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One of the most serious problems in tunneling projects are falling rock blocks. By considering this fact, 
the importance of stability predicting using some input parameters can be obviously understood. 
Among the existing rock mass classification systems for underground structures, rock mass rating 
(RMR) and Q are probably the most widely used ones this is rather unlikely to change, at least in the 
near future, frequently used and more available in tunneling projects, therefore establishing a proper 
and valid stability method based on such items would be useful. Since none of them (RMR and Q) can 
reflect the tunnel stability condition entirely and each has some lacks in rock mass properties defining, 
therefore both of them were used in this analysis which can provide the whole perspective of rock mass 
condition and stability. For this aim, data (RMR, Q, and hydraulic radius) from 104 cases of eight tunnel 
projects were gathered. By observing the stability condition in each tunnel, the data were classified in 
three categories: stable, potentially unstable and unstable. Two models next were defined and the 
related formulas were found using binary and multinomial logistic regression, at last the best predictor 
model would be selected by using the percent of correctly predicted cases in each model. The results 
of this paper show that the logistic regression (LR) is a robust tool to establish and develop predicting 
model for tunneling projects and can assist engineers to predict the stability condition of tunnels.  
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INTRODUCTION 
 
Rock falls and collapses in excavation projects result in 
considerable fatalities and damages in man sources and 
machinery. So for long time, many stability analyzes have 
been considered, and a lot of studies were conducted to 
predict and control these events in tunnels, stopes, pillars 
and, as a result different stability graphs were 
established. For example, The Mathews stability graph 
method for open-stope design was first proposed for 
mining at  depths  below  1000 m  (Mathews,  1980),  and 
during years it has been modified by  Potvin (1988), 
Stewart and Forsyth (1995), Nickson (1992), and 

Hadjigeorgiou et al. (1995) for example the modified 
Mathews stability graph by Stewart and Forsyth was 
shown in Figure 1. Other different stability graphs have 
been developed during years to estimate the stability 
condition and the probability of failure for stopes, pillars, 
tunnels such as; Laubscher’s caving stability graph 
(Laubscher, 1990). Barton et al. (1974) stability graph 
method based on the NGI tunneling index Q, pillar 
stabilitygraph developed by Lunder (1994) and  modified 
by Mah (1995).  

The   purpose  of  this  paper  is  to  develop  a  stability 
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Figure 1. Three stability zones of original Mathews’s stability graph 
modified by Stewart and Forsyth (1995). 

 
 
 
graph and method especially for tunnels based on both 
RMR and Q rock mass classification systems, because 
the two widely-used and available systems in tunnels are 
the Norwegian Geotechnical Institute's Q system, Barton 
et al. (1974) and the various versions of the rock mass 
rating (RMR) system, originally proposed by Bieniawski  
(1973). Interestingly, both systems trace their origin in 
tunneling. After all each of these rock mass classification 
systems has some lacks which cause not being able to 
reflect the tunnel stability condition entirely. For example 
the Q system does not take the rock material strength 
into account explicitly, although it is implicitly included in 
arriving at the stress reduction factor  
(SRF). The SRF in Q system may be significant 
depending on the depth. The orientation is also not taken 
into account. The RMR does not take account of the 
confining stress in the rock mass, nor explicitly the 
number of joint sets. Since both rock quality designation 
(RQD) and joint spacing are classification parameters 
considerable weight is given to block size and also the 
weighting of parameters in these two rock mass 
classification systems are different (Barton et al., 1974; 
Barton, 1991; Bieniawski, 1973, 1976, 1989). 

Anyway, these two rock mass rating systems, that is, 
RMR and Q, were considered as candidates for 
assessing geotechnical conditions of these eight tunnels. 
But as mentioned just above, none of these systems 
adequately can describe all the observed geotechnical 
conditions and failure mechanisms. The  final  conclusion 
was that a hybrid system would provide the best results. 

For this reason, both of these systems (RMR and Q) 
were used in the models. The two models including the 
two rock mass classifications were made using logistic 
regression, in which the probability of stability can be 
predicted by entering RMR, Q and hydraulic radius ( hR ) 

of each case as input variables given in Table 1. The 
hydraulic radius of tunnel is defined as below: 
 

Hydraulic radius (
hR ) =  

P

S
 

                              (10) 
  
Where S is the tunnel cross-section area and P is the 
tunnel cross-section perimeter. At last the best model 
was selected to estimate and classify the tunnel 
conditions using statistical result of each model. 
 
