Journal of
General and Molecular Virology

  • Abbreviation: J. Gen. Mol. Virol.
  • Language: English
  • ISSN: 2141-6648
  • DOI: 10.5897/JGMV
  • Start Year: 2009
  • Published Articles: 38

Review

Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant

L. A. O. Awata
  • L. A. O. Awata
  • Directorate of Research, Ministry of Agriculture and Food Security, Ministries Complex, Parliament Road, P. O. Box 33, Juba, South Sudan.
  • Google Scholar
B. E. Ifie
  • B. E. Ifie
  • West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana.
  • Google Scholar
P. Tongoona
  • P. Tongoona
  • West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana.
  • Google Scholar
E. Danquah
  • E. Danquah
  • West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, PMB 30, Legon, Ghana.
  • Google Scholar
M. B. Jumbo
  • M. B. Jumbo
  • International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya.
  • Google Scholar
M. Gowda
  • M. Gowda
  • International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya.
  • Google Scholar
P. W. Marchelo-D’ragga
  • P. W. Marchelo-D’ragga
  • Department of Agricultural Sciences, College of Natural Resources and Environmental Studies, University of Juba, P. O. Box 82 Juba, South Sudan.
  • Google Scholar
Chelang’at Sitonik
  • Chelang’at Sitonik
  • International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya.
  • Google Scholar
L. M. Suresh
  • L. M. Suresh
  • International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P. O. Box 1041-00621, Nairobi, Kenya.
  • Google Scholar


  •  Received: 06 April 2019
  •  Accepted: 19 June 2019
  •  Published: 30 June 2019

References

Adams IP, Harju VA, Hodges T, Hany U, Skelton A, Rai S, Deka MK, Smith J, Fox A, Uzayisenga B, Ngaboyisonga C, Uwumukiza B, Rutikanga A, Rutherford M, Ricthis B, Phiri N, Boonham N (2014). First report of maize lethal necrosis disease in Rwanda. New Diseaee Report 29:5197.
Crossref

 

Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, Souza-richards R, Nath P, Nixon T, Fox A, Barnes A, Smith J, Skelton A, Thwaites R, Mumford R (2013). Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology 62:741-749.
Crossref

 
 

Akbar S, Tahir M, Wang M, Liu Q (2017). Expression Analysis of Hairpin RNA Carrying Sugarcane mosaic virus (SCMV) Derived Sequences and Transgenic Resistance Development in a Model Rice Plant. BioMed Research International 2017:1-10.
Crossref

 
 

Ala-poikela M, Goytia E, Haikonen T, Rajama M, Valkonen JPT (2011). Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF (iso) 4E and eIF4E and contains a 4E binding motif. Journal of Virology 85:6784-6794.
Crossref

 
 

Alford DV (2000). Pest and disease management handbook. Blackwell Science Ltd., London, UK 624 p.
Crossref

 
 

Amari K, Lerich A, Schmitt-keichinger C, Dolja VV (2011). Tubule-Guided Cell-to-Cell Movement of a Plant Virus Requires Class XI Myosin Motors. PLoS Pathogens 7:1-11.
Crossref

 
 

Ammar E, Jarlfors U, Pirone T (1994). Asociation of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Pyytopathology 84:1054-1060.
Crossref

 
 

ASARECA (2014). Maize lethal necrosis diseae in Africa: past, present and planned initiatives. ASARECA 17:1-8.

 
 

Beyene Y, Gowda M, Stephen LMS, Olsen M, Oikeh SO, Juma C, Tarekegne A, Prasanna BM (2017). Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica 213:1-13.
Crossref

 
 

Braidwood L, Quito-avila DF, Cabanas D, Bressan A, Baulcombe DC (2017). A first global phylogeny of Maize chlorotic mottle virus. bioRxiv: The preprint server for Biology 23:1-13.
Crossref

 
 

Cabanas D, Watanabe S, Higashi C, Bressan A (2013). Dissecting the mode of maize chlorotic mottle virus transmission (Tombusviridae: Machlomovirus) by Frankliniella williamsi (Thysanoptera: Thripidae). Journal of Economic Entomology 106:16-24.
Crossref

 
 

Cann A (2005). Principles of moleular virology, 4th Editio. Elsevier Academic Press 332 p.

