast where the fast-moving slope is indicative of a 
possible failure. It is however assumed that the time it takes for the 
radar to reach the maximum velocity/day, will be the same as the 
predicted failure time. An attempt was therefore made to use this 
approach to forecast failure times. Based on our analysis, about 
45% of the predictions were either in the safe zone or closer to the 
actual failure time. 

The use of MV method was inspired by the question: If inverse 
velocity that is generated from velocity can be used to predict time 
of failure then why can velocity not be used in a similar manner to 
predict the time of failure? The problem encountered while using 
the velocity curve to make predictions was the shape of the curve.  
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Figure 8. Demonstration of the use of maximum velocity for slope failure prediction at location A. The blue line represents 
deformation; yellow line represents velocity averaged over 60 min. The green dotted line represents the extended SPLINE 
to help predict the time of failure. The red dotted line represents actual time of failure. The orange horizontal line 
represents the maximum velocity. 

 
 
 
Any attempt to fit a straight best-fit line through the velocity curve 
would not give a reliable prediction. To overcome this problem, the 
Bessel SLINE was used to fit through the velocity curve in order to 
make predictions using velocity data. 

When attempting to use the velocity curve of a moving slope, it is 
advisable to use the data past the inflection point – the point of 
maximum curvature – in the deformation curve. The shape of the 
velocity curve does not allow close fit of a straight line in order to 
make a reliable prediction. For the purposes of this study, a Bessel 
SPLINE curve was fit through the velocity curve and extended to 
intersect the maximum velocity (in/day) line as shown in Figure 8. 
The maximum velocity is different for each dataset since the scan 
time for each area would be different. The five simple steps below 
define the use of MV method: 
 
1) Find the Maximum Velocity (in/day) for your data set using the  
     equation demonstrated previously. 
2) Narrow down the data set to include the data demonstrating the 
progressive trend of moving slope. Discard all the data points prior 
to the visible progressive trend in the data. 
3) Create a new set of time values that include the minimum and 
maximum time of the dataset, while keeping the time interval 
between the new time values less than half the scan time. It is 
important to have time values that go past the last available time 
data point. 
4) Use the SPLINE function to generate new velocity values based 
on the new time values. The SPLINE function helps populate new 
deformation value for the new time values based on the original 
data. The function helps fill in the holes to generate the best-fit line 
of a curve that can be extended to follow the initial curvature of the 
line. 
5) Graph the SPLINE values, find the intersecting point of the 
extended velocity curve and the maximum velocity. The intersecting 
point between the velocity curve and the maximum velocity will be 
the failure time prediction. 
Figures 8 and 9 provide an illustration of the use of maximum 
velocities for two different failures. Figure 8 shows the use of the 
MV method for site A. In this case, the calculated      is 49.7 
in/day, the real time of failure 4:17 PM on 25

th
 October 2012 and 

the prediction from the extended SPLINE is 4:21 PM on 25th 
October, 2012, which is approximately within 5 min of the actual 

failure time. This prediction is very close to the real time of failure. 
Figure 9 shows another example of using the MV method. The 
calculated      is 40.7 in/day, the real time of failure 10:24 PM on 
20th June 2009 and the failure prediction 12:36 AM on 21st June 
2009, making this prediction approximately 2 h past the actual time 
of failure. The application of the MV method to 22 datasets at our 
disposal provided 45% better predictions compared to the popular 
IV method. 

