

Vol. 11(1), pp. 1-12, January-June 2022
DOI 10.5897/JIIS2021.0120
Article Number: BF428EA68483
ISSN: 2141-6478
Copyright ©2022
Author(s) retain the copyright of this article
http://www.academicjournals.org/JIIS

Journal of Internet and Information

Systems

Full Length Research Paper

Model for security controls in web content
management system

Alex Maraga*, F. Mzee Awuor, and James Ogalo*

School of Information Science and Technology, Kisii University, Kisii, Kenya.

Received 7 June, 2021; Accepted 7 January, 2022

Web content management systems (WCMS) are systems used in creating, publishing, customizing and
designing website services by web administrators toward delivering user-centric web applications and
services. Such applications include Joomla, Drupal, and WordPress, which have found their usage in
various institutions including universities and colleges, non-government and government institutions.
While these WCMS provide easy access to web services to the users, they are vulnerable to security
breaches and threats. This study sought to ascertain whether web administrators are aware of security
concerns in WCMS. The objective of this paper was to identify widely used WCMS and the level of
awareness of security breaches on these applications by web administrators. The study employed the
census method and presented the results of 40 Web Administrators sampled from four public
universities within Nairobi County. We then presented a security control model informed by the data
analysis towards proactive mitigation of the potentials of WCMS security threats. The model sought to
integrate security measures such as security awareness in the design of WCMS to curb threats related
to SQL injections, XSS attackers and unauthorized access of information, and to assist the web
administrator in choosing suitable WCMS applications that meet their users’ preference.

Key words: Web content management systems, security awareness, web administrators, Drupal, WordPress,
Joomla.

INTRODUCTION

Information systems security continues to be a growing
concern for learning institutions such as universities as
they embrace Internet Technologies to offer anytime
anywhere learning experience to their learners such as
massive online and open courses (MOOC), the traditional
eLearning approaches among others. Notably, these
learning solutions are more often built on open-source
(WCMS) that are managed locally at these learning
institutions by their dedicated personnel in their
information technology (IT) departments, mostly web

administrators. Being open-source, however, make these
WCMS very susceptible to security threats. Thus, this
study sought to establish the level of WCMS security
awareness in open source WCMS among the web
administrators, to identify the security threats and
breaches common in these WCMS, and to derive a
model to mitigate these security threats. We hope that
this can provide a strategy for controlling these security
vulnerabilities in WCMS from both the users and web
application ends perspectives. It is noticeable that most

*Corresponding author. E-mail: amaraga24@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution
License 4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

2 J. Internet Inf. Syst.

Figure 1. Current WCMS Market Share.

research has focused on general network and Internet
security, software and application security, and computer
system security; there is no much attention on WCMS
security in particular while WCMS are key drivers for the
beyond web 2.0 applications. For the sake of illustration,
this paper focuses on the top three popular WCMS in
Kenya (Martinez-Caro et al., 2018), that is, WordPress,
Joomla, and Drupal. According to Cassetto (2014), the
three most popular WCMS WordPress, Joomla, and
Drupal have something in common globally that they are
frequently used. Another unfortunate similarity is that they
are the most targets for hackers. To satisfy globally the
frequently used WCMS, Handova (2019) says that a lot
of people assume that since Joomla, WordPress, and
Drupal are highly recognized and popular, they must be
robust in security. He gave WordPress as an example
that has more than 14,000 known vulnerabilities at its
core, plugins, and modules. He concluded that more than
90% of the top many websites are based on Drupal,
Joomla, and WordPress (Figure 1).

For example, in an attempt for WordPress to keep its
users up-to-date on security patches to safeguard the
users, it usually notifies its users through the dashboard
of the administrator panel such that the users cannot
ignore or fail to see such notifications when they log into
WordPress. This feature among others, arguably, has
made WordPress to be ranked the most user-friendly
WCMS (Filotrani, 2018). As noted by Williams et al.
(2015), the installation of these new releases is always
simple and just point-and-click away. As many users
prefer WordPress to the other WCMS, this in itself makes
it vulnerable to security threats (Mesa et al., 2018). Just
as viruses, this large number of users and bulk
installations make WordPress a key target of hackers. To
this end, we can argue that security awareness of WCMS
by web administrators is essential towards building in

them the capacity to safeguard users of WCMS against
security threats and vulnerabilities. Last year it was
discovered that cybercriminals discovered WordPress
security lapses, being over 170,000 (Cassetto, 2014).
Also Infrastructure (2016) mentions that Joomla is one of
the most widely used WCMS globally. It is PHP-based
and allows the rapid placement of active content on
websites. It is known for its simplicity of deployment and
custom while offering widespread structures and plugins.
But, like many other large packages, Joomla has
experienced several vulnerabilities in recent years and, if
left unpatched, can represent a risk for site owners, and
any other Internet users.

 According to Cyber Security Report (2016), the wrong
choice of WCMS coupled with a lack of security
awareness among technology users significantly impedes
the maximum exploitation of WCMS applications in
universities. Such challenges include lack of skills in
cyber and digital security, lack of security awareness
among the user community e.g., the culture of not giving
much consideration to security threats while online
among others (Piper et al., 2015). Another security
challenge identified as facing WCMS is the fact that
technology and cybersecurity landscapes change rapidly
(Peltier, 2016). According to Peltier (2016), the common
methods used for an attack on WCMS include
ransomware, SQL injection, malware, denial of service,
database transaction manipulation and cross-scripting
(XSS) attacks.