 
LOGISTIC REGRESSION (LR) ANALYSIS 
 
Logistic regression is useful for situations in which the 
purpose is to predict the presence or absence of a 
characteristic or outcome based on values of a set of 
predictor variables (independent). It is similar to a linear 
regression model but is suited to models where the 
dependent variable is discrete and discontinuous. 
Logistic regression is applicable to a broader range of 
research situations than discriminant analysis. For 
example, in mining engineering fields, the logistical 
regression analysis was used by Trueman et al. (2000) to  
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Table 1. Data of eight tunneling projects. 
 

No. RMR Q hR (m) Stability condition
 

No. RMR Q hR (m) Stability condition 

1 45 1 2.7 S 53 11 0.024 4.5 U 

2 50 1.9 1.75 S 54 14 0.049 4.5 U 

3 25 0.12 2.9 P 55 48 1.33 2 S 

4 72 22.4 6.3 S 56 55 1.8 2 S 

5 45 1 6.5 S 57 38 0.08 2 U 

6 37.5 0.48 3.6 P 58 46 2.6 2 S 

7 27.5 0.21 3.6 P 59 30 0.16 2 U 

8 22.5 0.09 3.6 U 60 42 0.09 2 U 

9 42.5 0.84 3.6 S 61 64 16.72 6 S 

10 14 0.049 4.5 U 62 41.5 0.33 6 U 

11 11 0.049 4.5 U 63 31 0.24 2.3 U 

12 14 0.024 4.5 U 64 51 2.2 2.3 P 

13 11 0.024 4.5 U 65 53 7.42 3.45 S 

14 17 0.049 4.5 U 66 60 5.28 4 S 

15 35 0.33 4.5 U 67 58 4 2 S 

16 43 0.89 3.6 S 68 56 4.2 2 S 

17 35 0.36 3.6 P 69 65 2.7 2 S 

18 47.5 1.47 3.6 S 70 44 0.99 2 P 

19 22.5 0.17 3.6 P 71 41 1.33 2 S 

20 32.5 0.27 3.6 P 72 29 0.44 2 U 

21 17.5 0.05 3.6 U 73 61 6.3 2 S 

22 37.5 0.048 3.6 U 74 52 2.7 2 S 

23 22.5 0.09 3.6 U 75 53 4.1 2 S 

24 27.5 0.27 3.6 S 76 51 2.72 2 S 

25 53 4.1 2 S 77 51 2.2 2 S 

26 52 2.7 2 S 78 36 0.41 2 U 

27 61 6.3 2 S 79 48 1.56 2.5 P 

28 58 4 2 S 80 28 0.17 2.5 U 

29 56 1.4 2 S 81 76 6.25 6 S 

30 41 0.33 2 P 82 54 6.27 2.25 S 

31 32 0.33 4.5 U 83 41 1.67 2.25 P 

32 32 0.66 4.5 U 84 21 0.088 2.25 U 

33 39 0.44 4.5 U 85 47 1.32 2.25 P 

34 42 1.65 4.5 U 86 30 0.55 2.25 U 

35 39 1.44 4.5 U 87 34 0.55 2.25 U 

36 42 1.65 4.5 U 88 36 0.66 2.25 U 

37 46 1.2 4.5 U 89 54 6.6 2.25 S 

38 47 1.98 4.5 U 90 24 0.066 2.25 U 

39 44 2.145 4.5 U 91 32.5 0.27 3.5 P 

40 44 1.98 4.5 U 92 27.5 0.15 3.6 P 

41 44 3.96 4.5 U 93 37.5 0.48 3.6 S 

42 47 3.96 4.5 S 94 32.5 0.27 3.5 P 

43 45 4.29 4.5 U 95 22.5 0.15 3.6 P 

44 45 6.16 4.5 S 96 22.5 0.09 3.6 U 

45 45 7.48 4.5 S 97 37.5 0.48 3.6 S 

46 57 7.66 4.5 S 98 22 0.21 3.6 P 

47 66 3.96 4.5 S 99 18.5 0.05 3.6 U 

48 69 7.04 4.5 S 100 17.5 0.05 3.6 U 

49 69 4.62 4.5 S 101 47.5 1.47 3.6 S 

50 55 4.62 4.5 S 102 45.5 1.18 3.6 S 
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51 60 4.62 4.5 S 103 42.5 0.84 3.6 S 

52 58 4.62 4.5 S 104 37.5 0.48 3.6 S 
 

hR = Hydraulic radius, S = Stable, P = Potentially-unstable, U= Unstable. 