 
 
RESULTS 
 
In order to analyze and compare the performance of the 
proposed minimum inverse velocity method with the IV 
method, 22 datasets from seven different surface mines 
were analyzed. Table 3 summarizes the results of the 
analysis. The time difference between the actual time of 
failure and IV ranged from approximately -0.48 to 362 h, 
whereas the time difference between the real time of 
failure and MIV ranged from ~ -8.67 to 2.92 h. The data in 
Table 3 shows predictions based on the IV and MIV 
methods for each failure analyzed. It also shows the 
difference between the two methods for each slope 
failure. The column “IV – MIV” provides the time 
difference between the two approaches. Positive values 
represent the number of hours MIV prediction is closer to 
the real time of failure compared to IV. Each positive 
value in the “IV – MIV” column represents a success for 
MIV, while each negative value represents a success for 
IV. Based on the results presented above 16 of the 22 
failures analyzed gave a better result using MIV method. 
In the 16 cases that demonstrate a better prediction, the 
smallest improvement is about 0.05 hours while the 
largest improvement is 360 h. The success rate for the 
MIV results in a 75% improvement in slope failure 
predictions compared to the IV method. 

different.  

 

Failure 

prediction 
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Figure 9. Demonstration of the use of maximum velocity for slope failure prediction at location B. The blue line represents 
deformation; yellow line represents velocity averaged over 60 minutes. The green dotted line represents the extended SPLINE 
to help predict the time of failure. The red dotted line represents actual time of failure. The orange horizontal line represents 
the maximum velocity. 

 
 
 

Table 3. Comparison between Inverse Velocity Method (IV) and Minimum Inverse Velocity Method (MIV) from 22 different failure 
examples. 
 

S/N Actual time of failure Prediction: IV Delta time (h) Prediction: MIV Delta time (h) IV – MIV (h) 

1 3/2/14 4:23 3/2/14 5:55 1.54 3/2/14 5:48 1.42 0.12 

2 10/25/12 16:17 10/25/12 16:47 0.51 10/25/12 15:35 -0.69 -0.18 

3 4/22/13 13:27 4/22/13 13:58 0.52 4/22/13 10:02 -3.40 -2.88 

4 3/14/10 4:01 3/14/10 4:16 0.26 3/14/10 4:02 0.03 0.24 

5 7/11/13 0:20 7/11/13 0:25 0.10 7/11/13 0:13 -0.11 -0.01 

6 7/21/11 15:01 7/21/11 15:17 0.28 7/21/11 14:35 -0.42 -0.14 

7 3/10/09 7:12 3/10/09 7:51 0.65 3/10/09 7:42 0.52 0.13 

8 6/20/09 22:24 6/21/09 1:09 2.76 6/20/09 23:58 1.57 1.20 

9 2/9/10 12:38 2/9/10 14:05 1.47 2/9/10 13:20 0.71 0.75 

10 1/30/15 18:25 1/30/15 21:55 3.51 1/30/15 21:11 2.78 0.74 

11 5/5/14 5:04 5/6/14 2:41 21.62 5/4/14 20:23 -8.67 12.96 

12 6/16/14 6:58 6/16/14 7:10 0.21 6/16/14 4:01 -2.95 -2.74 

13 1/28/12 9:14 1/28/12 12:04 2.84 1/28/12 9:08 -0.10 2.74 

14 10/29/12 12:15 10/31/12 18:58 54.73 10/29/12 11:58 -0.28 54.45 

15 9/25/12 8:40 9/26/12 18:16 33.61 9/25/12 4:33 -4.12 29.49 

16 3/26/13 21:03 4/10/13 23:08 362.10 3/26/13 23:58 2.92 359.18 

17 2/24/12 11:27 2/24/12 17:03 5.61 2/24/12 13:42 2.26 3.36 

18 3/13/13 9:48 3/13/13 9:19 -0.48 3/13/13 8:45 -1.04 0.56 

19 3/5/12 4:09 3/5/12 4:34 0.43 3/5/12 4:31 0.38 0.05 

20 8/3/13 22:06 8/3/13 23:53 1.79 8/3/13 22:15 0.16 1.63 

21 7/27/12 18:50 7/27/12 19:38 0.81 7/27/12 19:00 0.18 0.64 

22 10/24/13 22:39 10/24/13 22:40 0.03 10/24/13 20:58 -1.68 -1.65 
 

For the analysis demonstrated, all calculations are based on a 60-min averaging window. 