Towards exploring the WCMS security awareness
problem, this study employed the census method to
collect both qualitative and quantitative data which were
analyzed using both descriptive and content analysis.
From the study findings, it can be concluded that most
web administrators in public universities in Kenya (in the
case of Nairobi County) use open-source WCMS (mostly

26%

8%
5%

61%

0%

10%

20%

30%

40%

50%

60%

70%

Others Joomla Drupal Wordpress

Drupal, followed by Joomla and finally WordPress). The
choice of Joomla and WordPress is owed to their
perceived ease of use and user-friendly interfaces while
choice on Drupal is due to its perceived security features.
Thus, it is notable that important features for a WCMS
according to the web administrators revolve around their
security and usability. Others include their ability to
provide an opportunity for user customization and
personalization, and a rich online user community for
support and troubleshooting. Moreover, the study results
also showed that all the surveyed web administrators had
encountered or experienced or know a colleague who
had experienced unauthorized entry into their WCMS
application. Among these web administrators, the
preferred security control measures to curb such
incidences include those against SQL injections and
parameter manipulation. In other words, the common
security measures deployed mostly against such
adversaries from gaining unauthorized access to
confidential data include protection from SQL injections
and XSS attacks and protection from unauthorized
access to confidential data. Besides, an attacker
gathering confidential data by sending emails to people
and adversaries exploiting WCMS was identified as an
important measure against the WCMS attack. Such
measures are required to ensure confidentiality, integrity,
and availability of information (CIA), in addition to the
provision for backup and documentation. To this end, this
paper also proposes a security model that integrates
these WCMS security requirements in addition to a
mechanism to promote security awareness among the
WCMS. In a nutshell, the contribution of this paper can
be summarized as follows:

1. We established the security threats and breaches in
WCMS in the context of web administrators in public
universities in developing nations, the case of Kenya, and
evaluated the level of preference of the different WCMS
applications among users. We endeavour to explore the
underlying reasons that inform this preference and
reported on these guidelines – that is, perceived security
levels, ease of use, and freedom for customization and
personalization.
2. Besides, we established the level of security
awareness among the web administrators who use
WCMS (that is, Drupal, Joomla, and WordPress) in the
local public universities in Kenya and reported on how
they safeguard their users against security threats and
vulnerabilities.
3. Informed by these findings, we derived a security
model towards making WCMS robust to security threats
and present a discussion on the implementation and
operability of the model.
The rest of this paper was organized as follows: Next
Section provides the Literature Review while Sections 3
and 4 present the Methodology and Results respectively.
Discussion is presented in Section 5 whereas Section 6

Maraga et al. 3

concluded this paper.

Literature Review

Majority of companies spend resources on securing their
main systems and applications; they neglect to also
review the security of the WCMS platform because they
underrate them that nobody is interested in hacking the
blog. They concentrate more often than not on the
technology than the content itself that is interesting to
hack. This is why WCMS security needs attention as well
(Almroth, 2018). That is why Cyber Security Report
(2016) defines mitigation of security threats facing WCMS
as the ability, capability, or state where data and
communication systems are protected against damage,
unauthorized user or alteration, or manipulation. Due to
lack of security awareness among most users, a critical
challenge is to guarantee that users of WCMS
applications are always safe against attacks such as SQL
injections, XSS and, Cross-Site Forgery Requests (while
there could exist other attacks on WCMS). This study
focused on these three due to their prevalence – the user
is referred to Cyber Security Report (2016) for an
exhaustive discussion on general WCMS attacks. Hence
in XSS attacking process, it takes place in this process:
first, an attacker discovers a vulnerable website that has
enabled a script injection. Secondly, an attacker launches
a malicious script that steals each visitor’s session
cookies. And then on the third stage, for each website
visit, a malicious script is activated (Figure 2). Then lastly
in the fourth stage, the visitor's session is sent to the
attacker.

As most websites (Kasli and Kaur, 2015) currently store
information as data, they mostly rely on the underlying
database and some basic functions such as create, read,
update and delete records for data manipulation. For
instance, structured databases use structured query
language (SQL) to manipulate and perform these
functions. An attack such as an SQL injection attack
happens when the attacker manipulates the query data to
modify the query logic to manipulate the back-end
database (Kasli and Kaur, 2015). This causes a WCMS
application to generate and send a query that functions
differently from that intended by the programmer. For
example, if a database contains user names and
passwords, the application may contain code such as the
following: query = "SELECT * FROM accounts
WHEREname=’"+ request.getParameter ("name") + "’
AND password=’"+ request.getParameter("pass").This
code generates a query intended to be used to
authenticate a user who tries to log in to a website (such
as a WCMS application). However, if a malicious user
enters “bad guy” into the name field and ’OR’ a’=’a‖ into
the password field, the query string becomes: SELECT *
FROM accounts WHERE name=’badguy’ AND
password=’’ OR ’a’=’a’ whose condition always evaluates

4 J. Internet Inf. Syst.

Figure 2. XSS attacking process.

Figure 3. Cross-site scripting model.

to true, and the user will bypass the authentication logic
(Figure 3). Notably, the problem goes beyond simply
failing to check input that is incorporated into a query.
Even web applications that perform some checks on
every input may be vulnerable. For example, if the
application forbids the use of the single-quote in the input
(which may prevent legitimate inputs such as - O’Brian),
the SQL-injection attack may still be possible because
numeric literals are not delimited with quotes (Uwagbole
et al., 2017). This is illustrated in Figure 2 above.

