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Understanding dynamics of forest cover is important to monitor change in forest area. The objective of 
the present study is to develop an approach for assessing forest cover changes in landscapes with 
high spatial complexity and temporal variation that can allow the generation of robust monitoring 
information. The forest-cover change maps were produced using time-series of Landsat images, high 
resolution images from Google Earth, free software R and QGIS. A complete map of forest cover 
change at 30 m spatial resolution was produced over 603'972 ha. The result was validated by photo-
interpretation of 5000 randomly sampled points and on the basis of high-resolution images available in 
Google Earth (Quickbird) for the year 2018 and Landsat satellite images for the year 2018, 1991 and 
2003. The estimated overall accuracy of the forest cover change map is 88.7%. In the study area, the 
forest area was estimated at 246’915 ha in 1991, 232’741 ha in 2003 and 230’390 ha in 2018. The gross 
forest loss has increased from 182.5 ha/year in the first period 1991-2003 to 187.47 ha/year in the 
second period 2003-2018. The corresponding net annual forest loss (incl. regeneration) rates are 0.5% 
in the first period and 0.1% in the second period. The decrease of the net annual forest loss rate in the 
second period is attributed to an increase in forest regeneration. This study can be considered as a 
reproducible approach to map forest-cover change and can support policy approaches towards 
reducing emissions from deforestation and degradation (REDD+).  
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INTRODUCTION 
 
Changes in forest cover affect important ecosystem 
services, including biodiversity, climate regulation and 
carbon storage (Achard et al., 2002; Foley et al., 2005). 
Forest cover change in the tropics  is  recognized  by  the 

international climate change community to be a major 
contributor to anthropogenic GHG emissions. Most of the 
net flux of carbon into the atmosphere due to land-cover 
changes is attributable to deforestation in the tropics, with 
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a smaller fraction attributable to forest degradation 
(Houghton, 2012). As a consequence, a mechanism for 
Reducing Emissions from Deforestation and Forest 
Degradation and the role of conservation, sustainable 
management of forests and enhancement of forest 
carbon stocks in developing countries (REDD+) has been 
developed under the United Nations Framework 
Convention on Climate Change (UNFCCC). REDD+ aims  
at rewarding developing nations for slowing down 
deforestation and forest degradation, which is considered 
a cost effective way to mitigate anthropogenic 
greenhouse gas emissions, through a compensation 
mechanism (UNFCCC, 2010). Mapping forest cover 
change is a key issue for REDD+ program. Despite well 
established guidelines provided by the international 
scientific community (GFOI, 2016); Houghton et al. 
(2010) s ow   t  t “REDD+ pro r m  o t n l  k t   
institutional investment and scientific capacity to begin 
implementation of a program that can make use of the 
 lob l obs rv t on l r  or ”. In or  r to   t     ss to 
REDD+ result-based payments, countries require a 
national forest monitoring system for measuring forest 
cover and carbon stock changes in forests in an accurate 
and consistent way, and comparing them to a 
counterfactual reference level based on historic forest 
cover changes (UNFCCC, 2015).  

In Togo, several factors contribute to the reduction of 
forest cover. Main drivers of forest degradation and 
deforestation are traditional slash and burn agriculture, 
pasture extension, charcoal production, illegal logging 
and mining activities, with adverse consequences for 
local climate, soil degradation, livelihoods, biodiversity 
conservation and GHG emissions (MERF, 2013). The 
forests of Togo's sub-humid mountainous area constitute 
the domain of the semi-deciduous dense forests (Ern, 
1979), which are now very degraded and disappearing. 
Several previous studies (Adjonou et al., 2009; Adjossou, 
2004; Adjossou and Kokou, 2004) have shown that 
forests in the sub-humid mountainous area are very 
fragmented and have practically been reduced to hard-to-
reach areas and along rivers. This fact highlights a 
research question: (1) what forest cover changes can be 
observed in the study area over the last decades?  

Togo, as many tropical countries, has recently joined 
the REDD+ mechanism with the ambition of creating a 
new incentive system to reduce forest loss and to restore 
the integrity of degraded forests (MERF, 2013). In 2012, 
the global deforestation map produced by the University 
of Maryland (Hansen et al., 2013) attracted great 
attention from scientists. However, (Tropek et al., 2014) 
have shown that this map overestimates forest cover and 
underestimates the rate of deforestation at local level. 
Monitoring the evolution of forest cover by remote 
sensing in forests of Togo's sub-humid mountainous area 
is a challenge because of the effect of the relief, gradual 
changes of degradation and regeneration, different forest 
types that  mix  up  with  fallows  and  secondary  forests 
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growing on agricultural land, high temporal dynamic of 
clearing and regrowth and relatively low net changes of 
forest cover. This fact highlights the second research 
question: How can forest cover changes be mapped 
consistently, in areas with high diversity of forest types, 
high forest dynamics and low rates of net change? 