 
 

Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. The Plant Cell 8:1669-1681.
Crossref

 
 

Chauvin ND, Mulangu F, Porto G (2012). Food Production and Consumption Trends in Sub-Saharan Africa : Prospects for the Transformation of the Agricultural Sector. United Nations Developmenrt Programme P 76.

 
 

Cheng Y, Liu Z, Xu J, Zhou T, Wang M, Chen Y, Li H, Fan Z, Fan Z (2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology 89:2046-2054.
Crossref

 
 

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169-196.
Crossref

 
 

Csorba T, Kontra L, Burgyán J (2015). viral silencing suppressors : Tools forged to fi ne-tune host-pathogen coexistence. Virology 480:85-103.
Crossref

 
 

Cuellar W, Kreuze J, MRajamaki M, Cruzado K, Untiveros M, Valkonen J (2009). Elimination of antiviral defense by viral RNase III. PNAS 106:10354-10358.
Crossref

 
 

den Hollander P, Kiper S, Borst JW, van Lent J (2016). The role of plasmodesma-located proteins in tubule-guided virus transport is limited to the plasmodesmata. Arch Virology 161:2431-2440.
Crossref

 
 

Dolja VV, Hong J, Keller KE, Martin RR, Peremyslov VV (1997). Suppression of Potyvirus Infection by Coexpressed Closterovirus Protein. Academic Press 252:243-252.
Crossref

 
 

Fereres A, Raccah B (2015). Plant Virus Transmission by Insects The Major Transmission Modes: eLS John Wiley & Sons, Ltd 12 p.
Crossref

 
 

Gamarnik AV, Andino R (1998). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes and Development 12:2293-2304.
Crossref

 
 

García-Cano E, Resende RO, Fernández-Muñoz R, Moriones E (2006). Synergistic Interaction Between Tomato chlorosis virus and Tomato spotted wilt virus Results in Breakdown of Resistance in Tomato. Phytopathology 96:1263-1269.
Crossref

 
 

Goldberg K, Brakke MK (1987). Concentration of Maize Chlorotic Mottle Virus Increased in Mixed Infections with Maize Dwarf Mosaic Virus, Strain B. Phytopathology 77:162-167.
Crossref

 
 

Gowda M, Das B, Makumbi D, Babu R, Semagn K, Prasanna BM (2015). Genome‑wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theoretical and Applied Genetics 128:1957-1968.
Crossref

 
 

Hull R (2009). Comparative Plant Virology, Ssecond Ed. Elsevier Academic Press, London, UK pp. 1-393.

 
 

Isabirye BE, Rwomushana I (2016). Current and future potential distribution of maize chlorotic mottle virus and risk of maize lethal necrosis disease in Africa. Journal of Crop Protction 5:215-228.
Crossref

 
 

Ivanov KI, Eskelin K, Lo A, Ma K (2014). Molecular and cellular mechanisms underlying potyvirus infection. Journal of Virology 1415-1429.
Crossref

 
 

Jensen SG, Wysong D, Ball E, Higley P (1991). Seed transmission of MCMV.pdf. Plant Dieasse 75:497-498.
Crossref

 
 

Kagoda F, Gidoi R, Isabirye BE (2016). Status of maize lethal necrosis in eastern Uganda. African Journal of Agricultural Research 11:652-660.
Crossref

 
 

Karyeija RF, Kreuze JF, Gibson RW, Valkonen JPT (2000). Synergistic Interactions of a Potyvirus and a Phloem-Limited Crinivirus in Sweet Potato Plants. Virology 269:26-36.
Crossref

 
 

Kawamura-nagaya K, Ishibashi K, Huang Y, Miyashita S, Ishikawa M (2014). Replication protein of tobacco mosaic virus cotranslationally binds the 5 ′ untranslated region of genomic RNA to enable viral replication. PNAS pp. 1-9.
Crossref

 
 

Kiruwa FH, Feyissa T, Ndakidemi PA (2016). Insights of maize lethal necrotic disease : A major constraint to maize production in East Africa. African Journal of Microbiology Research 10:271-279.
Crossref