The bottleneck in the SQL injection attack is that web
applications generally treat input strings as isolated
lexical entities. That is, input strings and constant strings
are combined to produce structured output (that is, SQL
queries) without regard to the structure of the output SQL
language. Several approaches to dealing with the
Structured Query Language Command Injection Attacks
(SQLCIA) problem have been proposed, but so far, no
formal definition for SQLCIAs has been derived yet (Ali et
al., 2015; Steiner, 2014). Hence, the effectiveness of
these approaches can only be evaluated based on
counter-examples, empirical results, and informal
arguments as shown in (Ali et al., 2015). For instance,
Steiner (2014) argues that WCMS may need to be able to
sanitize the input queries being issued to the back-end
database towards supporting the integrity of the database.

According to Alwan and Younis (2017), SQL injections
are improperly filtered input that is sent to the SQL
server. This input could be SQL queries that could

access sensitive data. An adversary could use escape
characters to include SQL queries in an input field. For
instance, if a malicious user appends ’1’=’1’ to an input
field, this could lead to unwanted disclosure of data since
the boolean expression OR ’1’=’1’ is always true, and
thus, the query in which the expressions are appended
would also be allowed. These mechanisms examine input
strings to prevent exploits of escape characters. For
example, PHP uses the function mysql_escape_string to
mask all kinds of special characters (Priyatna et al.,
2014).

Another common attack, as mentioned earlier, is the
XSS which occurs when hackers inject their codes into
the output application of a web page that is displayed as
part of the web page content in the browser. The
unsuspecting web page viewers could then end up
sharing their personal and sensitive information which
gets stolen by this code as it executes automatically
when the page displays (Gupta and Gupta, 2017). This
code injection, which is similar to SQL injection in web
application security can be used in three different ways,
that is, stored XSS‖, reflected XSS, and -dom-based
XSS. This is illustrated in Figure 3.

In the stored XSS (so-called persistent XSS), an
attacker can inject malicious code into the page
persistently such that the code gets stored in the server
(Nithya et al., 2015). Ordinarily, the code is stored on the
page which gets displayed to the visitors later on such
that if a visitor goes to a page that is embedded with XSS

1

2
Attacker

3

4

Visitor Session

Website

attacking code, the code executes on the visitor’s
computer and gets to infect the computer. Hackers
usually post these codes in articles in forums or blogs
that target and attack unsuspecting readers (Parsons,
2017). If stored XSS vulnerability is successfully exploited
by hackers, it will persistently attack the users until the
web administrator identifies and removes it (Svensson,
2016).

The security model (shown in Figure 2) proposed by
Yousra (2013) is built on the premise of curbing XSS -
being the common attack on various WCMS. XSS is
generally believed to be one input sent to the server as
part of the request as discussed earlier. The
REFLECTED XSS (also called non-persistent XSS) is a
temporary form of attack (Johns and Pfistner, 2017) since
it does not inject code into the server but rather makes
the server use the injected malicious code to immediately
generate a page and then sends this temporary page’s
URL to anyone that the attacker wants to attack. Thus, if
the user clicks this URL, the malicious code in this
temporary page executes. This attack is based on user
trigging. This makes it more difficult to deploy unless the
hacker can convince the user to trigger the dangerous
URL. So the hacker has to find a method to make the
URL look like a trusted website’s URL (Sarmah et al.,
2018).

Notably, hackers can encode the URL into HEX value
or other types of code for the URL to look as true and
reliable (Nithya et al., 2015) as possible such that the
user could get duped to believe that there is no virus
command inside and clickable links or buttons. For
example, in Figure 2, Google is a famous and reliable
website. If the Google search engine has REFLECTED
XSS, the hacker can inject malicious code into the URL
and encode the URL. (Many tools on the Internet can
provide the service of encoding the code from ASCII to
decimal ASCII, hexadecimal, or other types. Interested
reader on encoding is referred to (Sarmah et al., 2018).
After finishing encoding the URL, the hacker could send
this URL to trick the user into clicking and also using
some tricks which can attract the user to click.

The Document Object Model (DOM)-based XSS attack
is another type of XSS vulnerability that is commonly
used by hackers as well (Gupta and Gupta, 2017). DOM
is a platform and language-neutral interface which uses
scripting or program to modify the content and update the
structure and style of documents. It is widely used in
HTML and XML in Web 2.0. DOM in HTML can generate
a tree-structure of HTML documents. Therefore, each
branch of the tree can be easily controlled and modified
by DOM. However, DOM allows the scripting or program
to change the HTML or XML document, the HTML or
XML document can be modified by a hacker’s script or
program (Jakobson, 2014). Therefore, DOM-based XSS
uses DOM‟s vulnerability to implement the XSS. This
type of XSS vulnerability is different from the
REFLECTED or STORED XSS attack as it does not

Maraga et al. 5

inject malicious code into a page. So, it is the problem of
the insecure DOM object which can be controlled by the
client-side on the web page or application. For this
reason, hackers can let the attack payload execute in the
DOM environment to attack the victim’s side.
Unfortunately, the usual defenses for XSS vulnerability
hardly work in this type of attack (Gupta and Gupta,
2017). This vulnerability occurs when an application
takes untrusted input data and sends it to the web
browser without proper validating. An adversary could
exploit this vulnerability by including script code (e.g.,
Javascript) on a web page. Proper mechanisms for
always treating output as text are necessary to prevent
script code from being executed in a browser
(Deshpande et al., 2017).