In the context of REDD+ in Togo, previous work on 
forest cover mapping has provided valuable insight into 
vegetation status and different maps were produced. 
Indeed, German cooperation financed the production of 
the land use map using RapidEye satellite images in the 
context of the national inventory in 2014. This mapping 
exercise was based on automated segmentation and of 
RapidEye images acquired in 2013/2014 and visual 
classification of the resulting segments. Then in 2016, the 
World Bank funded the interpretation of aerial photos 
taken between 1976 and 1985 using the same 
methodological approach. To what extent the resulting 
figures are comparable with the RapidEye map is 
uncertain and difficult to validate as the aerial images 
were not co-registered with the RapidEye images. 
Despite the production of forest cover maps for different 
dates, further improvements in classification methods for 
forest cover change are necessary in order to provide 
accurate and consistent estimates of forest cover change 
at national and subnational levels. The general objective 
of the present study is to develop an approach for 
assessing forest cover changes in landscapes with high 
spatial complexity and temporal variation, that can 
consistently be applied for repeated assessments and 
thus allows the generation of robust monitoring 
information as for example required for the reporting of 
changes in forest carbon stocks in the framework of 
REDD+. The specific objectives are to map and to 
quantify forest cover changes in different forest 
landscapes of semi-deciduous forest zone of Togo for the 
periods 1991-2003 and 2003-2018. 

 
 
MATERIALS AND METHODS 

 
Study area 

 
T   stu y  r    orr spon s to To o‟s  or st‟s zon  “ecological 
zon  IV”  n  is located in the southern part of the Atakora 
Mountains, south-west of Togo, on the border between Togo and 
Ghana in the region called Togo Mountains or Togo highlands. The 
study area extends between the latitudes 6° 15 and 8° 20 N and the 
longitudes 0° 30 and 1° E, and covers an area of 603‟972    t r s 
(Figure 1). The climate prevailing in this area is a Guinean mountain 
climate characterized by a long rainy season (8-10 months). The 
mean annual temperatures range from 21 to 25°C and the total 
annual rainfall ranges vary from 1400 to 1700 mm. This zone 
contributes significantly to species richness in Togo (Adjossou, 
2009). It is the current domain of semi-deciduous forests. The study 
area shows a strong topographic heterogeneity. The average 
altitude is 800 m, with peaks at Djogadjeto (972 m) and Liva (950 
m). It has a successions of plateaus (plateau of Kloto, Kouma, 
Danyi, Akposso, Akebou and  Adele),  where  hills  along  with  their  
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Figure 1. Study area Ecological zone IV. 

 
 
 
valleys and caves are common. Landforms are diverse and 
complex. The main geologic component is of the late Precambrian: 
Togo and Buem quartzites phyllites, shales and sandstones were 
largely folded and metamorphosed during the Cambrian Pan-
African Orogeny (Hall and Swaine, 1976). A network of complex 
secondary rivers covers the area with three catchment areas: the 
basin of the lake Volta in the west of the Mounts and basins of the 
Mono River and Zio River in the east of the Mounts. Population 
distribution and land management varies across the area with 
implications for forest cover changes (Figure 1). The research 
methodology was based on the following steps: 
  
(i) Acquisition, pre-processing, and stacking of Landsat images.  
(ii) Collecting a representative set of training plots for different 
crown cover densities observed in the region. 
(iii) Forest/non-forest classification of reference maps based on 
training plots using RandomForest. 
(iv) Forest/non-forest classification of Landsat time series based on 
reference maps, again using RandomForest. 
(v) Cleaning of time-series using majority filters. 
(vi) Accuracy assessment of resulting maps using a set of 
independent validation plots. These steps are outlined in Figure 3. 

Landsat image collection and pre-processing 
 
Landsat-type data has been proven useful for national-scale land 
cover and land cover change assessments for minimal mapping 
un ts (MM ‟s) o   bout 1    (Achard et al., 2014). A number of 
other national or regional forest cover change maps have been 
produced based on the analysis of full coverage of Landsat data 
(Achard et al., 2014; Grinand et al., 2013; Hansen et al., 2013). The 
study area is covered by two WRS2 scenes with path 193 and rows 
054 and 055. Landsat surface reflectance data at the end of the dry 
period (Jan - Feb) with less than 10% cloud cover were 
downloaded from the U.S. Geological Survey (USGS) Center for 
Earth Resources Observation and Science (EROS) portal 
(https://earthexplorer.usgs.gov/) at full spatial and spectral 
resolution (30 x 30 m resolution). The data selected was for the end 
of dry season as forests can then be best distinguished from other 
types of vegetation and classification tends to be more accurate 
than during the wet season (Liu et al., 2015). Furthermore, the 
availability of cloud-free images is limited in wet season in 
comparison to dry season. 

The final dataset obtained consists of a series of 15 geometrically 
and   radiometrically  corrected  images  from  the satellites Landsat  
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Figure 2. Examples of visual interpretation of training plots (30x30m) for crown cover 
using QGIS and QuickBird/GoogleEarth images 2018. 1/9 means that 1 of the 9 cells 
are covered by tree crowns and corresponds to a crown cover of 11%. 

 
 
 

4 and 5, Landsat 7 and 8, covering a period of 32 years (Table 1). 
According to Gutman et al. (2008) these data have satisfactory 
radiometric and geometric qualities for performing land-use change 
analysis and in particular the historical analysis of deforestation. 
Due to a sensor failure (Scan Line Corrector or SLC) since 2003, 
the Landsat 7 images of the years 2005 to 2013 have high rates of 
missing data (leaf stripping) even if it has good geometric and 
radiometric qualities (Barsi et al., 2007). For each date, the six 
spectral bands B, G, R, NIR, SWIR1 and SWIR2 of the Landsat 
images of scenes p193r054 and p193r055 were mosaicked and 
projected to the coordinate reference system WGS 84 - UTM 31. All 
data manipulation and analysis of satellite images was done using 
the R environment for statistical computing (R Core Team, 2013) 
using the R-p  k   s “r st r” (Hijmans, 2019). 
 
