Full Length Research Paper
References
Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA, Lima EC (2009). Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass. Desalination 249:343-347. Crossref |
||||
Balcerzak M (2002). Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Anal. Sci. 18(7):737-50. Crossref |
||||
Barefoot RR, Van Loon JC (1999). Recent advances in the determination of the platinum group elements and gold. Talanta 49(1):1-4. Crossref |
||||
Barnes RM, Boumans PWJM (1978). Recent advances in emission spectroscopy: Inductively coupled plasma discharges for spectrochemical analysis. In CRC Critical Reviews in Analytical | ||||
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965-77 Crossref |
||||
Bianchi F, Maffini M, Mangia A, Marengo E, Mucchino C (2007). Experimental design optimization for the ICP-AES determination of Li, Na, K, Al, Fe, Mn and Zn in human serum. J. Pharm. Biomed. Anal. 43(2):659-665. Crossref |
||||
Bingol D, Kuku M (2011). Optimization of the solid phase extraction method for the determination of Cu(II) in natural waters by using response surface methodology. Analyst 136:4036-4044. Crossref |
||||
Boumans PWJM (1987). Inductively Coupled Plasma Emission spectroscopy. Part II: Applications and Fundamentals. New York: John Wiley & Sons. Volume 2. | ||||
Boumans PWJM (1979). Inductively coupled plasma-atomic emission spectroscopy: Its present and future position in analytical chemistry. Fresenius' Zeitschrift für Analytische Chemie 299(5):337-361. Crossref |
||||
Boss CB, Fredeen KJ (1999). Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Norwalk: Perkin Elmer. | ||||
Bruns RE, Scarminio IS, de Barros Neto B (2006). Statistical design-chemometrics. Armsterdam: Elsevier. Volume 25. | ||||
Butcher DJ (2010). Advances in inductively coupled plasma optical emission spectrometry for environmental analysis. Instrum. Sci. Technol. 38(6):458-469. Crossref |
||||
Compernolle S, Wambeke D, De Raedt I, Kimpe K, Vanhaecke F (2011). Direct determination of Pd, Pt and Rh in fire assay lead buttons by laser ablation-ICP-OES: automotive exhaust catalysts as an example. J. Anal. Atom. Spectrom. 26(8):1679-84. Crossref |
||||
Candioti LV, de Zan MM, Camara MS, Goicoechea HC (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123-138. Crossref |
||||
Chang SH, Teng TT, Ismail N (2011). Screening of factors influencing Cu(II) extraction by Soybean oil based organic solvents using fractional factorial design. J. Environ. Manag. 92:2580-2585. Crossref |
||||
Chung YS, Barnes RM (1988). Determination of gold, platinum, palladium and silver in geological samples by inductively coupled plasma atomic emission spectrometry after poly (dithiocarbamate) resin pre-treatment. J. Anal. Atom. Spectrom. 3(8):1079-82. Crossref |
||||
De Aguiar PF, Bourguignon B, Khots MS, Massart DL, Phan-Than-Luu R (1995). D-optimal designs. Chemomet. Intell. Lab. Syst. 30(2):199-210. Crossref |
||||
Delacroix A, Porte C (1996). Use of experimental design with direct optimization methods in chemometrics. Analusis 24(1):22-25. | ||||
Deng LY, Tang B (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica 9(4): 1071-1082. | ||||
Ferreira SLC, dos Santos WNL, Bezerra MA, Lemos Deng A, Bosque-Sendra JM (2003). Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry. Anal. Bioanal. Chem. 375:443-449. Crossref |
||||
Ferreira SL, Queiroz AS, Fernandes MS, dos Santos HC (2002). Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atom. Spectrosc. 57(12):1939-1950. Crossref |
||||
Fisher RA (1925). Statistical methods for research workers. New Dehli, India: Genesis Publishing Pvt Ltd. | ||||
Gabrielsson J, Lindberg NO, Lundstedt T (2002). Multivariate methods in pharmaceutical applications. J. Chemom. 16(3):141-160. Crossref |
||||
Galley PJ, Hieftje GM (1994). Easily ionizable elements (EIEs) interference in inductively coupled plasma atomic emission spectrometry – II. Minimization of effects by choice of observation volume. Spectrochim Acta Part B: Atom. Spectrosc. 47(7):703-724. Crossref |
||||
Ghasemi E, Raofie F, Najati (2011). Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. Leaves. Food Chemistry 126:1449-53. Crossref |
||||
Hanrahan G, Zhu J, Gibani S, Patil DG (2005). Chemometrics and statistics: Experimental design. In Encyclopedia of Analytical Science, 2nd ed., Worsfold PJ, Townshend A, Poole CF, eds. Oxford: Elsevier. pp. 8-13. Crossref |
||||
Hanrahan G, Lu K (2006). Application of factorial and response surface methodology in modern experimental design and optimization. Crit. Rev. Anal. Chem. 36:141-51. Crossref |
||||
Harvey D (2000). Developing a standard method. In Modern Analytical Chemistry. Boston, Massachusetts: McGraw-Hill, Ch. 14:677-704. | ||||
Hill PD (1980). D-optimal designs for partially nonlinear regression models. Technometrics 22(2):275-276. Crossref |
||||