 
 
 
A 95% confidence interval was calculated for both 
methods. The results are shown in Table 4. Based on the 

confidence interval calculations we can conclude that 
95% of  the  slope  failure predictions calculated using the  

1. maximum velocity will be the failure time prediction.  
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Table 4. Confidence interval calculated for the IV and MIV methods.  
 

Statistical parameter 
95.5% Confidence interval 

IV Method MIV Method 

Mean (µ) 22.5 -0.48 

Standard deviation (σ) 77.04 2.57 

Upper limit 176.52 4.66 

Lower limit -131.39 -5.62 
 

The calculations use µ±2σ to get the upper and lower bounds of the 95.5% confidence interval. 

 
 
 

 
 

Figure 10. Distribution of failure predictions using IV method. Line AB represents failure time. 

 
 
 
IV method will fall between -131 and 176 h away from the 
real time of failure. When the confidence interval was 
applied to the datasets used for analysis, 21 of the 
predictions fell in the 95% CI using IV method. The 

confidence interval calculated for MIV indicate that 95% 
of the slope failure predictions calculated using MIV will 
fall between -6 and 5 h away from the real time of failure. 
Twenty-one of the 22 data sets analyzed gave a time of

prediction as well as get a safe failure prediction. The 
time difference between the real time of failure and 
predictions made using IV and MIV method were rotated 
45° and plotted on an x-y plot in Figures 10 and 11 to 
represent the safe vs. unsafe prediction visualization 
similar to Figure 2. While Table 3 shows all the failure 
predictions using IV and MIV method, Figure 10 
demonstrates the distribution of failure predictions using 
the IV method in relation to the time of failure. The outlier 
with a time difference of 362 h in the data set from IV 
predictions was eliminated from the graph to demonstrate 
a better visualization of the rest of the data. From the 
distribution of IV predictions, it is visible that some failure 
predictions are close to the actual time of failure, but only 
one prediction is before the failure. Figure 11 
demonstrated the distribution of failure predictions using 

MIV method about the time of failure. Any point in Figure 
11 below the red line represents a failure prediction 
before the actual failure time and corresponds to a 
negative value in Table 3. Based on the data 
demonstrated in Figure 11 it is evident that 50% of the 
failures have a prediction in the safe zone. The 
comparison between failure predictions using IV and MIV 
shows an improvement in time of failure predictions when 
MIV method is used. 
 
 
DISCUSSION 
 
Risk management analysis is crucial as there is always 
room for unanticipated ground movement on the surface 
or  underground.  The  unexpected  movement   leads   to  
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Figure 11. Distribution of failure predictions using MIV method. Line AB represents failure time. 

 
 
 
hazardous conditions that could endanger lives and 
demolish expensive equipment. Several measures can 
be taken to help reduce the effects of ground failure 
including the use of monitoring devices to provide 
advance warning, safe geotechnical design, secondary 
supports or rock catchment systems, etc. (Girard and 
McHugh 2000). 

In the mining industry and the topic at hand, it is clear 
that failure prediction is a crucial part of all 
geomechanical analysis. The use of a displacement 
versus time plot is the first common step for any failure 
analysis. When the displacement trend enters the tertiary 
stage, it tends to increase asymptotically towards failure. 
As the initial signs of failure are visible from monitoring 
data it is important to analyze the data and make some 
failure predictions to ensure the safety of the employees 
and company assets. For the research purpose of this 
paper, many different variations of analysis were used. 
Similar to any experiment there were a few successful 
and unsuccessful results for the analysis of time failure 
prediction of an unstable area in an active mine site. The 
successful methods used for the purpose of this paper 
included the MIV and the MV methods as described 
above. 