 

Classification of land covers change 
 

Collection of tree cover training plots data 
 

Accurate training plot data are essential for RandomForest 
classification. Several studies have shown that non-parametric 
machine learning algorithms, such as RandomForests, need a 
larger number of training data to attain optimal results (Potapov et 
al., 2012; Schneider, 2012). For obtaining a balanced set of training 
plots, the study followed a two-level sampling strategy. A random 
sample of 500 training plots was first selected and used them for 
the creation of an initial tree cover map. Based on this initial map a 
  n l s mpl  o  5‟402 tr  n n  plots was drawn, stratified according 
to the tree cover observed in the initial map. The forest cover 
training plots were defined on the basis of the Landsat pixels (30 m 
× 30 m) and interpretation was done in QGIS based on high-
resolution images of the year 2018 available in Google Earth 
(Quickbird). Based on a grid subdividing the training plots into nine 
cells, each training plot was assigned one of ten tree cover classes 
from 0 to 100% by counting the cells covered by tree crowns. 
These training plots served as the basis for the production of 2018 
tree cover map. An example of visual interpretation of training plot 
is presented in Figure 2. 
 

 

Classification with RandomForest 
 
The RandomForest algorithm, developed by Breiman (2001), was 
selected for its good predictive capabilities for land-use 

classifications (Gislason et al., 2006) and time series analysis 
(Schneider, 2012). Several authors have shown that forest cover 
classifications with RandomForest outperform classifications with 
other types of algorithms such as maximum likelihood classification 
(Gislason et al., 2006; Schneider, 2012). RandomForest is a non-
parametric supervised classification algorithm that combines the 
decision tree algorithm and an aggregation technique. The 
algorithm randomly selects a sample of observations and a sample 
of variables many times to produce a number of small classification 
trees (Breiman, 2001). “T  s  sm ll trees are then aggregated and 
  m jor ty vot  rul   s  ppl    to   t rm n  t     n l   t  ory” 
(Breiman, 2001). For this study the RandomForest implementation 
provided by the R-package "RandomForest" was used (Liaw and 
Wiener, 2002). 

In order to improve the discrimination of different densities of tree 
cover, six indices derived from the spectral bands of the satellite 
images were calculated (1) the normalized vegetation index (NDVI) 
calculated as:  

 
NDVI= (NIR-red)/(NIR+red)                                                            (1) 

 
where red and NIR stand for the spectral reflectance measurements 
acquired in the red (visible) and near-infrared regions, respectively 
(Rouse et al., 1974); (2) the enhanced vegetation index (EVI) is 
computed following this equation:  

 
EVI = 2.5 × (NIR-red)/(NIR+C1× red - C2 × blue + L) (Liu and Huete, 
1995)                                                                                             (2) 

 
where NIR/red/blue are atmospherically-corrected, L is the canopy 
background adjustment that addresses non-linear, differential NIR 
and red radiant transfer through a canopy, and C1, C2 are the 
coefficients of the aerosol resistance term, which uses the blue 
band to correct for aerosol influences in the red band. The 
coefficients adopted in Landsat are; L=1, C1 = 6, C2 = 7.5; (3) the 
Normalized Difference Moisture Index (NDMI) is calculated with the 
following equation: 

 
NDMI=(NIR−MIR)/(NIR+MIR) (Jin and Sader, 2006)                     (3) 

 
where MIR is the middle infrared; (4) the Soil Adjusted Vegetation 
Index (SAVI) is calculated as:  
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Figure 3. Flow chart of mapping of mapping deforestation from remote sensing and field forest inventory data: RF stand for 
Randomforest, FC for Forest cover, OOB stand for Out-of-bag.   

 
 
 

Table 1. Acquisition date and sensor of Landsat images used for historical analysis of deforestation 
between 1987 and 2019. The covered WRS2 scenes are p193r054 and p193r055. 
 

Year Acquisition date Sensor 

2019 16/02/2019 L8 / OLI 

2018 12/01/2018 L8 / OLI 

2017 25/01/2017 L8 / OLI 

2015 04/01/2015 L8 / OLI 

2013 23/02/2013 L7 / ETM+ (SLC-off) 

2012 04/01/2012 L7 / ETM+ (SLC-off) 

2010 30/01/2010 L7 / ETM+ (SLC-off) 

2009 27/01/2009 L7 / ETM+ (SLC-off) 

2008 25/01/2008 L7 / ETM+ (SLC-off) 

2007 22/01/2007 L7 / ETM+ (SLC-off) 

2005 01/02/2005 L7 / ETM+ (SLC-off) 

2003 27/01/2003 L7 / ETM+ 

2000 04/02/2000 L7 / ETM+ 

1991 10/01/1991 L4 / TM 

1987 23/01/1987 L5 / TM 

 
 
 
SAVI= (NIR-red) × (1+L)/(NIR+red+L) (Huete, 1988)                    (4) 

  
where NIR is the reflectance value of the near infrared band, RED 
is reflectance of the red band, and L is the soil brightness correction 
factor; (5) the Modified Soil Adjusted Vegetation Index (MSAVI) is 
calculated as: 

 
 MSAVI= (NIR-red) × (1+L)/(NIR+red+L)  (Qi et al., 1994)             (5) 

where RED is the red band reflectance from a sensor, NIR is the 
near infrared band reflectance, and L is the soil brightness 
correction factor. The difference between SAVI and MSAVI, 
however, comes in how L is calculated and (6) the Normalized Burn 
Ratio (NBR1 et NBR2) calculated as:  
 

NBR = (NIR-SWIR)/(NIR+SWIR) (Key and Benson, 2005)            (6) 
 

where NIR is near-infrared and SWIR is short-wave  infrared  bands. 