Hill SJ (2008). Inductively coupled plasma spectrometry and its applications. Oxford, UK: Blackwell Publishing Ltd. | ||||
Hirokawa K (1980). Coherent forward scattering technique for determination of lead in steels, in copper and in tin. Anal. Chem. 52(12):1966-1968. Crossref |
||||
Hou X, Jones BT (2000). Inductively coupled plasma/optical emission spectrometry. In Encyclopedia of Analytical Chemistry. Chichester: John Wiley and Sons Ltd. pp. 9468-9485. Crossref |
||||
Ingle JD, Crouch SR (1988). Flame and plasma atomic emission spectrometry. In Spectrochemical Analysis. Englewood Cliffs, New Jersey, USA: Prentice-Hall. 8:225-256. | ||||
Jarosz J, Mermet JM, Robin JP (1978). A spectrometric study of a 40-MHz inductively coupled plasma—III. Temperatures and electron number density. Spectrochimica Acta Part B: Atom. Spectrosc. 33(3-4):55-78. Crossref |
||||
Kornblum GR, De Galan L (1977). Spatial distribution of the temperature and the number densities of electrons and atomic and ionic species in an inductively coupled RF argon plasma. Spectrochimica Acta Part B: Atom. Spectrosc. 32(2):71-96. Crossref |
||||
Larson GF, Fassel VA (1979). Line broadening and radiative recombination background interferences in inductively coupled plasma-atomic emission spectroscopy. Appl. Spectrosc. 33(6):592-599. Crossref |
||||
Lenahan WC, Murray-Smith RD (1986). Assay and analytical practice in the South African mining industry. Johannesburg, South Africa: South African Institute of Mining and Metallurgy, Monograph Series, M6; 616p. | ||||
Mentre F, Mallet A, Baccar D (1997). Optimal design in random-effects regression models. Biometrika 84(2):429-442. Crossref |
||||
Mitchell TJ (1974). An algorithm for the construction of "D-optimal" experimental designs. Technometrics 16(2):203-210. | ||||
Mutihac L, Mutihac R (2008). Mining in chemometrics. Analytica Chimica Acta. 612:1-18. Crossref |
||||
Pokhrel D, Viraraghavan T (2006). Arsenic removal from aqueous solution by iron oxide coated fungal biomass: A factorial design analysis. Water Air Soil Pollut. 173:195-208. Crossref |
||||
Raaijmakers IJ, Boumans PW, Van Der Sijde B, Schram DC (1983). A theoretical study and experimental investigation of non-LTE phenomena in an inductively-coupled argon plasma-I. Characterization of the discharge. Spectrochimica Acta Part B: Atom. Spectrosc. 38(5-6):697-706. Crossref |
||||
Reddi GS, Rao CR (1999). Analytical techniques for the determination of precious metals in geological and related materials. Analyst 124(11):1531-40. Crossref |
||||
Skoog DA, Holler FJ, Nieman TA (1998). Instrumental analysis. Saunders College Publishing, Philadelphia, USA. | ||||
Sredovic Ignjatovic ID, Onjia AE, Ignjatovic LM, Todorovic ŽN, Rajakovic LV (2015). Experimental Design Optimization of the Determination of Total Halogens in Coal by Combustion–Ion Chromatography. Analyt. Lett. 48(16):2597-2612. Crossref |
||||
Sun ZH, Zhu K, Mao Y, Wang WG (2004). Determination of trace platinum, palladium and gold in samples by ICP-AES and fire assay preconcentration. Guang pu xue yu guang pu fen xi= Guang pu. 24(2):233-235. | ||||
Titterington DM (1975). Optimal design: Some geometrical aspects of D-optimality. Biometrika 62(2):313-320. Crossref |
||||
Todolí JL, Gras L, Hernandis V, Mora J (2002). Elemental matrix effects in ICP-AES. J. Analyt. Atom. Spectr. 17(2):142-169. Crossref |
||||
Thompson M (2012). Handbook of inductively coupled plasma spectrometry. Chapman & Hall, New York, | ||||
Tripković MR, Holclajtner-Antunović ID (1993). Study of the matrix effect of easily and non-easily ionizable elements in an inductively coupled argon plasma. Part 1. Spectroscopic diagnostics. J. Analyt. Atom. Spectrom. 8(2):349-357. Crossref |
||||
Tyssedal J (2008). Plackett–Burman Designs. Encyclopedia of statistics in quality and reliability III. Hoboken, New Jersey, USA: John Wiley & Sons, Crossref |
||||
Uchida H, Tanabe K, Nojiri Y, Haraguchi H, Fuwa K (1981). Spatial distributions of metastable argon, temperature and electron number density in an inductively coupled argon plasma. Spectrochimica Acta Part B: Atom. Spectrosc. 36(7):711-718. Crossref |
||||
Vanhaecke F, Vandecasteele C, Dams R (1993). 'Zone Model' as an Explanation for Signal Behaviour and Non-spectral Interferences in Inductively Coupled Plasma Mass Spectrometry. J. Analyt. Atom. Spectrom. 8:433-438. Crossref |
||||
Zhaneni Z, Wagatsuma K (2002). Matrix effects of easily ionizable elements and nitric acid in high power microwave induced nitrogen plasma atomic emission spectrometry. Spectrochim Acta Part B. Atom. Spectrosc. 57:1247-1257. Crossref |
||||
Zhang N, Ma Y, Shen Y, Gao X (2014). Determination of Platinum, Palladium, Ruthenium, Rhodium, and Iridium in Ultrabasic Rock from the Great Dyke of Zimbabwe by Inductively Coupled Plasma–Optical Emission Spectrometry. Analyt. Lett. 47(12):2072-2079. Crossref |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0