 
 
 

 
 
Figure 2. Extended Mathews stability graph based on logistic regression 

(Mawdesley, 2001). 

 
 
 
analyze databases of stable and collapsed slopes from 
Australian mines or by C. Mawdesley, R. Trueman and 
W. J. Whiten to extend the Mathews stability graph which 
is given in Figure 2 (Mawdesley et al., 2001) and also 
Molinda et al. (2000), performed simple regression 
analysis with some significant geotechnical variables like 
overburden, bolt strength, bolt capacity, grout length, 
density, entry width, coal mine roof rating (CMRR) and 
intersection span for predicting the roof fall rate. This type 
of analysis is appropriate to data sets with a binary or 
multinomial dependant variable and a number of 
numerical independent variables. Generally, logistic 
regression analysis has two basic forms; a) binary, b) 
multinomial that a sort summary of them have been 
brought as following: 
 
 
Binary logistic regression  
 
Binary logistic regression is most useful when the aim is 
to model the event probability for a categorical response 
variable (dependent) with two outcomes (dichotomous). 
For example: An engineer wants to know if a particular 
excavation with input parameters such as geotechnical 
properties of rock mass would fall in stable category or 
unstable. Since  the  probability  of   an   event   must   lie 

between 0 and 1, it is impractical to model probabilities 
with linear regression techniques, because the linear 
regression model allows the dependent variable to take 
values greater than 1 or less than 0. The logistic 
regression model is a type of generalized linear model 
that extends the linear regression model by linking the 
range of real numbers to the 0 to 1 range. The general 
form of the logistical regression described by Charles 
(2002), is shown in Equation 2.  
 

Ze
pr

−

+

=

1

1
 

                                                           (2) 
 
Where pr is the probability for the category with logit 
value 1,

kk xbxbbZ +++= ...110
, =k Number of 

independent variables, ix =independent variables 

(predictors), 
ib = regression coefficients which are 

estimated by maximum likelihood method suggested by 
Cox (1970). 
 

 
Multinomial logistic regression  
 
Multinomial logistic regression is  useful  for  situations  in  
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Table 2. Parameter estimations and statistical summery. 
 

Stability condition
 

Parameter jib  Std. error 95% Confidence interval for Exp (B) 

0.00 (unstable) 

Intercept 7.736 2.687 Lower bound Upper bound 

RMR -0.209 0.060 0.722 0.912 

Q -0.125 0.239 0.552 1.409 

hR  0.328 0.294 0.780 2.471 

      

 

0.50 (potentially-unstable) 

Intercept 6.988 2.976   

RMR -0.147 0.068 0.756 0.986 

Q -0.606 0.518 0.198 1.507 

hR  -0.211 0.353 0.405 1.619 

 
 
 
which the purpose is to classify subjects based on values 
of a set of predictor variables. This type of regression is 
similar to binary logistic regression, but is more general 
because the dependent variable is not restricted to two 
categories. For example; an engineer wants to know if a 
particular excavation with input parameters such as 
geotechnical properties of rock mass would fall in stable 
category, potentially-unstable or unstable categories. 
 

k

i

ZZZ

Z

i
eee

e
pr

+++

=

...21

 
                                               (3) 

 

Where  is the probability of falling each case in 

category ,  (k= Number 

of independent variables, Xi: independent variables 

(predictors), bji: regression coefficients for category i ). As 

it stands, if you add a constant to each Z, then the 
outcome probability is unchanged. This is the problem of 
non-identifiably. To solve this problem, kZ  is (arbitrarily) 

set to 0. The
thk category is called the reference 

category, because all parameters in the model are 
interpreted in reference to it. 

 
 
DATA ANALYSIS 
 
In this paper the input parameters are RMR, Q and 
hydraulic radius ( hR ) which are the independent variables 

(predictors). The dependent variable (response) is the 
stability condition which is a categorical variable divided 
into three categories; stable, potentially-unstable and 
unstable. These variables for each tunneling case were 
given in Table 1. Since the dependent variable (stability 
condition) has categorical nature, using logistic models is 
so practical therefore to well-defined models were 
considered as following and their applicability would be 
evaluated. 