 
 
 
 

The utility of the different spectral bands and indices for the 
identification of classes: forest and non-forest has been tested with 
a recursive elimination of variables with the RFE algorithm available 
in the R-p  k    “  r t” (Kuhn, 2016). The most important 
variables for the prediction of tree cover were in the following order: 
SWIR2, SWIR1, NBR, NDMI and G but the best prediction of crown 
cover was obtained by using all six spectral bands and seven 
indices. 10-fold cross-validation, repeated three times, resulted with 
an R

2
 of 52.9% and a mean error of the crown cover of 0.19. 

 
 
Forest definition for the analysis of satellite imagery 

 
The 7th

 
Conference of the Parties of the United Nations Framework 

Convention on Climate Change (UNFCCC) adopted a general 
forest definition that allows some flexibility for national definitions: 
“For st”  s   m n mum  r   o  l n  o  0.05-1.0 hectares with tree 
crown cover (or equivalent stocking level) of more than 10-30 per 
cent with trees with the potential to reach a minimum height of 2-5 
m at maturity in situ. A forest may consist either of closed forest 
formations where trees of various stories and undergrowth cover a 
high proportion of the ground or open forest. Young natural stands 
and all plantations which have yet to reach a crown density of 10-
30% or tree height of 2-5 m are included under forest, as are areas 
normally forming part of the forest area which are temporarily un-
stocked as a result of human intervention such as harvesting or 
natural causes but which are expected to revert to forest. The FAO 
    n t on o  „ or st‟  n lu  s  ll  r  s o   t l  st 0.5    s z  w t  
canopy cover of more than 10% of trees higher than 5 m, or trees 
able to reach these thresholds in situ (FAO, 2010). This is also the 
forest definition adopted by Togo. It may seem advantageous to 
define forest at this low canopy-cover threshold, because doing so 
would ensure that most lands that contain tree cover will be 
classified as forest and will thus be eligible for REDD+ incentives 
either through reduced degradation, reduced deforestation, or 
enhancement of carbon stocks. However, according to (Achard et 
al., 2014) these “t r s ol s   nnot b  „m  sur  ‟  rom L n s t 
s t ll t   m   ry w t          ur  y” .   mor  “   s bl   ss ssm nt 
 s t  t t     nopy   ns ty b   r  t r t  n 30%” (FAO and JRC, 
2012). Most countries are defining forests with a minimum crown 
cover of 30% for UNFCCC reporting (FAO and JRC, 2012).  

In case of this study forest was defined with a minimum canopy 
cover o  30% b   us  t   stu y  r    s t   “ or st zon ” o  To o  
where natural vegetation has canopy cover between 30 and 80% 
(Bastin et al., 2019) and lower rates are a sign of advanced forest 
degradation or beginning regeneration (fallows and secondary 
forests) within agricultural slash and burn cycles. Using this 
threshold, the tree cover map 2018 was converted to a 
corresponding forest cover map. Forest loss is used to refer to a 
scenario where a pixel loses forest cover and moves from above 
30% crown cover threshold in a year, to below the threshold in a 
subsequent year. Forest gain was defined as the inverse of forest 
loss (Hansen et al., 2013).  

 
 
Producing of forest cover maps 

 
First the forest cover map 2018 was used for calibrating another 
r   r n   m p  or t   y  r 2003. T  r  or   100‟000 p x ls were 
randomly selected within a 3-pixel buffer around the forest edge 
2018 and used the forest/non-forest observations in 2018 for 
classifying the 2003 image using again the RandomForest 
algorithm. By using this approach, the 2018 was reproduced using 
the satellite image 2003. The resulting forest cover map is as close 
as possible to the 2018 map. By using this approach of backward 
projection, it was implicitly assumed that a) the proportion of pixels 
that change land cover, i.e. the  error  introduced  by  using  training  
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pixels from another date is relatively small, b) the error is not biased 
(change from forest to non-forest at least partially compensated by 
changes from non-forest to forest) and c) the classification 
algorithm is relatively robust towards errors in the training data. 
There is a risk of methodologically induced bias if these conditions 
are not met. However, the criteria seem to be fulfilled by the study 
area and the classifier chosen. Nevertheless, 2003 the was used 
instead of the 2018 forest cover map as reference map for 
classifying all 15 Landsat images in the time-series using the same 
approach (Figure 3). Using the 2003 map in the middle of the 
analysed 32-year period (1987-2019) for calibrating further maps in 
both directions should reduce the risk of methodologically induced 
bias compared to using the 2018 map as reference for backwards 
projection only. Out of bag errors, a measure of disagreement of 
t   r sult n  m p w t  t    l ss s o  t   100‟000 p x ls us    or 
calibration ranged between 19% and 26% depending on the 
number of years between the dates. 

