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Wellness depends on health and that, in turn, depends on the absence of disease. Analogous models 
based on physical laws have long been utilized by researchers to understand epidemic expansion in 
urban communities.  Perhaps the most significant of this class is the gravity model in which population 
size is equated with planetary mass and distance between cities to that separating planets. While the 
model assumes homogeneity among different bodies, cities or planets, in epidemiology the likelihood 
of disease spread may depend on other heterogeneous, non-constant factors. The study used a public 
dataset of H1N1 Influenza in 2009 as the focus. A natural log regression was applied in an attempt to 
sort the relative importance of gravity model variables as predictors of influenza occurrence and 
diffusion. It was found that while the model population size serves as a general predictor of disease 
expansion that distance failed as an indicator of disease dynamics. Furthermore, findings from the 
study show that disease progression was irregular and not, as one might expect from the gravity 
model, consistent in space or over time. The study concludes that the gravity model may serve only as 
a coarse predictor of disease expansion over time. By extension, this raises similar questions about 
other models in which homogeneity between populations or network of populations is assumed. 
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INTRODUCTION 
 
In February, 2020, the Wellcome Trust (2020) called for a 
program of universal data sharing as COVID-19 
expanded from a local to a regional epidemic and then 
became a global pandemic. In response, a series of 
publicly available, continuously updated ―dashboards‖ 
providing real-time, continuously updated data on viral 
incidence were developed. These included both global 
surveillance programs like the Johns Hopkins University 
dashboard (https://coronavirus.jhu.edu/map.html) as well 
as more dedicated, national or provincial data sites, (for 
example, https://resources-covid19canada.hub.arcgis. 
com/). Whatever the scale or resolution all included maps 

of viral incidence as well as the underlying data used in 
their construction. The result has been an avalanche of 
data requiring analysis. To that end, various mathematical 
models have been available to researchers (Kraemer et 
al., 2019a). Some are based on analogies to physical 
laws including, in a partial list, the gravity model, another 
based on radiation diffusion (Simini et al., 2012),

 
and, 

more recently, a third based on Ohm's 1827 law of 
electricity (Sallah et al., 2017). Others employ network 
analytics similar to those used in transportation studies. 
Finally, some analogize epidemic and pandemic 
dynamics  through  reference  to  natural phenomena like
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like ocean waves (Cliff and Haggett, 2006) and forest 
fires (Koch, 2016).  

Irrespective of the precise methods of analysis, most 
are ―share models‖ in which a specific product (a 
bacterium or virus) is shared between places (cities, 
counties, states, etc.) across a commuting or 
transportation network. All assume, as a class, a general 
pattern of transfer, constant and regular, that can be 
mathematically described based on one or another 
measure of population size and a system of interchange. 
Different models emphasize the networks (air, rail, or 
road) connecting population nodes which serve as data 
points joined at one or another scale (Kraemer et al., 
2019b). What has become increasingly clear, during the 
current pandemic, is the failure of contemporary models 
to predict disease spread in a way that will permit 
regional health planners to anticipate an epidemic 
outbreak. Thus in the spring of 2020 most assumed 
Covid-19‘s Alpha variant would expand from Michigan 
and Minnesota, where outbreaks were severe, and then 
progress across the mid-west. Instead, the disease 
barely spread to nearby Iowa or Ohio, dying out despite 
clear transportation and commuter ties. Similar 
discontinuities were observed in previous epidemics of, 
for example West Nile Virus (Koch and Denike, 2007) 
and 2009 H1N1 Influenza (Koch, 2021).  

 
 