Model 1 
 
In this model all cases have been classified into three 
categories namely; stable, potentially-unstable, unstable. 
The three logit values 1, 0.5 and 0 are assigned to stable, 
potentially-unstable and unstable categories, 
respectively. The nature of this model show that it should 
be analyzed by multinomial logistic regression, therefore 
for this aim, the SPSS statistical software was used and 
the parameter estimations and statistical summary results 

have been summarized in Table 2 in which jib  are the 

regression coefficients in kkiiii xbxbbZ +++= ...110 of 

Equation (3). In this analysis the reference category is 
stable (logit value 1.00). There are several ways to 
estimate the logistic model accuracy and reliability but 
among them using the classification results or goodness 
of fit is so usual. The goodness-of-fit results are given in 
Table 3. The reliability and goodness-of-fit table shows 
the practical results of using the multinomial logistic 
regression model in classifying the 104 cases. Cells on 
the diagonal are correct predictions and cells off the 
diagonal are incorrect predictions. For example, this table 
shows that there are 47 stable cases, of which 42 cases 
have been classified correctly into stable category and 
the 5 remained cases were incorrectly classified into the 
unstable category by the model. After all, the total 
percent of correctly classified cases in this model is 
71.2%. However, the overall percentage is 71.2% but it 
can be seen that about potentially-unstable category the 
correct classification percent is not satisfactory because 
out of 17 potentially-unstable cases only one case was 
classified correctly and 11 cases were fell into the 
unstable category and the 5 remained cases have been 
classified into the stable category. Two important results 
could be extracted from Table 3, are as follows: 
 
(1) This model doesn’t classify the potentially-unstable 
cases satisfactorily and it is not a proper and reliable 
model for this category. 
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Table 3. Reliability and goodness-of-fit for model 1. 
 

Observed 
Predicted 

0.00 0.50 1.00 Percent correct 

0.00 31 2 7 77.5 

0.50 11 1 5 5.9 

1.00 5 0 42 89.4 

Overall percentage 45.2 2.9 51.9 71.2 
 
 
 

Table 4. Parameter estimations. 
 

Parameter 
hR  Q RMR Constant 

ib  -0.140 0.222 0.192 -8.320 

 
 
 

Table 5. Reliability and goodness-of-fit for model 2. 
 

Observed 

Predicted 

Stability condition 
Percentage correct 

0.00 1.00 

Stability condition 
0.00 (unstable) 49 8 86.0 

1.00 (stable) 9 38 80.9 

Overall percentage   83.7 
 
 
 

(2) In order to integrate the potentially-unstable category 
with any of stable and unstable categories, it should be 
added to the unstable category because the logistic 
model tends to classify its cases into the unstable 
category. 
By using the presented Formula (3), the formulas of this 
model are as following: 
 

01 =Z  
                                                                        (4) 

 

hRQRMRZ 0.211606.00.147988.650.0 −−−=  

+−−=  
           (5) 

 

hRQRMRZ 328.0125.0209.0736.700.0 +−−=  
               (6) 

 

 
hh

h

RQRMRRQRMR

RQRMR

unstable
ee

e
yprobabilit

0.211606.00.147988.6328.0125.0209.0736.7

328.0125.0209.0736.7

1
−−−+−−

+−−

++

=  

                                                      (7) 
 

hh

h

RQRMRRQRMR

RQRMR

unstablep
ee

e
yprobabilit

0.211606.00.147988.6328.0125.0209.0736.7

0.211606.00.147988.6

1
−−−+−−

−−−

−

++

=  
                                                     (8) 

 

hh RQRMRRQRMRstable
ee

yprobabilit
0.211606.00.147988.6328.0125.0209.0736.7

1

1
−−−+−−

++

=

                                                       (9) 
 
In these formulas, Z1 = 0 because the reference category 
is stable with logit value 1.0. 
 
 

Model 2 
 

Next, the potentially-unstable and unstable categories  
were taken into one  category  called  unstable,  so  there  

are two categories stable and unstable, this is a kind of 
binary problem. In this model, the two logit values 1, and 
0 are assigned to stable and unstable categories, 
respectively. After analyzing by SPSS software the 
Tables 4 and 5 results were achieved. In Table 4, ib  are 

the regression coefficients in kk xbxbbZ +++= ...110 of 

Equation (3). From goodness of fit table,  it  can  be  seen  
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Table 6. Regression analysis summary and parameter estimates. 
 

Equation R Square Constant B (coefficient) 

Linear 0.456 34.159 3.080 

Logarithmic 0.835 43.082 8.090 

Exponential 0.331 31.841 0.077 

 
 
 

 
 
Figure 3. Correlation between RMR and Q rock 

mass classifications. 