The security model (shown in Figure 2) proposed by
Yousra (2013) is built on the premise of curbing XSS -
being the common attack on various WCMS. XSS is
generally believed to be one input sent to the server as
part of the request as discussed earlier.

A Cross-site Forgery Request (CSRF) is an attack
where a user performs unwanted actions on a vulnerable
application in which s/he is currently authenticated in
(Gupta and Gupta, 2017). An adversary could trick a user
to load a page with a malicious request, and then inherit
the victim’s identity and privileges to perform actions on
the vulnerable application. The application would think
that the requests made by the adversary are legitimate
requests from the victim e.g., sending a link via email or
chat, which could fool the victim to open the malicious
website. Links and forms that involve state-changing
functions are the main targets for CSRF attacks. If the
victim visits one of the malicious websites, while still is
authenticated at domain.com, the attacker could forge a
request that includes the victim’s session information. As
a result, the vulnerable application authorizes the
malicious request because it appears to be the victim.
One of the ways to prevent CSRF attacks is to include an
unpredictable token in the body or URL of every HTTP
request (Gupta and Gupta, 2017). These tokens should
be unique to each user session, or unique to each
request. A good practice is to include the token in a
hidden field. Then the token is sent in the body of the
HTTP request, thus, not exposed in the URL. The token
could also be included in the URL. However, this could
be compromised due to exposure to adversaries (Gupta
and Gupta, 2017).

METHODOLOGY

A pilot study was conducted before the main study to ensure that
the data collection tools developed for this study were suitable in
content and length and that the respondents were interpreting the
questions in the manner intended. For the pilot sample, Mugenda
and Mugenda (2008) recommends 1% of the study population as
being fit for a statistical test of instruments. Thus, the pilot study
was carried out amongst the five sampled colleagues from the ICT

6 J. Internet Inf. Syst.

Department at Kisii University. The pilot survey was conducted to
find out if the respondents could respond to the questions without
difficulty. They were also asked to evaluate the questions for
relevance, comprehension, meaning, and clarity. From the pilot
study results, the ambiguous questions were refined and
restructured accordingly. After analyzing the sample-filled
questionnaires from the repeat pilot study, it was confirmed that the
questions were well understood and that the respondents were
providing the intended responses and, thus, implied that they could
be used to collect the intended data during the study.

This study used a descriptive survey research design to collect
data-rich in detailed description e.g., of events and phenomena.
This design was appropriate since it allowed for the establishment
of opinions and knowledge about content management security
awareness among the sampled respondents within a short time
using quantitative methods. Also, an experimental study design was
used to derive the proposed model towards the mitigation of
vulnerabilities and threats on WCMS. A group of ICT departmental
members was recruited in a pre-experimental research design to
assist in evaluating the security concerns of WCMS from cause to
effect.

The population of interest comprised of public universities in
Nairobi County (Nairobi County has four public Universities that is,
Nairobi University, Multimedia University, Kenyatta University and
the Technical University of Nairobi. C.f. (CUE HR Report, 2016).
The unit of analysis in this study was the individual web
administrators serving in the sampled public universities’ main
campuses (Johns and Pfistner, 2017).

The selected universities were visited and the questionnaires
were administered to the respondents. The respondents were
assured that strict confidentiality would be maintained in dealing
with their data. The completed questionnaires were collected the
same day they were administered. The study used census methods
of collecting data. From the university administration, heads of ICT
departments were identified and approached for their approval.
Once their approval was obtained, their assistance was sort in
identifying the web administrators. This was done to ensure that the
sample used in this study was valid and measurable regarding the
analysis of the result.

Before processing the responses, the completed questionnaires
were confirmed in number for completeness and consistency. The
data were then coded to enable the responses to be grouped into
various categories. Data collected were both qualitative and
quantitative as mentioned earlier. The open-ended questionnaire
ensured the collection of both qualitative and quantitative data.
Qualitative data were abstracted from the questionnaire and typed
separately using a word processor. Qualitative data were analyzed
through content analysis similar to Neuendorf (2016) while
quantitative data were analyzed by descriptive analysis. Data were
analyzed as per the objectives of the study. The descriptive
statistical tools that is, SPSS was used. The findings were
presented using tables and charts.

To enhance the content validity of the questionnaires, only
appropriate and adequate items relevant to the research questions
were included. According to Mugenda and Mugenda (2003), the
procedure of assessing content validity is to seek expert or
professional advice in that particular field. In this regard, this study
leveraged the opinions of three content experts and project
supervisors that validated the research instruments. Their
comments and suggestions on restructuring and rephrasing
questions that appeared vague and ambiguous were taken into
account and effected by ensuring that the instruments collected
valid data.

The researcher used Split-Half Reliability intending to determine
how much error in the test score was due to poor test construction.
This was to assist in infer the reliability of the test study. The
reliability index was calculated using Cronbach’s alpha coefficient
similar to Mugenda and Mugenda (2008).