METHODOLOGY 

 
As Cota et al. recently noted, the unprecedented volume of digital 
data now available requires we ―revisit epidemic models, in 
particular those studying the geographical spread of pathogens 
leveraging the mobility of hosts‖ (Cota et al., 2021). Here we take 
up that challenge through a focus on the Gravity Model in part 
because its two variables, population or mass and distance 
between two bodies, are central to many later models. The hope is 
that the result will both explain the strengths or limits of the 
approach and, by extension our knowledge of disease modeling. 
The goal in all this is the ability to plan for epidemic events in 
specific health jurisdictions. Our approach is two-fold. First, the 
history of the model and the manner in which it remains widely used 
in epidemiology and other fields is reviewed. The ubiquity of its 
basic principles of mass and distance are then noted as 
characteristics in all share models. Following this we employ the 
model to consider the utility of its individual elements in a study of 
the first months of the 2009 Type-A influenza pandemic in the 
United States. This approach was limited to assure a useful and 
clear understanding of the merits of the individual components of 
the model. Alternately, variations of the model, or of different 
models, might have been applied to the same dataset. However, 
the question here is not whether one model may be better than 
another but rather the general structure of the attributes of most 
share models in which the implicit assumption is one of a 
homogeneous stability of disease transfer, spatially and temporally, 
between different nodes within a system. We end by nothing 
another fundamental limit to this class of models: Where 
heterogeneity exists, the transfer process and thus the predictive 
value of the model may break down (Hanes and Fotheringham, 
1990). Increasingly, heterogeneity is seen at the local and regional 
level where specific congregate locations (assisted living and 
nursing homes, jails  or  prisons,  manufacturing  facilities,  schools,  

 
 
 
 
etc.) create local ‗hot spots‘ affecting the rate and intensity of 
disease expansion.  

 
 
Gravity model: a history 

 
Rooted in Newton's law of universal gravity, the gravity model is the 
oldest and best known of this class of models. Perhaps its best 
known applications are in economic (Anderson, 2010; Mele and 
Baistrocchi 2012) and transportation studies (Taaffe and Gauthier, 
1973, Chapt. 3). It has also has seen heavy use in modern 
epidemiology and disease studies (Balcan et al., 2009). For 
epidemiologists, the focus has been upon disease transfer and 
subsequent expansion in presumably stable populations and across 
human travel and cargo networks (Kraemer et al., 2019b). Specific 
applications have included, in a partial list: the 2009 Type A H1N1 
pandemic (Balcan et al., 2009; Viboud et al., 2006); Ebola in 2014 
(Dudas et al., 2017), measles (Xia et al., 2004), and Zika virus. 
Importantly, the model‘s use of both population size and relative 
distance, variously defined, are common elements of most models 
of disease dynamics. In its earliest formulation, Newton's Law 
described an attractive force between two bodies of different mass 
based on the distance separating them. Attraction was greatest 
between larger bodies closer to each other. This was, perhaps, the 
first expression of what Waldo Tobler famously called the First law 
of Geography: ―Everything is related to everything else, but near 
things are more related than distant things (Tobler, 1970). In the 
nineteenth century Ravenstein (1885) used Newton‘s law to 
formulate his "laws of migration" substituting the sum of two 
populations for that of two planetary masses to be divided by the 
Euclidian distance separating them. Zipf (1946) applied the model 
to urban population flows. In recent years, the basic algorithm has 
been used to analyze everything from cargo shipping patterns 
(Kaluza et al., 2010) to the inter-city volume of telephone traffic 
(Krings et al., 2009).  

Over the years, a series of modifying additions have been 
required to fit the algorithm ex post facto to specific problems. Since 
Ziff, for example, a constant typically has been included as a 
multiplier. In transport analysis, a friction measure may be 
employed to reflect relative ease of travel in the divisor: Friction 
(and thus travel time) is greater between places joined by country 
roads than a highway, for example. In other applications, a 
population numerator may be modified to reflect general welfare or 
attractiveness; in retail analysis a numerator might reflect relative 
income levels to further distinguish populations.  

 
 
Gravity model: limits 

 
Various researchers have described a range of practical and 
theoretical model limits to the model's use. First, it lacks a firm 
theoretical rationale beyond the analogy to Newton's classical 
planetary formulation (Taaffe and Gauthier, 1973, 97-98). If it 
works, therefore, the question becomes how, and why. Second, as 
a deterministic algorithm it does not easily handle a range of 
observed variations at different scales of address over time. Third, 
its application may require a series of deterrence functions for it to 
be fitted successfully to this or that problem dataset (Simini et al., 
2012). Fourth, neither its basic population product numerator nor a 
simple distance denominator are necessarily adequate, easily 
defined descriptors (Taaffe et al., 1996, 229). Finally, the model 
assumes homogeneity between population bodies of various sizes.   