Many researchers have concluded that the inverse 
velocity method as defined by Fukuzono (Mufundirwa et 
al., 2010) is a very powerful tool for making slope failure 
predictions and has been used for failure analysis to 
date. This method has been highly popular through the 
decades and has provided close to real time predictions 
of failures. Many of these predictions fall into the unsafe 
zone despite being close to the actual time of failure. For 
the time of slope failure analysis, inverse velocity and 

velocity trends are assumed to be linear and approaching 
zero or infinity, for predicting the time of failure. The 
linearity assumption is heavily dependent on any 
instrumental and natural noise in the data (Carlá et al., 
2017b). As noise is present in any data due to natural or 
unnatural conditions, data smoothing is a crucial part of 
slope stability analysis. Usually, the data is smoothed 
over 60 min or over 24 h. The smoothing over 60 and 
1440 min is used as the minimum and maximum values 
for the failure prediction window. The smoothing over 
1440 can be changed based on the requirements of each 
mine site. The smoothing over 60 min allows the data to 
be close to the actual reading and not removing all the 
noise found in the data. Whereas smoothing over 1440 
min permits the removal of most noise and makes the 
data very smooth. 
 
 
Successes 
 
Minumum inverse velocity method 
 
This paper presents an improvement to the existing 
inverse velocity method for predicting the time of slope 
failure by shifting the predicted time of failure into the 
safe zone. The enhancement incorporates the use of 
minimum inverse velocity in the calculation of the time of 
failure. The minimum inverse velocity is calculated based 
on the wavelength of the radar used and the number of 
scans per hour. As mentioned above, data smoothing is 
an important step in the process to reduce the amount of 
high-frequency noise introduced after taking the 
derivative  of  the   deformation  data.  For  all   the   case  
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studies in this paper, the data was smoothed using a 60-
min window. Figures 6 and 7 visually exhibit that the use 
of the MIV method helps convert unsafe predictions into 
safe predictions. One advantage of using the minimum 
inverse velocity is that the limitations of the radar systems 
are taken into consideration, allowing for the majority of 
predicted failure times to occur before the actual failure 
and prolonging the life expectancy curve for the moving 
area. 

Two different smoothing time intervals were chosen to 
calculate a time prediction window with an upper and 
lower limit between which the failure might occur. The 
data smoothed over 60 min provides the lower limit of the 
time window and the smoothing over 1440 min 
contributes the upper bound of the failure prediction 
window. There could be a few rare cases where the 
situation might be reversed; however, none of the data 
analyzed in this paper showed that trend. The primary 
purpose of this study was to show an improvement in the 
time of failure prediction using the new proposed MIV 
method. Table 3 illustrates a detailed comparison 
between the IV and MIV methods. For the purpose of the 
analysis carried out in this investigation, the inverse 
velocity was smoothed over a 60-min period. The results 
in Table 3 show a 75% improvement in the slope failure 
predictions made using the MIV method. 
 
 
Maximum velocity method 
 
Application of the maximum velocity method is similar to 
the MIV method. When calculating the time of failure, we 
rely on the fact that the deformation and velocity trends 
get steeper and more linear as we get closer to the actual 
time of failure. To use the MV method, the first step is to 
calculate the maximum velocity the radar can measure in 
a day based on the wavelength and the time it takes to 
complete one scan. Once an accelerating trend is 
observed in the deformation curve, analysis can be 
started. In the case studies presented above, a Bessel 
SPLINE function was fit to the velocity curve shortly past 
the inflection point (the point of maximum curvature) in 
the deformation curve. The extended SPLINE line was 
then used to find the intersection point on the maximum 
velocity line. The predicted time of failure was then 
obtained at the intersection point. This method was 
successful in getting close predictions to the actual time 
of failure, however, only about half the predictions fell in 
the safe zone. 