𝑘
(𝑘 − 1) �

∑ 𝑐𝑜𝑣(𝑥𝑖𝑥𝑗)𝑘
𝑖=𝑗

𝑉𝑎𝑟(𝑥0) � = ∞

(3.1)

𝑘

(𝑘 − 1) �1 −
∑ 𝑐𝑜𝑣(𝑥𝑗)𝑘
𝑖=𝑗

𝑉𝑎𝑟(𝑥0) � = ∞

(3.2)

𝑘
(𝑘 − 1) �

∑ 𝑐𝑜𝑣(𝑥𝑖𝑥𝑗)𝑘
𝑖=𝑗

𝑉𝑎𝑟(𝑥0) � =
𝑘

(𝑘 − 1) �1 −
∑ 𝑐𝑜𝑣(𝑥𝑗)𝑘
𝑖=𝑗

𝑉𝑎𝑟(𝑥0) � = ∞

 (3.3)
∑𝑣𝑎𝑟 = 6.52083 (3.4)

= �
40

40 − 1� × �6.52083 −
2.14583
6.5083 �

(1.025641026) (0.6709271672 = 0.69

Reliability Coefficient=0.69

According to Taber (2017), reliability coefficients of 0.6-0.7 are
deemed acceptable since positive results from the calculation
signify that the data collected are a true picture on the ground. The
pilot study revealed a reliability coefficient of 0.69 which falls within
the acceptable limits of reliability efficiency.

RESULTS AND FINDINGS

Commonly Used Open Source WCMS

The study also investigated the commonly used open-
source WCMS. This was done on three levels. The first
level required the respondents to indicate the open-
source WCMS they commonly used while the second
level required them to give an opinion on the open-source
WCMS they perceived to be commonly used by other
web administrators. The third level sought to understand
from the respondents the form of open-source WCMS
they would recommend for others including their peers.
Respondents were allowed to indicate more than one
open-source WCMS since some sampled universities'
website sub-domains run in different types of WCMS
from the main domain. These findings are shown in Table
1.

The majority of the respondents indicated that they
commonly used Drupal (35%). About 27.5% of the
respondents indicated that they commonly used both
Joomla and Drupal while 12.5% indicated that they used
Joomla in most instances. Also, about 15% indicated that
Joomla, Drupal, and WordPress were commonly used by
web administrators. On recommended open-source
WCMS, 40% of the respondents recommended Drupal,
17.5% WordPress and 12.5% Joomla and Drupal, Joomla
and WordPress for both. Only 10% recommended
Joomla.

The findings of this study indicated that the most
commonly used open-source WCMS is Drupal while the
most perceived to be used open-source WCMS is
WordPress. That notwithstanding, the most recommended

Maraga et al. 7

Table 1. Commonly Used Open Source WCMS.

 Open Source WCMS F %
Form of open WCMS commonly used by respondents Joomla 4 12.5

Drupal 14 35
Wordpress 3 7.5
Joomla and Drupal 11 27.5

Joomla and Wordpress 3 7.5
Joomla, Drupal and Wordpress 4 10
Joomla 8 20

Opinion on commonly used open WCMS by web administrators
Drupal 3 7.5
Wordpress 14 35
Joomla and Drupal 7 17.5

Open WCMS recommended to be used by other

Joomla, Drupal and Wordpress 6 15
Joomla 4 10
Drupal 16 40

Wordpress 7 17.5
Joomla and Drupal 5 12.5
Joomla and Wordpress 5 12.5
Joomla, Drupal and Wordpress 3 7.5

Table 2. Level of Awareness of Security Concerns in Open Source WCMS.

Security Concerns Fully
Aware

Slightly
Aware

Some
what

Not
At all Mode

SQL injections and parameter manipulation 40 30 17.5 12.5 1
An adversary gaining unauthorized access to confidential data by utilizing
SQL injections or XSS attacks and having access to confidential data 40 32.5 15 12.5 1

open-source WCMS was Drupal. This finding points to an
understanding that while the respondents commonly
used Drupal, they perceived the use of WordPress to be
common among web administrators.

According to Augustyniak et al. (2005), WordPress is
simple to install and use, and has been popular for the
same reasons of easy use and also easy installation. The
findings of Augustyniak et al. (2005) could, however,
point to a both-sided interpretation. The first interpretation
could be based on the superior position of university web
administrators concerning other web administrators (that
is, those serving in other organizations outside the
academia or in lower-level institutions). As indicated from
the opinion results Drupal is popular for security reasons.

The second direction of explanation could also be
based on the expositions of the above scholars viewed
along with a time frame. It is, thus, possible that
WordPress has been popular in the past based on its
simple user interface and that more advanced institutions

are moving away from it to Drupal from the opinion of the
respondents termed to be more secure but not easy to
use. The use of Drupal as opposed to WordPress could
also be linked to awareness of its vulnerability to security
attacks.

Level of Security Awareness of Open Source WCMS
Among Web Administrators.

All respondents indicated that they were aware of the
security concerns of open source WCMS. Levels of
awareness were investigated through a five-point Likert
scale defined using the following levels: To a very small
Extent (SE) = 1; To a Small Extent (NVI) = 2; To some
Extent‖. (SE) = 3; To a large extent (LE) = 4; and To a
very large extent (VE) =5. About 50% of the respondents
indicated that they were aware of the security concerns of
WCMS to a very large extent. About 27% also indicated

8 J. Internet Inf. Syst.

Table 3. Important Security Concerns for Development of WCMS

 Quite
important

Very
important

Extremely
important Mean

Importance of confidentiality in ensuring security of WCMS 33.3 44.4 22.2 33.3
Importance of integrity in ensuring Security 22.2 55.6 22.2 33.3
Importance of backup in ensuring security of WCMS 11.1 44.4 44.4 33.3

their levels of awareness to a large extent. The study also
investigated the specific security concerns of open
source WCMS. A five-point Likert scale on levels of
awareness was used. As indicated in Table 2, most
respondents indicated that they were fully aware of all the
security concerns that were being investigated (Mode=1).
This finding indicates that security concerns for open
access WCMS including SQL injections and parameter
manipulation, and adversary gaining unauthorized access
to confidential data by utilizing SQL injections or XSS
attacks and having access to confidential data, an
attacker gathers confidential data by sending emails to
people, pretending to be a service they use and
adversaries exploiting WCMS.