In disease studies, the analog typically substitutes population 
size for planetary mass. But while the latter is a precisely 
quantifiable constant, urban populations are dynamic in nature. On 
any  day  commuter traffic may double the population of a large city, 



 
 
 
 
reducing that of smaller communities by an equal amount (Badger 
2013). As importantly, urban boundaries by which populations are 
defined are elastic and often defined using different standards 
(Duncan et al., 1961). For example, the 2010 U.S. Census recorded 
the population of Santa Clara, CA, as 945,942 persons while its 
metropolitan population was reported as 1,781,642 persons. 
Disease incidence reported in the two different jurisdictions were 28 
and 337 persons respectively in the first months of the 2009 H1N1 
epidemic (Healthmap.org). Finally, as the center of a census-
designated Combined Statistical Area (CSA) Santa Clara's 
population was over 8 million. The latter reflects, albeit loosely, 
what some describe as the appropriate analytic scale of a modern 
"megapopulation" defined by expansive, interurban exchange 
patterns (Nelson and Rae, 2016). Unfortunately, there is no 
agreement as to which urban definition is best suited to disease 
studies. Worse, it is typically unclear in disease-incidence datasets 
the urban definition (city, urban, metro, or regional) in which 
disease incidence is reported. Some appear indiscriminately to mix 
city, urban or metropolitan data in their reportage of an outbreak. 
For this study metropolitan census data was employed for the sake 
of consistency. 

Finally, simple measures of Euclidian distance between urban 
places, however they are defined, may be insufficient as measures 
of interaction between population bodies. Distance also may be 
defined by density of air travel, cargo ship routes, or local commuter 
pathways in multi-scale urban networks (Balcan and Vespignani 
2012). Various researchers have employed cell phone traffic (Exper 
et al., 2011) or currency circulation as measures of connectivity and 
distance between places.  
 
 
Influenza 2009 
 
In our consideration of the utility of the gravity model we employ a 
dataset describing the H1N1 Type-A influenza pandemic beginning 
in 2009 in Mexico City. While data on the current pandemic is 
extensive it is, unlike that of the earlier pandemic, constantly 
evolving. Furthermore, different regions have different systems of 
reportage and employ different standards of testing. This makes 
comparisons difficult. An avalanche of primary research papers 
using available data, over 17,559 articles published between 
January and June 20, 2020, has resulted in an unprecedented 
number of journal retractions of published articles (Yeo-Teh and 
Tang, 2020). 

Data on the 2009 global pandemic, however, has been firmly 
established (CDC, 2009; Fraser et al., 2009). A novel Type-A 
(H1N1) influenza virus originating near Mexico City, data on its 
expansion was broadly reported by both formal (CDC, WHO, 
PAHO, etc.) and informal (news reports) sources (Brownstein et al. 
2010). Despite early reports of high mortality, the case fatality ratio 
was approximately 0.4 percent (range: 0.3-1.8 percent). The 
reproduction number (Ro), the number of additional cases one case 
generates over the course of its infectious period, was 1.46, only 
slightly higher than that for seasonal flu, for the first wave of the 
pandemic ending in August, and 1.48 for the second wave 
(Biggerstaff  et al. 2014). Finally, the incubation rate for this virus 
was between 2 and 10 days with a mean of six days with the 
infectious period for those affected determined as being between 4 
and 7 days. 
 
 
Data 
 
A Harvard University-based research group, Healthmap.org, 
provides an automated capture network for formal (World Health 
Organization, the U.S. Centers for Disease Control, for example) 
and informal data on various infectious diseases (healthmap.org, 
2018). The later, typically news stories, usually report the findings of 
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the official organizations. In this syndromic capture system, each 
row entry includes a location (city, county, and/or country), its 
location (latitude and longitude) and a data source (typically a 
URL). For each the number of cases reported or suspected, is then 
included. Of healthmap.org‘s multi-year, influenza dataset (2008-
2012), 28,866 entries referred to the first wave of the H1N1 global 
pandemic occurring between April 1 and August 31, 2009 in the 
United States. To streamline the database locations reporting only 
one or two "wild" cases" that did not trigger greater epidemic activity 
were excluded. Similarly excluded, to prevent double counting, 
were outbreaks reported in prisons, summer camps or schools 
located in cities or counties that also reported H1N1 influenza 
outbreaks. The result of this winnowing and consolidation was a set 
of 87 U.S. locations each with more than 10 confirmed cases in 
populations—city or county—over 250,000 persons in the first 
phase of the epidemic. 