The raw forest/non-forest maps were cleaned by calculating for 
the 15 dates the majority class of each pixel, in a sliding window of 
size five. Thereby, a given pixel at a given date is assigned with the 
 l ss t  t o  urs most o t n  n t   p x l‟s s r  s t  t  n lu  s t   
two precedent and following dates. For the second and the second 
last date in the series (1991 and 2018), a sliding window of size 
three was applied. Cleaning of the time series was repeated until 
convergence. Besides the smoothing of forest/non-forest 
transitions, this temporal filter also allows for filtering out noise from 
cloud and shadow and the missing values of the ETM+ SLC-off 
images. Forest cover changes were analyzed by comparison of the 
cleaned forest cover maps for the years 1991, 2003 and 2018. The 
initial and the last year of the series (1987 and 2019) were not 
considered in the analysis as they were not being cleaned at all 
because of missing anterior or posterior information and might thus 
contain a lot of noise compared to the cleaned images of the other 
dates. 
 
 

Accuracy assessments of the estimates of forest cover 
changes 
 
Assessing land cover change maps is known to be difficult and 
challenging (Hansen and Loveland, 2012) m  nly  u  to “t   
difficulty in obtaining accurate land cover change reference 
  t s ts”. F  l  surv ys o    stor   l    n    r   onstr  n   s n   
“t  y  nvolv  qu st on n  p opl  w t       p knowl     o  t   
 r  ‟s   story” (Grinand et al., 2013). Accurate assessment of forest 
cover change therefore requires particul r  tt nt on.   tot l o  5‟000 
validation pixels (30m x 30m) were randomly selected from the 
study area and used for assessing the accuracy of the cleaned 
1991, 2003 and 2018 forest cover maps and corresponding 
transitions. The forest/non-forest status of each validation pixel in 
the year 2018 was assessed by determining the tree cover within 
the pixel using high-resolution images for the year 2018 available in 
Google Earth (Quickbird) and considering as forest when tree cover 
is at least 30%. The forest/non-forest status for the years 2003 and 
1991 was then determined by comparing Landsat images. If a 
change from forest to non-forest or vice versa could be observed 
compared to the 2018 image, their status was changed accordingly 
(Figure 4). For the resulting three-date transition classes the overall 
   ur  y  Co  n‟s K pp   s w ll  s t   pro u  r  n  us r 
accuracy of the different classes were calculated including 
corresponding confidence intervals and area estimates as proposed 
by Olofsson et al. (2014). 
 
 
Field validation of forest regeneration  
 
The validation of the forest cover maps is complemented by a field 
mission for field control. Main objective was to get first-hand information  
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Figure 4. Examples of visual interpretation of validation plot for land cover change using QGis, QuickBird/Google Earth 
images and Landsat images. From top left to bottom right: cluster of training plots overlaying QuickBird images from Google 
Earth (12/02/2018) and Landsat (OLI, ETM+ and TM) false color composite RGB = 4, 5, and 3 acquired at dates 12/01/2018, 
27/01/2003 and 10/01/1991. 

 
 
 
information of the land-cover and land-use types where 
regeneration was detected on the maps. Therefore 106 pixels were 
randomly selected within the forest    n  l ss s  n t   “Pl  n  o  
Litime” sub r   on  n  v s t   t os  lo  tions in the field, 
determined current land-cover and land-use and assessed its 
history.  
 
 

Validation with field data 
 
The classification of satellite images was complemented by a field 
mission for field control. For this activity, geographical coordinates 
of the control points were acquired to ensure the accuracy of the 
classification carried out previously and in order to characterize the 
classification in the ground. To do this, a representative number 
(106 points) of field control points was selected in the change strata 
( or st    n) pr v ously    nt       n t   “pl  n  of L t m   r  ”. T  s 
method, based on the evaluation of control points, consists in 
verifying in the field the points previously identified during the 
classification for each of the land-use classes and in determining 
the percentage of verified points that actually correspond to those 
previously established.  
 
 

Forest change rates estimation  
 

The annual rate of forest change is calculated by comparing the 
area A under forest cover in the same region at two different times t. 
The standardized formula was used in the following equation 
proposed by (Puyravaud, 2003) for calculating the annual net forest 
cover change rates as well as rates of gross forest loss and 
regeneration.  
 

Equation:   

RESULTS 
 
Accuracy assessment of the model 
 
Model accuracy assessment   
 
The overall accuracy of the three-date transition map is 
88.7% w t  Co  n‟s k pp  o  82.4%.  s s own  n t   
error matrices (Table 3) producer and user accuracies 
were highest for non-change classes (90- 96%), medium 
for deforestation classes (62-94%) and lowest for 
regeneration classes (34-79%). Further, change 
detection looked to be more accurate for the 2003–2019 
period (66- 96%) than for the 1991-2003 period (34-65%). 
Reasons might be lower radiometric quality of the 
satellite images, or lower quality of validation data used 
as reference due to the lack of high-res images for the 
first period.   

Errors of commission and errors of omission are 
relatively well balanced for stable forest and non-forest 
classes. Forest loss and forest gain classes show a bit 
higher variation in the individual periods, but are also 
relatively well balanced over the whole period. When 
using these errors for adjusting mapped areas, slightly 
different figures than presented above were obtained, but 
figures that confirm the trends observed (Table 4). 