Security concerns for open-source WCMS

These results are shown in Table 3. 50% of the
respondents indicated that the security of the system was
extremely important for open WCMS. The results of the
respondents in the same table indicated that the
importance of confidentiality in ensuring security, WCMS
was seen to be very important (that is, at 44.4%), integrity
in ensuring security was shown to be 55%, backup in
ensuring the security of WCMS at 44.4% as well as
documentation at 50%. This implies that better
documentation on security issues ranks a type of WCMS
in a better percentage. On the other hand, time taken for
installation was considered as not important that is,
37.5%. The popularity of the WCMS was indicated as not
very important (47.5%). The respondents recorded higher
scores for the security of the WCMS, usability of the
interface, provisions for advanced personalization, the
existence of developing communities, and support and
consultancy. This indicates that the most considered
security features desirable in an open WCMS. Further,
the findings indicate that the time taken for the installation
of the WCMS was not important because it does not
contribute to any vulnerability as the security of WCMS is
concerned.

Security Controls to Mitigate the WCMS Security
Threats

To investigate security control measures necessary for

the development of a security control model to proactively
mitigate the WCMS security threats, the study focused on
the occurrence of unauthorized entry into WCMS. Other
factors investigated included the level of awareness of
security concerns in open-source WCMS as well as
important security concerns for open-source WCMS. 71%
of the respondents reported having experienced
unauthorized entry into WCMS. The respondents were
further asked to indicate the extent to which they had
ever experienced unauthorized entry into WCMS.

The results are captured in Figure 4; majority of web
administrators (71%) indicated that they rarely
experienced unauthorized entry into WCMS. Those who
indicated that they experienced unauthorized entry into
WCMS were 39%. This means that the attackers
successfully managed to penetrate WCMS manned by
web administrators. None of the respondents indicated
that they had never experienced unauthorized entry into
WCMS. This finding indicates that unauthorized entry into
WCMS was an occurrence that web administrators
experience.

Important Security Concerns for Developing WCMS

Table 3 shows findings on important security concerns for
the development of open WCMS. The findings are
analyzed to indicate their levels of agreement on their
importance. This was done by the use of a three-point
Likert scale. A measure of the frequency of occurrence of
a response (mean) was used to indicate the direction of
response. Further, the respondents indicated that all the
security measures investigated were very important in the
sense that this measured how keenly they took into
consideration that WCMS is secure (Mean=33.3 for all
variables). This points to an understanding that
confidentiality is necessary for ensuring the security of
WCMS, that integrity is important in ensuring the security
of WCMS, that backup is important in ensuring the
security of WCMS and that documentation is important in
ensuring the security of WCMS.

DISCUSSION

The results from Table 1 imply that most website
administrators in public universities in Kenya use open-

Maraga et al. 9

Figure 4. Experience of Unauthorized Entry into WCMS.

source WCMS. This means that there should more focus
on the security aspect of WCMS to safe protect the users
and applications supported by WCMS from security
breaches and threats. Regarding usability, WordPress
and Joomla were preferred by users while the users of
Drupal preferred it to the others due to their view that it
had superior WCMS security measures. This means that
some web administrators are not aware of the security
proposition of Drupal and as such deployed WCMS
based on perceived ease of use and general usability.
The study also revealed that all the web administrators
sampled have heard or experienced (attempted)
unauthorized access into their WCMS, which is a
confirmation of security concerns in WCMS. The
preferred security control measures by the users revolved
around protection against SQL injections and XSS
attacks, and as such, generally imply that they are
protecting themselves against adversaries gaining
unauthorized access to confidential data by utilizing SQL
injections or XSS attacks and having access to
confidential data.

It is evident that the security of the WCMS applications
used by the public universities majorly depends on the
choice of the WCMS. From the results, it shows that
different WCMS have different levels of vulnerabilities,
hence, the use and choice of secure WCMS by web
administrators depend on the ease and level of their
security awareness. In this regard, web administrators
need to be brought to the attention of the underlined
threat and vulnerability levels of each WCMS.

Security Control model

To this end, we develop a model and present it as a

solution to choosing a more secure WCMS. By taking into
consideration the developed security control model
containing all integrated security indicators and
components as indicated in (Figure 5). These considered
components include system security, developing
communities support, advanced personalization,
confidentiality, integrity, backup provision, and
vulnerabilities validation (e.g., CSRF, SQL injections,
XSS).

From the study findings, security awareness of open-
source WCMS includes security of the system and its
usability. According to Black et al. (2018), the best
WCMS must consider the security of the system and its
usability- that is, simplicity, popularity, and support such
as being simple to use and able to accommodate
differences in user backgrounds as shown in Tretten and
Karim (2014).

The scholars also advise that the choice of WCMS
must put into place the levels of expertise that imply
usability and at the same time ensure that its security is
guaranteed. The usability of the WCMS implies simplicity,
popularity, and support. Tretten and Karim (2014) provide
that open-source WCMS must be simple to use to
accommodate differences in training and expertise.