Based on this dataset, Figure 1 describes the general, spatial 
expansion of the pandemic in its first weeks. In the first six days of 
May, 2009, significant epidemic events began in Boston, New York, 
and Washington in the eastern U.S.; Los Angeles and adjacent San 
Bernardino County in Southern California; Sacramento in Northern 
California; Houston in Texas, and Seattle in the northwest. Of these 
sites only New York City reported confirmed cases in the last week 
of April, 2009 as the first wave of infection peaked in Mexico City. 

Figure 1 Maps the May 2009 pattern of H1N1 Type-A influenza 
expansion in the continental United States during the first month of 
what became a national epidemic. All these mapped locations 
shared US Census-reported populations of greater than 3.8 million 
persons and a residential density of at least 1,150 persons per 
square kilometer (https://www.census.gov/quickfacts/). All were 
directly or indirectly connected to Mexico City by between two and 
12 direct and at least sixty, one-stop indirect flights. Data on 
connections was observed for May 4, 2018 from the website 
Expedia.com. Because historical flight data was unavailable, the 
assumption was made that flight schedules between Mexico City 
and continental U.S. cities in 2018 reflected similar travel patterns 
during the earlier epidemic period.  

In the second week new outbreaks were reported in San Diego, 
CA; Atlanta, GA; Detroit, MI; and Arapahoe County near Denver, 
CO. In addition, outbreaks in the Northern and Southern California 
areas expanded to nearby cities. In the third week, further 
outbreaks appeared in Miami, FL, Dallas, TX, New Orleans, LA, 
and along the northeast corridor. By the end of the fourth week, 
major outbreaks were reported in Chicago, IL, and Milwaukee, WI. 
In addition, smaller outbreaks were reported in an increasing 
number of smaller communities elsewhere across the United 
States.  As the epidemic continued an every larger number of 
communities reported influenza cases; in larger cities a second 
wave of infection after August 29. 

 
 
RESULTS 
 
Analysis 

 
Others have used two different distant measures in 
gravity-based simulation models of the 2009 influenza 
epidemic (Balcan et al., 2009). The first was a long-
distance transfer function based on airline traffic data, the 
second used local or regional commuter flows. To these 
were added in both cases a power law function modifying 
distance parameters as well as proportionality constants 
for populations joined in a multiscale network. An attempt 
at redefining distance at two scales and with two travel 
modes in  a stochastic model suffered from several limits. 
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Figure 1. Pattern of H1N1 Type-A influenza expansion in the United States. 

 
 
 
First, a focus on airline network travel data to major cities 
made difficult any clear understanding of semi-
independent or independent transfer processes between 
primary centers (Boston, NYC, Washington, for example) 
and secondary locations (from New York City to Buffalo, 
NY, for example). Second, there was no acknowledgment 
of the different ways city populations are defined (were 
these local, metropolitan or regional population figures?). 
Third, there was no consideration of the potential for 
disease transfer by land travel across borders, especially 
in those states boarding Mexico where volumes of 
commuter and commercial exchange were likely to have 
been a source of viral transfer. To consider the utility of 
the gravity model we created a database of target city 
populations and their distance from Mexico City. As a first 
step, we then assessed a determination of fit by 
transforming the gravity model to a linear form and then 
calibrated its variables (population and distance) through 
a multivariate linear regression applying a natural 
logarithmic transformation  
To test the applicability of a multifactorial regression in 
this program we applied a Durbin-Watson test resulting in 
a very robust 1.985 result, admirably close to the 
accepted benchmark for larger data sets. This indicated 
that autocorrelation (also called serial correlation), often a 
confounding issue in spatial analysis, was not a concern. 
The resulting normal distribution of residuals returned an 
Analysis of Variance very significant at the .000 level. 
Finally, Model R (.612) and the adjusted R Square of 
.375 were better than reasonable first approximations of 
viral transmission.  