In general, forest area is estimated to about 4.5% 
higher than those on the maps. However, the adjusted 
   ur s  on  rm t   loss o   bout 15‟000     or st  ov r  n  



                                                                                                               

Dangbo et al.           77 
 
 
 

Table 2. Accuracy assessment table according to Olofsson et al. (2014). 
 

 

Number of 
validation plot 

FFF FFN FNF FNN NFF NFN NNF NNN U 

FFF 1527 28.28 0.42 0.24 0.22 0.08 0 0.08 0.87 93.7 (±1.4) 

FFN 301 0.68 4.62 0.23 0.34 0.04 0.15 0.06 0.23 72.8 (±4.0) 

FNF 64 0.09 0 0.82 0.07 0.09 0 0.04 0.07 68.8 (±6.1) 

FNN 167 0.09 0.19 0.36 1.97 0.15 0.09 0.09 0.21 62.3 (±6.6) 

NFF 53 0.29 0 0.13 0.03 0.83 0 0.05 0.05 60.4 (±7.9) 

NFN 27 0.02 0.09 0 0.02 0.05 0.33 0.02 0.09 51.9 (±14.7) 

NNF 280 0.46 0.02 0.37 0.21 0.46 0.04 3.57 0.27 66.1 (±5.0) 

NNN 2574 1.67 0.14 0.28 0.26 0.34 0.08 0.68 48.26 93.3 (±0.7) 

P  89.5(± 1.2) 84.4(± 5.0) 33.8(±11.4) 63.1(±7.4) 40.6(±13.3) 47.5(±19.2) 77.6(±5.6) 96.4(± 1.0)  
 

Note: Proportional error matrix (% of mapped areas in a specific category), with User and Producer accuracy (in %). Overall accuracy is 88.7% with a 95% confidence interval of ± 0.8%.FFF: Forest 

1991–2018; FFN, Forest loss between 2003 and 2018, FNN: forest loss between 1991 and 2003; NNN: No-forest; NNF: Forest gain between 2003 and 2018; NFF: Forest gain between 1991 and 2013. 

 
 
 
first period. On the other hand they indicated that 
forest cover might even have increased in the 
second period. This second observation is 
however not significant, due to uncertainties in the 
adjusted forest areas (confidence interval of 
±1.7%) (Table 5). The adjusted figures also 
confirm that gross deforestation nearly doubled 
from one period to the next where it compensated 
by increased regeneration.  

 
 
Field validation 

 
More than 80% of forest gains are low biomass 
formations such as fallows, forest recruits and in 
some cases oil palm plantations. Different types of 
forest formations are found in stable forest. These 
are dense forests, degraded dense forest, 
forested forest / savannah, agroforests, fallow, 
and sometimes plantations. These formations are 
called stable forest in the context of this study as 
long as they kept their state between 1991 and 

2018. 
 
 

Forest cover and forest cover change 
 

The resulting maps show an overall decrease of 
the forest area during the last 30 years by about 
6.7%, from 246‟915     n 1991 to 230'390     n 
2018 (Table 2). The corresponding forest cover in 
the study area thereby dropped from 40.9% to 
38.1% (Figure 6). Net annual loss of forest cover 
was seven times higher in the period 1991-2003 (-
0.49%) than in the period 2003-2018 (-0.07%). a 
different picture was seen when comparing gross 
forest loss. There, the rate increased from 0.94% 
in the 1991-2003 period to -1.33% in the 2003-
2018 period (Figure 7). The forest regeneration 
compensated only half of the forest loss in the first 
period, or more or less completely compensated 
for deforestation observed in the second period. In 
the study area, forest area loss and forest 
regeneration was generally small-scale at the 
edge of forests. Variability of the annual de-
forestation rate was observed, depending on the 

study area. 
The forest loss rate (2.23% year

−1
) occurred in 

the Kpele area (a part of the study area) is higher 
than the average forest loss rate in the study area 
in the period 1991 to 2018 (Figures 5 and 6). In 
the same period, the rate of forest loss in the 
“Pl  n  o  l t m ” s t   s 0.068%·yr−1 (F  ur  6). 
T   low  or st loss r t   n “Pl  n  of litime”   n b  
explained by the land use system in that area. 
Indeed, this area (cocoa plantation area) is 
characterized by different forest types that mix up 
with fallows, secondary forests and cocoa 
plantations (Soussou, 2009). The area is known 
for the systematic destruction of forests for 
growing of cocoa (Nyassogbo et al., 1996). There 
is not a clear boundary between forest and 
agriculture area in that region. This mix up is 
difficult to be detected as forest loss because the 
cocoa plantation and agroforest are forest 
according to the forest definition based on canopy 
cover solely. The high rate of deforestation in 
Kpele area can be explained by the conversion of 
forest mainly for shifting  cultivation  and  palm  oil  
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Table 3. Estimated areas of transition categories as obtained by the maps and the adjusted values incl. confidence intervals following the 
guidelines provided by Olofsson et al. (2014). 
 