 
 
 
that out of 57 unstable cases, 49 cases were classified 
correctly, totally 86.0% of all unstable cases are classified 
correctly and just 8 cases have been classified wrongly. 
About stable category, we can see that out of all 47 
stable cases, 38 cases were classified correctly and the 
total correct percentage is 80.9 which are reliable and 
satisfactory. Overall percentage of correctly classified 
cases in this model is 83.07. In this model any of 
categories have been classified satisfactorily and yet the 
total percent is reliable. By using the Formula (2), the 
related formulas are as following: 
 

zstable
e

yprobabilit
−

+

=

1

1
 

                                   (10) 
 

hRRMRQZ 140.0192.0222.0320.8 −++−=  
      (11) 

 

)140.0192.0222.0320.8(
1

1

hRRMRQstable
e

yprobabilit
−++−−

+

=

   (12) 
 

)140.0192.0222.0320.8(

)140.0192.0222.0320.8(

1 h

h

RRMRQ

RRMRQ

unstable
e

e
yprobabilit

−++−−

−++−−

+

=

    (13) 

An example 
 
Consider a tunnel with these rock mass properties as: 
RMR = 45, Q= 6.16 and hR  = 4.5 m. The model 2 is used 

to predict the stability in this tunnel, the results are as 
following: Probability of stability=74% and probability of 
instability=26%. Since the stability probability is greater 
than the instability probability this case falls in stable 
category, field observation shows that this case is stable 
as obtained from analysis. 

In order to establish curves between RMR and 
hydraulic radius ( hR ) or Q and hydraulic radius ( hR ), the 

relationship between these two rock mass classifications 
should be found. To find the relationship between RMR 
and Q rock mass classifications in these tunnels, three 
forms of regression were done between them which their 
results are given in Table 6. The results of this table show 
that the logarithmic regression is the best equation 
between them. The curves of three regression forms are 
shown in Figure 3. 

 
082.43090.8 += LnQRMR                                         (14) 

 
By  using  the  Equation  (14),  the  RMR  or   Q   can   be  
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Figure 4. Stable and potentially unstable and unstable regions. 
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Figure 5. Isoprobability contours for stable tunnel based on logistic regression. 

 
 
 

substitute by each other, in the probability formulas. Then 

the equation between RMR (and Q), hR  and probability 

of stability (or instability) could be obtained. And then the 

curves RMR versus hR  or Q vs. hR  can be drawn. By 

experience, engineering judgment and field observations 
the stable and potentially-unstable boundary is a line in 
which probability of stability is 60% and instability is 40% 
and also the boundary line between unstable and 
potentially-unstable is where the instability probability is 
60%, on the other word in the stability probability is 40%. 

These three different zones are shown in Figures 4 and 
7. The isoprobability contour figures for two stable and 
unstable categories have been given in Figures 5, 6, 8 
and 9. 
 
 

CONCLUSION 
 

Due to the increasing number of tunnels which are being 
developed, this paper focused on the evaluation of eight 
tunnels stability and establishing a stability graph based 
on   logistic  regression  models  and  rock  mass    classi- 
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Figure 6. Isoprobability contours for unstable tunnel based on logistic regression. 
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Figure 7. Stable and potentially unstable and unstable regions. 

 
 
 
fication systems. For this aim the data of 104 cases form 
eight developing tunnels including RMR, Q, hydraulic 
radius and stability condition, were gathered and then two 
well-defined logistic models were considered. After 
analyzing with these models, it was understood that 
considering all the cases into two separate stable and 
unstable categories using binary form is so satisfactory. 
This model classifies cases 83.7% correctly. From 
engineering  judgment  point  of  view,  this   precision   is  

adequate and reliable. 
To plot the graphs of RMR vs. hydraulic radius or Q vs. 

hydraulic radius and the isoprobability contours, some 
regression models between data of RMR and Q were 
done and the best equation between them was obtained. 
By using this relationship the related curves have been 
drawn. The results of this paper show that the LR is a 
reliable and proper tool to establish and develop the 
predicting  model  for  tunneling  projects  and  can  assist  
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Figure 8. Isoprobability contours for stable tunnel based on logistic regression. 
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Figure 9. Isoprobability contours for unstable tunnel based on logistic regression. 

 
 
 
engineers to predict the stability condition of tunnels. The 
approach presented in this paper has been employed as 
a practical tool for decision making process in order to 
arrive at a workable solution. 
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