When using radar data, it is important to remember that 
the data captured by the radar is influenced by the line-
of-sight (LOS) between the sensor and the area of 
interest. The recorded displacement of the slope 
movement could be considerably lower than the actual 
total displacement based on the setup of the radar and 
the angle at which the deformation is measured (Carlá et 
al., 2017a). If the LOS does not allow the radar to capture  

 
 
 
 
the true deformation, the calculated velocity will be lower, 
hence further away from the maximum velocity range of 
the radar resulting in predictions further away from the 
real time of failure. A potential disadvantage of this 
method is the effect of smoothing on the predicted 
values. Smoothing the data using a window longer than 
60 min tends to push the prediction times further out into 
the future (past the actual failure time). The projections 
are pushed out into the unsafe zone because the velocity 
curve loses its steepness with higher smoothing 
denominations. The data will always be noisy close to the 
actual failure and oversmoothing the velocity might 
reduce the influence of the data points prior to failure. 
Since this technique provided reliable predictions less 
than 50% of the time, the authors hope that this approach 
could potentially be improved with the help of machine 
learning techniques. 
 
 
Challenges 
 
Use of log inverse velocity (IV) and log velocity (V) 
curve 
 
As previously mentioned, there are three types of slope 
movement encountered at a mine site: progressive, 
regressive and steady movement. Progressive movement 
is the primary concern when it comes to unstable slopes. 
In 1985 when Fukuzono established the inverse velocity 
method for slope failure predictions, he performed tests 
to identify if a concave, convex or linear trend line would 
provide the most accurate time of failure. He concluded 
that a linear fit gives the best predictions (Fukuzono, 
1985). Since the inverse velocity method was 
established, linear trend lines have been fit through the 
inverse velocity curves to make predictions. When 
looking at a real data set, it is clear that a velocity curve 
follows the shape of the deformation curve, so it would 
seem inappropriate to fit a straight line to data that exhibit 
an exponential trend.  

It is a well-known fact that the use of the logarithm 
function can help linearize an exponential curve; 
therefore an attempt was made to use the log of IV 
values for the analysis of data. Converting the IV into log 
values provided an almost linear trend; however, it made 
the slope of curve much steeper. Extending the best fit 
line of the log of IV values intersected the x-axis much 
earlier than the actual failure time, making the failure 
prediction extremely inaccurate. The intent to use the log 
values was to bring the failure time prediction closer to 
the actual failure time, however, the analysis of the data 
had the opposite effect. The use of this method for time 
of failure prediction was not as successful as anticipated. 
Along with the log of IV, an attempt was made to use the 
log of the velocity curve to intersect the maximum velocity 
line. Similar to the log of the inverse velocity values this 
method did not produce the intended results. In this case  



 
 
 
 
also, the log values helped linearize an exponential-
looking curve, however, using log function made the 
slope much shallower. This has the net effect of pushing 
the predictions deeper into the unsafe zone and 
increasing the gap between the actual and the predicted 
time of failure. 
 
 
Conclusion 
 
The ultimate objective of a geotechnical risk management 
analysis is to successfully manage slope instabilities that 
pose a threat to personnel, equipment and continued 
production of the mine (Chandarana et al., 2016). 
Unforeseen slope movements have occurred in the past 
and continue to be an issue today regardless of all the 
precautions taken during the initial phases of mine design 
(Harries et al., 2006). Geotechnical risk management 
analysis is used to reduce the danger of unforeseen 
slope failures. The primary reason for accurate slope 
failure prediction is to provide sufficient time to evacuate 
workers and machinery from the affected areas safely. 
Based on the different methods of analysis evaluated in 
this paper, the minimum inverse velocity method 
outperformed the existing and popular inverse velocity 
method in all the cases. More studies are required to 
further evaluate the performance of the MIV method for 
the purpose of slope failure analysis. Finally, slope 
failures can be estimated but cannot be fully controlled. 
While different data analysis techniques are being 
developed to improve prediction times, a 
phenomenological model taking into account all the 
factors affecting instability may provide the best option to 
obtain estimates of slope failure. 
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