 
 

Kusia ES, Subramanian S, Nyasani JO, Khamis F, Villinger J, Ateka EM, Pappu HR (2015). First Report of Lethal Necrosis Disease Associated With Co-Infection of Finger Millet With Maize chlorotic mottle virus and Sugarcane mosaic virus in Kenya. Plant Disease 99:899.
Crossref

 
 

Leng P, Ji Q, Tao Y, Ibrahim R, Pan G (2015). Characterization of Sugarcane Mosaic Virus Scmv1 and Scmv2 Resistance Regions by Regional Association Analysis in Maize. PLOS-One 10:1-18.
Crossref

 
 

Li L, Xiong Y, Chen W, Liu Y, Lan H, Lin H, Yang K, Gao S, Pan G (2012). The genetic variation of the backcross modified lines developed from the maize line 08-641 selected by different directions. Agricultural Sciences 3:918-922.
Crossref

 
 

Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017a). A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Molecular Plant 10:520-522.
Crossref

 
 

Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Xu M (2017b). An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Molecular Plant pp. 483-497.
Crossref

 
 

Lommel S, Kendall T, Siu N, Nutter R (1991). Characterization of maize chlorotic mottle virus. Molecular Plant Pathology 81:819-823.
Crossref

 
 

Louie R (1980). Sugarcane Mosaic Virus in Kenya. Plant Disease 64:944-947.
Crossref

 
 

Lukanda M (2014). First Report of Maize chlorotic mo ‗le virus Infecting Maize in the Democratic Republic of the Congo. Plant Disease 98:2014-2016.
Crossref

 
 

Macauley H, Ramadjita T (2015). Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat. 

 
 

Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN, Stewart LR, Bryan J, Sevgan S, Nyasani JO, Kusia E, Kumar PL, Niblett CL, Kiggundu A, Asea G, Pappu HR, Wangai A, Prasanna BM, Redinbaugh MG (2015a). Maize Lethal Necrosis ( MLN ), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa. Phytopathology 105:956-965.
Crossref

 
 

Mahuku G, Wangai A, Sadessa K, Teklewold A, Wegary D, Ayalneh D, Adams I, Smith J, Bottomley E, Bryce S, Braidwood L, Feyissa B, Begassa B, Wanjala B, Kimunye J, Mugambi C, Manjero K, Prasanna B (2015b). First Report of Maize chlorotic mo le virus and Maize Lethal Necrosis on Maize in Ethiopia. Plant Disease 99:3.
Crossref

 
 

Mäkinen K, Hafrén A (2014). Intracellular coordination of potyviral RNA functions in infection. Frontiers in Plant Science 5:1-12.
Crossref

 
 

Martín S, Elena SF (2009). Application of game theory to the interaction between plant viruses during mixed infections. Journal of General Virology 90:2815-2820.
Crossref

 
 

Mbega ER, Ndakidemi PA, Mamiro DP, Mushongi AA (2016). Role of Potyviruses in Synergistic Interaction Leading to Maize Lethal Necrotic Disease on Maize. International Journal of Current Microbiology and Applied Sciences 5:85-96.
Crossref

 
 

Melcher U (2000). The "30K" superfamily of viral movement proteins. Journal of General Virology 81:257-266.
Crossref

 
 

Meyer M, Pataky J (2010). Increased Severity of Foliar Diseases of Sweet Corn Infected with Maize Dwarf Mosaic and Sugarcane Mosaic Viruses. Plant Disease 94:1093-1099.
Crossref

 
 

Mezzalama M (2015). MLN Pathogen Diagnosis, MLN-free Seed Production and Safe Exchange to Non-Endemic Countries. CIMMYT pp. 1-9.

 
 

Nault LR, Styer WE, Coffey ME, Gordon DT, Negi LS, Niblett CL (1978). Transmission of Maize Chlorotic Mottle Virus by Chrysomelid Beetles. Phytopathology 68:1071.
Crossref

 
 

Nelson S, Brewbaker J, Hu J (2011). Maize Chlorotic Mottle. Plant Disease 79:1-6.