 

Number of validation 
plot 

Mapped area 
Adjusted area 

(validation plots) 
Confidence interval 

  ha ha ha % 

FFF 1527 182,257 190‟745 ± 3‟715 1.9 

FFN 301 38,372 33‟097 ± 2‟462 7.4 

FNF 64 7,195 14‟650 ± 2,235 15.3 

FNN 167 19,089 18,847 ± 2,273 12.1 

NFF 53 8,309 12,367 ± 2,104 17.0 

NFN 27 3,801 4,153 ± 1,239 29.8 

NNF 280 32,628 27,793 ± 2,488 9.0 

NNN 2574 312,319 302,318 ± 3,734 1.2 
 

FNN: Forest loss between 1991 and 2003; NNN: No-forest; NNF: Forest gain between 2003 and 2018; NFF: Forest gain between 1991 and 2013. 

 
 
 
 

Table 4. Estimated forest area in 1991, 2003 and 2018 according to Olofsson et al. (2014). 
 

 

Mapped area  

(ha) 

Adjusted area 
(validation plots) (ha) 

Confidence interval 

1991 246,915 256,854 ± 4,045 1.6 

2003 232,741 241,194 ± 4,152 1.7 

2018 230,390 245,364 ± 4,286 1.7 

 
 
 

 
Table 5. Evolution of forest and change area in 1991, 2003 and 2018. 
 

Year 1991 2003 2018 

Forest area (ha) 246,915 232,741 230,390 

Period 1991-2003 2003 - 2018 1991-2018 

Forest loss (ha/year) -2,190 (-0.94%) -2,812 (-1.33%)  

Forest gain (ha/year) +1,009 (+0.40%) +2,655 (+1.05%)  

Net change (ha/year) -1,181 (-0.49%) -157 (-0.07%)  

Net change (ha/year) - - 612 (-0.26%) 

 
 
 

plantation (Table 6). 
 
 
DISCUSSION 
 
Forest cover dynamic 
 
The results show, that forest cover in the area is highly 
dynamic. Gross forest loss and forest gain, to a large 
extent; compensate for each other and that net forest 
cover change is just a fraction of the overall dynamic 
observed. Together with the facts, that changes occur 
often gradual, disperse and on small scales, makes it 

extremely difficult to quantify net forest cover change.  
The comparison of independently produced forest/non-
forest maps, might not be able to capture those dynamics 
accurately as minor deviances in the definition of the 
 l ss “ or st” l   s to  ons   r bl       r n  s b tw  n 
the maps that have nothing to do with changes on the 
ground and true changes might remain unobserved 
(Hansen and Loveland, 2012). 

Direct, multi-date classification is often suggested as a 
more accurate method for mapping of lanes, avoiding to 
    rt  n  xt nt t   us  o       r nt “ or st”     n t ons 
(GFOI, 2016). However, in such complex situations and 
with a lack of high-resolution historical imagery,  it  seems 
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Figure 5. For st  ov r    n   m p  or t   p r o  1991 to 2003:    n kp l   r  ;    n “pl  n     L t m  

 
 
 
to be far from evident to correctly attribute transition 
classes to training plots. Further, it is nearly impossible 
doing this just for a two-date comparison, but a whole 
time-series, with a sufficient number of training plots in 
order to ensure that all transition categories that are to be 
mapped are sufficiently represented.  

The approach used in this study combines the above 
mentioned approaches and thereby overcomes many of 
those obstacles. A single date forest/non-forest map is 
produced based on available high-resolution images. For 
the classification of all other dates, the same forest 
definition is enforced by calibrating the classifier with this 
reference image. As a result, forest/non-forest maps that 
are   most   similar  were  obtained  one  to  another; thus 

underestimating rather than overestimating land-cover 
changes. 

Once the reference map is defined, this approach 
allows for automatic classification of time-series of 
several images. The advantage of time-series is that it 
can be used for cleaning the resulting maps. Time-series 
approaches have many other advantages, as they are 
not so dependent on the conditions at the time the 
individual images were collected (GFOI, 2016; Kennedy 
et al., 2007; Zhuravleva et al., 2013). In this study, a 
simple majority filter was used, but more complex rule-
based filters for filtering out for example forest loss and 
regeneration in agricultural rotation cycles is possible. 
The longer the time-series at disposal, the better  are  the  
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Figure 6. Evolut on o   or st  r   r sp  t v ly  n:  ) t     olo    l zon  VI  b   p rt o  Kp l  pr    tur   n   n   port on o  “Pl  n  
of Litime. 

 
 
 

possibilities for tracking land-use changes instead of just 
land-cover changes (Broich et al., 2011; GFOI, 2016). 

The same approach could also be used for continuous 
monitoring, where time-series would be reevaluated 
annually with recently acquired Landsat images and with 
additional reference maps whenever new high-resolution 
data becomes available (Cohen et al., 2003). In principle 
it would even be possible to do the same analysis using a 
different forest definition (such as 10% crown cover) or 
doing analysis with different crown covers in order to 
assess forest degradation and regeneration within forests.  
Although there seems to be room for improvement, the 
study probably provides the most accurate figures on 

 or st  ov r    n    v  l bl   n To o. T   Co  n‟s 
kappa of the three-date forest/non-forest transition map 
(1991-2003-2018) is 82% which, according to Pontius 
(2000), shows that the map is accurate.  
 
 
Various forest cover change estimation rates  
 
This paper shows that for all study areas combined the 
net forest lost is 0.5% during the 1991-2003 period, 0.1% 
during 2003-2018 period, 0.2% during 2000-2015 period 
and 0.4% during the 1991-2000 period. There are very 
few studies on  forest  cover  change  in  Togo  based  on 



 
 
 
 
consistent methodology. Therefore, it is difficult to 
compare the results of this study with those of similar 
studies in the country since the methodologies and the 
forest definition are not the same. Nevertheless, the 
study investigated the results of this study by comparing 
them with previous studies in the country.  