Suggesting on the general solution, Infrastructure
(2016) advised website managers to endeavor to follow
patching instructions from their software providers.
Further, he advises on security practices and guidance
which in agreement with our findings of this above.
 Further, popular WCMS is advisable since users can
exchange ideas on how to use them in case of
complications. In this study, the respondents expressed
usability of the interface, provisions for advanced
personalization, the existence of developing communities
and support and consultancy as important aspects of

Majority(Rar
ely Entry),
71%, 65%

Experienced
Entry, 39%,

35%
Majority(Rarely
Entry)

Experienced Entry

10 J. Internet Inf. Syst.

Figure 5. Flowchart explaining the model

WCMS. In generating code for WCMS E.G<!--security of
WCMS-->WHILE considering the security awareness of
the system then DO: IF users violating SQL Injection OR
XSS Attack AND access to confidential information then
they have unauthorized access into the WCMSset
sending junk mails to users. The system should be
shielded from SQL injections and parameter manipulation
as shown in the pseudocode in Figure 6.

The pseudo-code model drawn follows the mentioned
steps to provide the security controls of WCMS. Step one
identifies all the WCMS used by website developers:
Drupal, Joomla, WordPress because of all types of
WCMS different levels of vulnerabilities. Step two, checks

on the usability and functionality of each WCMS identified
by technical evaluation score and the weighted by users.
The last step leads to the identification of the highest
threats performed attack by WCMS that is, SQL injection,
XSS attacker and unauthorized access of information.
This is because each of the mentioned attacks, attackers
aim aims to execute malicious scripts in a web browser of
the victim by including malicious code in a legitimate web
page or web application. After this identification then the
model issues the security awareness which leads
security control solution criteria to exit. Finally, it provides
also steps to be followed to choose a more secure
WCMS by not only considering usability. Then lastly;

Maraga et al. 11

Pseudo-code presentation model
<!--Since most website designers uses Drupal, we assume that the number of
drupal users are greater than other CMS-->
<!--We declare and initialize all variables to 0 as shown-->
average, drupal, wordpress, joomla=0;
Userbility and function, security;
initialize userbility and function to zero;
initialize security to zero;
<!--check for the userbility of the CMS-->
While considering the userbility and functionality Of CMS
 then print Wordpress and Joomla are recommended
EndWhile
IF security Of CMS is considered
 then Drupal is preferred.
<!--For all the average rate of Website Developers using the CMS-->
IF drupal average users is greater than the other two CMS
 then print "Drupal is most used CMS"
ELSE IF joomla is greater than drupal and wordpress
 then print "Joomla is most used CMS
ELSE IF wordpress is greater than the joomla and drupal
 then print "Wordpress is most used CMS"
ELSE Drupal is widely used
 then print "Drupal is most used CMS":
ENDIF
<!--security of CMS-->
WHILE considering the security awareness of the system then DO:
 IF users violating SQL Injection OR XSS Attack AND access to confidential
information
 then they have unauthorized access into the WCMS
 set sending junk mails to users
<!-- printing security awareness-->
 ELSE a secure CMS should
 set confidentiality
 set integrity
 set back-up provision
 ENDIF
ENDWHILE

Figure 6. Pseudocode for cross-site scripting.

Provide a general discussion on the proposition of the
proposed pseudo-code in terms of the objective of this
paper.

Conclusion

Guaranteeing usability and security in WCMS is the top
priority for web administrators as this informs the use and
exhaustive utilization of WCMS applications and their
integration with other applications running in an
organization. While most WCMS provides easy access to
web services to the users, they are vulnerable to security
breaches and threats. This paper identifies the security
vulnerabilities in WCMS as perceived by web
administrators in public universities in Kenya, and their
level of awareness of these vulnerabilities and control
measure, and propose a security model towards
mitigating these WCMS security vulnerabilities. Towards
an exhaustive understanding of these WCMS
vulnerabilities, we are currently incorporating the
proposed model into the WCMS web applications to
evaluate its performance. To curb the security the model
follows the following steps:

Step 1: Identify all the WCMS used by website
developers: Drupal, Joomla, WordPress
Step 2: Check on the usability and functionality of each
WCMS identified in step 1
Step 3: Check on the security of the WCMS in step 1.
Step 4: Identify the most highly threats performed by the
WCMS: that is, SQL injection, XSS attacker, unauthorized
access of information.
Step 5: Issue security awareness to curb step 4.

Next, we look forwards to incorporating the proposed
WCMS security model in the enterprise resource
planning (ERP) at the university.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Ali NS, Shibghatullah AS, Al Attar MH (2015). Review of the defensive

approaches for structured query language injection attacks and their
countermeasures. Journal of Theoretical and Applied Information
Technology 76(20).

12 J. Internet Inf. Syst.

Almroth FN (2018). A security overview of Content Management

Systems. Retrieved 2(24), from Detectify Blog:
https://blog.detectify.com/2018/12/04/security-overview-of-content-
management-systems.

Alwan ZS, Younis MF (2017). Detection and Prevention of SQL
InjectionAttack:A Survey. International Journal of Computer Science
and Mobile Computing 6(8):5-17.

Augustyniak RH, Aguero D, Finley AM (2005). The IP's guide to the
galaxy of portal planning: part I drafting a portal vision. Online
Information Review 29(6):643- 655.

Black M, Chapman D, Clark A (2018). The Enhanced Virtual
Laboratory: Extending Cyber Security Awareness through a Web-
based Laboratory. Information Systems Education Journal, 16:(6)4

Cassetto O (2014). Why CMS Platforms Are Common Hacking Targets
(and what to do about it). Retrieved 2 (24) 2020, from Imperva:
https://www.imperva.com/blog/cms-security-tips/

CUE HR Report, EC (2016). Status Of Universities (Universities
Authorized to Operate in Nairobi County). Nairobi: cue.