 
 

Nutter RC, Scheets K, Panganiban LC, Lommel SA (1989). The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Research 17:3163-3177.
Crossref

 
 

Olsen M, Das B, Beyene Y, Machida L, Makumbi D, Regasa M, Gowda M, Jumbo M, Semagn K, Mahuku G, Mutasa RM, Mezzalama M, Costich DE, Molnar T, Jeffers DP, Karanja J, Jones M, Redinbaugh M, Prasanna BM (2015). Sessions 46 ­ 2 CIMMYT Breeding Progress for Tolerance to Maize Lethal Necrosis in Eastern. In CIMMYT breeding progress for tolerance to maize lethal necrosis in Eastern Africa. 

View

 
 

Olsen M, Yao N, Tadesse B, Das B, Gowda M, Semagn K, Jumbo M, Killian A (2016). Mapping genomic regions associated with Maize Lethal Necrosis (MLN) using QTL-seq. Diversity Arrays Technology Pty Ltd (DArT) 2016. 

View

 
 

Orton AWA, American S, Jun N (1918). Breeding for Disease Resistance in Plants. American Journal of Botany 5(6):279-283.
Crossref

 
 

Pruss G, Ge X, Shi M, Carrington J, Vancea V (1997). Plant Viral Synergism : The Potyviral Genome Encodes a Broad-Range Pathogenicity Enhancer That Transactivates Replication of Heterologous Viruses. The Plant Cell 9:859-868.
Crossref

 
 

Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences 1312:105-112.
Crossref

 
 

Rao G, Singh M, Gaur RK, Jain RK (2004). Antigenic and biological diversity among sugarcane mosaic isolates from different geographical regions in India. Indian Journal of Biotechnology 3:538-541.

 
 

Redinbaugh M, Jones M, Gingery R (2004). The genetics of virus resistance in maize (Zea mays L.). Maydica 49:183-190.

 
 

Ruschhaupt M, Martin D, Lakay F, Bezuidenhout M, Rybicki P, Jeske H, Shepherd D (2013). Replication modes of Maize streak virus mutants lacking RepA or the RepA - pRBR interaction motif. Virologu 442:173-179.
Crossref

 
 

Ryabov EV, Robinson DJ and Taliansky ME (1999). A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proceedings of the National Academy of Sciences of the United States of America 96:1212-1217.
Crossref

 
 

Scheets K (2016). Analysis of gene functions in Maize chlorotic mottle virus. PMD Virus Research 222:71-79.
Crossref

 
 

Scheets K (1998). Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology 242:28-38.
Crossref

 
 

Scholthof HB (2005). Plant virus transport : motions of functional equivalence. Trends in Plant Science 10:376-382.
Crossref

 
 

IPBO Facts Series (2017). Maize in Africa. 

View

 
 

Sharma K, Misra RS (2011). Molecular approaches towards analyzing the viruses infecting maize (Zea mays L.). Journal of General and Molecular Virology 3:1-17.

 
 

Shukla D, Jilka J, Tosic M, Ford R (1989). A Novel Approach to the Serology of Potyviruses Involving Affinity- purified Polycional Antibodies Directed towards Virus-specific N Termini of Coat Proteins. Journal of General Virology 70:13-23.
Crossref

 
 

Siddappa S, Sreevathsa R (2011). Strategies for Viral Disease Resistance in Crop Plants. The Asian and Australian Journal of Plant Science and Biotechnology 5:73-78.

 
 

Sitonik C, Suresh LM, Beyene Y, Olsen MS, Makumbi D, Oliver K, Das B, Bright JM, Mugo S, Crossa J, Tarekegne A, Prasanna BM, Gowda M (2019). Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics DOI: 10.1007/s00122-019-03360-x
Crossref

 
 

Soldanova M, Cholastova T, Polakova M, Piakova Z (2015). Molecular mapping of quantitative trait loci ( QTLs ) determining resistance to Sugarcane mosaic virus in maize using simple sequence repeat (SSR) markers. African Journal of Biotechnology 11:3496-3501.