Figure 2 shows the high degree of concurrence 
between observed and expected cases resulting from a 
log natural linear regression based on the components of 
the  gravity   model.   Cases   were   those    reported   by 

helathmap.org in the early weeks of the American 
epidemic. We then sought to test the effect of each 
independent variable on the pattern of disease 
transmission by fitting a linear regression line to a partial 
regression plot for each. If the model was to be useful, 
we reasoned, the variables would individually serve as at 
least partial explicators of disease transmission. The 
partial regression plots for the dependent variables 
revealed, however, that only metropolitan population was 
relevant independent. Distance from Mexico City was 
surprisingly irrelevant as a single explanatory element in 
the epidemic's progression. This can be seen in Figures 
3a and 3b where regression lines were fitted to each of 
these variables. In the first, a R square fit of 0.375 
indicated population size was a generally robust predictor 
of disease incidence. In contrast the slope of R2 linear 
slope of 2.835 E-4 in Figure 3b suggests distance from 
Mexico City was a largely inconsequential and thus 
confounding variable. That was critical if one assumes 
distance reflects a measure by which transfer occurs 
through population exchange. In Figure 3a high degree of 
concurrence is shown between population size and a 
natural log of cases while in Figure 3b no such 
relationship exists for distance of target cities from the 
origin spot of the epidemic.     
 
 
Heterogeneity  
 
Since Euclidian distance was an unreliable divisor we 
considered substituting air travel links between the origin 
site, Mexico City, and U.S. population centers. Others 
have reported major international cities receiving more 
than 1400 passengers from Mexico City during the 
earliest stages of the epidemic were at markedly increased
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Figure 2. Degree of concurrence between observed and expected 
cases. 

 
 
 

 
 

Figure 3. Regression: (a) cases by population; (b) distance from Mexico City. 

 
 
 
risk of H1N1 transfer (Khan et al., 2009). Given an 
average Boeing 767 airplane at full capacity of 240 
international passengers this would be six planes a day. 
Passenger volumes did not, however, serve as a simple 
distance  substitute.   In   the  first   week   in  the  US  the 

number of direct flights from Mexico included: Boston, 
MA (2 Flights), Houston (11 flights), Los Angeles, (16 
flights), New York City (12 flights), San Francisco/San 
Bernardino (11 flights), Seattle, WA (7 flights), and 
Washington,  DC  (3  flights). Significant but smaller cities 
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with six or more direct flights daily first reported viral 
activity in the second week: Chicago, IL (6 flights), 
Atlanta, GA, (10 flights), and Dallas, TX (11 flights). And 
yet, Miami FL, (2010 pop. 5.56 million persons) did not 
report an early outbreak despite both relative geographic 
proximity and the frequency of direct flights from Mexico 
City (14). As the epidemic expanded, it included cities 
and towns with increasingly tenuous air connections 
either to Mexico City or principal U.S. foci (NYC, LA, 
etc.). Similarly, while urban population was a useful 
general predictor it was in itself insufficient to explain fully 
the pattern of disease expansion. For example, Boston, 
MA and Atlanta, GA are comparably sized, metropolitan 
cities. US Census data reported Boston‘s 2010 
population as 692,600 persons and Atlanta‘s as 420,003 
persons. Metropolitan populations reported were far 
higher, of course with 4,628,910 persons reported 
resident in metropolitan Boston and 6,020,964 in Atlanta. 
And yet, the outbreak began earlier in the former than the 
latter despite its far greater distance from Mexico City 
(3,670 miles vs. 1,792 miles).  

Here the problem of heterogeneity among locations 
became critical. It is possible that the introduction of 
influenza to Boston resulted less from an influx of 
infected travelers from Mexico than commuting and travel 
volumes between it and New York City. Similarly, 
commuter travel volumes between New York City/Boston 
and Washington, DC. (Pop. 5.6 million in 2010), may 
better describe the latter's early epidemic onset than 
either travel volume from Mexico or metropolitan size 
alone.  The early introduction of H1N1 influenza to 
Seattle, WA, with a city population in 2010 of 608,660 
persons, is not easily explained with reference either to 
population size or the limited number of direct daily flights 
from Mexico. Airline intercourse with Los Angeles and 
San Francisco may have been a factor, however. But of 
greater importance may have been that May is the month 
in which many of Washington State's estimated 185,000 
seasonal workers, primarily Mexican and Central 
American, arrive through Seattle to work in the state's 
agriculture industry. This would have increased the inflow 
of potentially infected if still asymptomatic persons who, 
working and living in a high density environment, likely 
would have accelerated viral activity. 