Cyber Security Report S (2016). Nairobi County Cyber Security Report
2016. Nairobi County: Communications Authority.
Www.Dealsnow.Com, 2016,
https://ccs.infospace.com/ClickHandler.ashx?encp. Accessed 9 Sept
2018

David K, Nora H (2007). New web site, new opportunities: Enforcing
standards compliance within a content management system, Library
Hi-Tech 25 (2): 276-287.

Deshpande VM, Nair DMK, Shah D (2017). Major Web Application
Threats for Data Privacy & Security–Detection, Analysis and
Mitigation Strategies.

Filotrani LJ (2018). WordPress for Journalists: From Plugins to
Commercialisation. Routledge.

Gupta S, Gupta BB (2017). Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art. International
Journal of System Assurance Engineering and Management
8(1):512-530.

Handova D (2019). How to Secure Your Content Management System
(CMS). Retrieved 2 24, 2020, from
SECURITYBOULEVARD:https://securityboulevard.com/2019/08/how
-to-secure-your-content-management-system-cms/

Infrastructure CC (2016). Content Management Systems Security and
Associated Risks. Retrieved 2 24, 2020, from CISA Cyber
Infrastructure: https://www.us-cert.gov/ncas/alerts/TA13-024A

Jakobson G (2014). U.S. Patent No. 8,769,017. Washington, DC: U.S.
Patent and Trademark.

Johns M, Pfistner S (2017). U.S. Patent Application No. 15/140154.
Kasli TS, Kaur N (2015). Detection and Prevention of SQL Injection

Attacks using Novel Method in Web Applications. International
Journal of Advances in Engineering and Technology 6(4):11-15.

Martinez-Caro JM, Aledo-Hernandez AJ, Guillen-Perez A, Sanchez-
Iborra R, Cano MD (2018). A Comparative Study of Web Content
Management Systems. Information 9(2):27.

Mesa O, Vieira R, Viana M, Durelli VH, Cirilo E, Kalinowski M, Lucena C
(2018). Understanding vulnerabilities in plugin-based web systems:
an exploratory study of wordpress. In Proceedings of the 22nd
International Systems and Software Product Line Conference 1:149-
159.

Mugenda AG, Mugenda A (2008). Social Science Research: Theory
and Principles. Nairobi: Applied.

Mugenda DM, Mugenda D (2003). Research methods: Quantitative and
Qualitative methods. Revised in Nairobi 56(12):23-34.

Nardi PM (2018). Doing survey research: A guide to quantitative
methods. Routledge.

Nithya V, Pandian SL, Malarvizhi C (2015). A survey on detection and
prevention of cross-site scripting attack. International Journal of
Security and Its Applications 9(3):139-152.

Parsons MJ (2017). A Secure Software Design Pattern in the
Prevention for Reflected Cross-Site Scripting (Doctoral dissertation,
Colorado Technical University).

Peltier TR (2016). Information Security Policies, Procedures, and

Standards: guidelines for effective information security management.
Auerbach Publications.

Piper B, Jepkemei E, Kwayumba D, Kibukho K (2015). Kenya's ICT
Policy in Practice: The Effectiveness of Tablets and E-Readers in
Improving Student Outcomes. In FIRE: Forum for International
Research in Education 2(1):3-18. Lehigh University Library and
Technology Services. 8A East Packer Avenue, Fairchild Martindale
Library Room 514, Bethlehem, PA 18015.

Priyatna F, Corcho O, Sequeda J (2014). Formalization and
experiences of R2RML-based SPARQL to SQL query translation
using morph. In Proceedings of the 23rd international conference on
World wide web pp. 479-490.

Neuendorf KA (2016). The content analysis guidebook. Sage.
Sarmah U, Bhattacharyya DK, Kalita JK (2018). A survey of detection

methods for XSS attacks. Journal of Network and Computer
Applications 118:113-143.

Steiner S (2014). A Hybrid Runtime Approach to Combating High-Level
Semantic Attacks (Doctoral dissertation, The University of Idaho).

Svensson R (2016). Exploiting Vulnerabilities. In From Hacking to
Report Writing. Apress, Berkeley, CA. pp. 89-152.

Taber KS (2018). The use of Cronbach’s alpha when developing and
reporting research instruments in science education. Research in
science education 48(6):1273-1296.

Tretten P, Karim R (2014). Enhancing the usability of maintenance of
data management systems. Journal of Quality in Maintenance
Engineering 20(3):290-303.

Uwagbole SO, Buchanan WJ, Fan L (2017). An applied pattern-driven
corpus to predictive analytics in mitigating SQL injection attack. In
Emerging Security Technologies (EST), 2017 Seventh International
Conference on IEEE pp. 12-17.

Williams B, Damstra D, Stern H (2015). Professional WordPress: design
and development. John Wiley & Sons.

Elhakeem YFGM, Barry BI (2013). Developing a security model to
protect websites from cross-site scripting attacks using ZEND
framework application. In 2013 International Conference on
Computing, Electrical and Electronic Engineering (Icceee) (pp. 624-
629). IEEE.

	INTRODUCTION
	Literature Review
	METHODOLOGY
	RESULTS AND FINDINGS
	DISCUSSION
	Conclusion