 
 

Stenger D, French R (2008). Complete nucleotide sequence of a maize chlorotic mottle virus isolate from Nebraska. Archives of Virology 153:995-997.
Crossref

 
 

Stenger D, Young B, Qu F, Morris TJ, French R (2007). Wheat streak mosaic virus Lacking Helper Component-Proteinase Is Competent to Produce Disease Synergism in Double Infections with Maize chlorotic mottle virus. Phytopathology 97:1213-1221.
Crossref

 
 

Thorat AS, Pal RK, Shingote P., Kharte SB, Nalavade VM, Dhumale DR, Pawarn BH, Babu KH (2015). Detection of sugarcane mosaic virus in diseased sugarcane using ELISA and RT-PCR technique. Journal of Pure and Applied Microbiology 9:1-9.

 
 

Uyemoto J, Bockellman D, Clafin L (1980). Severe outbreak of corn lethal necrosis disase in Kansas. Plant Disease 64:99-100.
Crossref

 
 

Vincelli P (2016). Genetic Engineering and Sustainable Crop Disease Management : Opportunities for Case-by-Case. Sustainability 8:1-22.
Crossref

 
 

VirusZone M (2016). General Proteins by Strain Proteins by Name Host-virus interaction. SIB Swiss Institute of Bioinformatics pp 1-5.

 
 

Wang Q, Zhang C, Wang C, Qian Y, Li Z, Hong J (2017). Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Scientific Reports 7:1-10.
Crossref

 
 

Wangai A, Redinbaugh M, Kinyua M, Miano D, Leley P, Kasina M, Mahuku G, Scheets K, Jeffers D (2012). First Report of Maize chlorotic mo  le virus and Maize Lethal Necrosis in Kenya. Plant Disease 96:1582.
Crossref

 
 

Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein. PLOS Pathogens 6:1-12.
Crossref

 
 

Wintermantel W (2005). Co-infection of Beet mosaic virus with Beet Yellowing Viruses Leads to Increased Symptom Expression on Sugar Beet. Plant Disease 89:325-331.
Crossref

 
 

Wu J, Wang Q, Liu H, Qian Y, Xie Y, Zhou X (2013). Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China. Journal of Zhejiang University-SCIENCE B (Biomedicine and Biotechnology) 14:555-562.
Crossref

 
 

Xia X, Melchinger A, Kuntze L, Lübberstedt T (1999). Quantitative Trait Loci Mapping of Resistance to Sugarcane Mosaic Virus in Maize. Phytopathology 88:660-667.
Crossref

 
 

Xia Z, Zhao Z, Chen L, Li M, Zhou T, Deng C, Zhou Q (2016). Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Scientific Reports 6:1-12.
Crossref

 
 

Xie L, Zhang J, Wang Q, Meng C, Hong J, Zhou X (2011). Characterization of Maize Chlorotic Mottle Virus Associated with Maize Lethal Necrosis Disease in China. Journal of Phytopathology 159:191-193.
Crossref

 
 

Xie X, Chen W, Fu Q, Zhang P, An T, Cui A (2016). Molecular Variability and Distribution of Sugarcane Mosaic Virus in Shanxi , China. PLOS-One 11:1-12.
Crossref

 
 

Xu Y, Li P, Yang Z, Xu C (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal 5:175-184.
Crossref

 
 

Yang Q, Balint-kurti P, Xu M (2017). Quantitative Disease Resistance : Dissection and Adoption in Maize. Molecular Plant 10:402-413.
Crossref

 
 

Zhang-ying X, Shu-hong Z, Xin-hai L, Chuan-xiao X, Ming-shun L (2008). Identification and Mapping of a Novel Sugarcane Mosaic Virus Resistance Gene in Maize. ACTA Agronomica Sinica 34:3-7.

 
 

Zhang X, Holt J, Colvin J (2001). Synergism between plant viruses : a mathematical analysis of the epidemiological implications. Plant Pathology 50:732-746.
Crossref

 
 

Zhao J, Zhang X, Hong Y, Liu Y (2016). Chloroplast in Plant-Virus Interaction. Frontiers in Microbiology 7:1-20.
Crossref

 
 

Zhu M, Chen Y, Ding X, Webb S, Zhou T, Nelson R, Fan Z (2014). Maize Elongin C interacts with the viral genome-linked protein , VPg ,of Sugarcane mosaic virus and facilitates virus infection. New Phytologist 203:1291-1304.
Crossref