Togo is recognized to be part of countries with the 
highest annual deforestation rate (5.1%·year

−1
) (FAO, 

2010). Previous studies of forest cover had included the 
land use map using RapidEye satellite images 
2013/2014; the interpretation of aerial photos taken 
between 1976 and 1985 and Landsat image from 1990 to 
2015 (MERF 2018). The latter recorded a decrease of 
forest loss rate from 0.733 % in 1990-2000 period to 
0.2% between 2000-2015. Forest loss rate was 
compared to the forest loss rate presented in this paper 
even if the area and the period are not the same. The 
same forest loss rate was found on the overlapping 
period (2000-2015).  

Significant difference was found comparing (FAO, 
2010) forest loss rate to the rate of deforestation of this 
study. Three possible explanations were identified for 
these marked differences. First, FAO rate of forest loss is 
based on estimation of national data. Secondly, the 
definition of forest was not exactly the same in the two 
studies (10% vs. 30 crow cover). Finally, the exact period 
and the details methodology of FAO estimation were not 
known.  

According to Mayaux et al. (2013), net deforestation of 
African rainforest is estimated at 0.28% year

-1
 for the 

period 1990–2000 and 0.14% year
-1

 for the period 2000-
2010. The forest loss rate in the study area (0.4% year

-1
) 

for the period 2000-2010 is higher than the forest loss 
rate in West Africa in the same period. However, the 
forest loss rate in the study area (0.26% year

-1
) for the 

period 1991 to 2018 is very close to forest loss rate in 
West area even if the period considered are not exactly 
the same.  

Composite-based approaches have proved successful 
for large scale change mapping and been used for 
making global maps of tree cover change at annual basis 
(Hansen et al., 2013). 
 
 
Remaining forests status 
 
This study shows, that overall forest cover did not change 
significantly over the last decade and that forest loss was 
compensated by forest gain. However, this study does 
not provide an answer whether the quality of the forests 
lost and those gained are the same. Are the forests lost 
just fallows and secondary forest cleared in the 
agricultural cycle and continuously compensated with 
fallows on abandoned land elsewhere? Or to what extent 
does this forest loss concern dense or open forests that 
are newly converted to agricultural land and masked with 
increased abandonment of agricultural land?  
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Several previous studies (Adjossou, 2004, 2009; 

Adjossou and Kokou, 2004; Adjossou et al., 2019) have 
shown that the remaining forests in the sub-humid 
mountainous area today is very fragmented and is 
practically reduced to forest buffers in hard-to-reach 
areas and along rivers. Based on the field observation, 
the majority of remaining forest are agroforests, fallow 
and early secondary forest. These remaining forests are 
t   n   lly “ or sts”  n the forest definition above. The 
agroforest which is an agricultural land is considered as 
forest according to the definition of forest in this study. 
The low rate of forest loss from this study can be 
explained by the fact that there is small-scale clearance 
at forest edges difficult to visual on Landsat image 
(Grinand et al., 2013). The small-scale clearance is 
mainly for shifting cultivation and logging. Therefore, 
open-canopy areas, secondary forest or plantations in the 
estimates of forest areas were included. The analysis is 
therefore limited to forest cover. Land use was not a 
consideration in the mapping as in the study of Hansen et 
al. (2013).  

Further research is needed on this issue: assessing 
quality of forests (such as biomass), degradation and 
regeneration within forests (not just forest/non-forest), 
longer time-series and analysis of land-use patterns 
instead of land-cover solely. 
 
 
Conclusion 
 
This study has updated forest cover statistics and 
assessed the rate of forest change in the forest zone in 
Togo. Even if this rate of forest loss slowdown from 2003-
2018, the status of the remaining forest (mainly fallow 
and degraded forest) should alert all stakeholders 
working to preserve the remaining forest in the forest 
zone of Togo. Coupled with rigorous work to delimit 
training and validation plots by photointerpretation, this 
study provides a method for monitoring the forest 
dynamics. This research responds to the necessity of 
capturing local forest change dynamics for small scale.  
However, the use of Landsat images may not be 
satisfactory given its relatively low spatial resolution to 
detect very small scale of forest cover change. Therefore, 
the availability of higher resolution images such as 
orthophoto, SPOT 6, Sentinel-2 or radar could be very 
beneficial in the analysis and validation of time-series of 
Landsat images. For example, the Sentinel-2 mission will 
generate data that when combined with Landsat data will 
enhance time series analysis of forest cover change. This 
research can support policy approaches towards 
reducing emissions from deforestation and degradation 
(REDD+) in Togo. Regular updates to these data are very 
important to enable more rapid and adaptive response to 
forest loss threats in Togo. 

The information content of the presented datasets, 
provides a consistent basis on  which  to  quantify  critical  
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environmental issues, including (i) the drivers of the 
mapped forest cover change; (ii) the biomass mapping 
and associated emissions of disturbed forest areas; (iii) 
the status of remaining forests; (iv) the economic drivers 
of natural forest conversion to more intensive land uses; 
(vi) the relationships between forest dynamics and social 
welfare, health and (v) forest dynamics associated with 
governance and policy actions. 
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