In the same vein, the delay until the third week for a 
major outbreak in Miami, FL, seemed problematic. The 
frequency of daily flights from Mexico City, Miami's 
relative proximity to Mexico, and the presence of a large 
Latino population would have argued for an earlier and 
more virulent epidemic expansion. While its 2010 
population was only 399,457 persons, that of Miami-Dade 
County was far higher (2,498,018 persons). However, 
South Florida's Spanish-speaking population is largely 
Puerto Rican and Cuban, not Mexican or Central 
American. It is therefore probable that direct flight 
passengers from Mexico used Miami not as a destination 
but a brief, first stop in travel to other locations. 

 
 
 
 
DISCUSSION 
 
What appears to have emerged was a kind of nested 
hierarchy (Balcan and Vespignani, 2012); in which H1N1 
expansion began in a small set of international cities 
hosting frequent air travel from Mexico City. These cities 
became independent or semi-independent foci for 
epidemic expansion to secondary and then tertiary cities 
with few if any links to the origin site. This expansion 
occurred across secondary exchange networks among 
relatively proximate, and later, more distant metropolitan 
centers in the US. Population size appeared to be an at 
best coarse descriptor of attraction. The result was not 
one of a consistent attraction but one resulting, at least in 
part, from local characteristics and circumstances. These 
include, for example, the dynamic effect of commuting 
traffic on the size of a city population. For example, New 
York City‘s resident population doubles in size on a 
normal workday as suburban workers enter the city 
(Badger, 2013). The populations of commuters‘ home 
cities decreased by a similar amount. Population itself 
thus becomes a dynamic variable, not a constant. In 
addition, within each city the likelihood of viral expansion 
was dependent not only on size, and transmission by 
commuters or travelers, but the presence or absence of 
congregate locations (jails, manufacturing plants, 
schools, summer camps, military bases, etc.) in which 
once introduced a respiratory virus might spread. This 
was evident in a study of the 2009 H1N1-Type Influenza 
database employed in this study (Koch, 2020, 8) and, 
again, in the expansion of Covid-19 in 2020-2021. Thus, 
the national expansion of H1N1 influenza resulted from 
not one gravitational process but a series of distinct if 
related dynamics, including population and exchange 
patterns, involving a broad set of heterogeneous places. 
Perhaps the best analogy is hydrologic in which 
waterways are ordered in z hierarchical design frame in 
which data independence for each place is not assumed. 
Refining that observation and applying a hydrologic 
perspective to disease expansion will be the subject of a 
future report. 
  
 
Conclusion 
 
This is not to argue the gravity model should be 
abandoned. "Attraction" remains a powerful and useful 
concept. Care must be taken, however, in defining the 
populations of related urban populations employed in its 
calculations. Further, the nature of cargo, commuting, 
and other travel networks linking populations of different 
sizes and at different distances provides a complex mix 
of interactive volumes any (or all) of which may affect the 
date and rate of bacterial or viral introduction and 
potential expansion.  One simply cannot assume that 
homogeneity exists among various populations at all 
scales, or  that all places  within a network are equal. Nor  



 
 
 
 
will a single measure of distance or connectivity (work 
flow, for example) necessarily serve as a simple 
measure. It is thus unlikely that a single algorithm will 
fully describe or predict disease expansion within a nation 
or at a different scale its individual regions. There is 
therefore an obvious need for further research both 
based on heterogeneity and the specifics of resident 
populations and the means by which this or other models, 
with different variables, might better serve to predict 
patterns of disease expansion. The next stage in this 
study for us will be to examine the manner in which this 
virus was transferred over time between primary foci, 
NYC, Boston, Los Angeles, and heterogeneous 
secondary exurban and suburban populations. The goal 
will be to more precisely define the appropriate scale of 
analysis as either urban, metropolitan or region, and to 
consider the extent to which local differences affected the 
rate of disease expansion and the severity of an epidemic 
event. 
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