Vol. 15(2), pp. 23-28, July-December 2023 DOI: 10.5897/JMA2023.0462 Article Number: 70C806971488 ISSN: 2141-2308 Copyright ©2023 Author(s) retain the copyright of this article http://www.academicjournals.org/JMA

Journal of Microbiology and Antimicrobials

Full Length Research Paper

Characterization of class 1, 2 and 3 integrons in multidrug-resistant *Escherichia coli* isolated from clinical samples from Niamey, Niger

Alio Mahamadou Fody^{1,2*}, Touwendsida Serge Bagré^{2,3}, René Dembelé^{2,4}, Laouali Boubou⁵, Ali Moussa⁶, Ramatou Sidikou³, Amy Gassama-Sow⁷, Alfred S. Traoré² and Nicolas Barro²

¹Superior Normal School, University Abdou Moumouni of Niamey, Niamey, Niger.

²Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses (LaBESTA), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso.

³Biotechnology Laboratory, Faculty of Science and Technology, Abdou Moumouni University, Niamey, Niger. ⁴Training and Research Unit in Applied Sciences and Technologies, University of Dedougou, Dedougou, Burkina Faso.

⁵Bacteriology Laboratory, Niamey National Hospital (NNH), Niamey, Niger. ⁶Microbiology Laboratory, General Reference Hospital (GRH), Niamey, Niger.

⁷Unit of Experimental Bacteriology, Pasteur Institute of Dakar, Dakar, Senegal.

perimental Basteriology, rastear motitate of Bakar, Bakar, e

Received 21 July, 2023; Accepted 17 October, 2023

Antibiotic resistance is a major public health problem worldwide. *Escherichia coli* is one of the bacteria most frequently isolated in hospital infections and became more resistance to common antibiotics used. This resistance to antibiotics could be attributed to a modification of the genetic supports or the acquisition of mobile genetic elements. A total of 195 multi-drug resistant *E. coli* isolated from clinical samples, were analyzed. Of these multi-drug resistant *E. coli*, 54 isolates were producing extended-spectrum beta-lactamase. The presence of class 1, 2, and 3 integrons was performed using simple PCR. To highlight the different classes of integrons, genomic DNA was extracted with the QIAmp, DNA mini, and Qiagen kit. The result of the 195 isolates DNA amplification showed that 60.5% isolates were positive for the class 1 integron, while class 2 integron was found in 6 isolates (3.1%) and class 3 integron was found in 24 isolates (12.3%). Among multi-drug resistant *E. coli* producing extended spectrum beta-lactamase, 68.5% carried the class 1 integron, 3.7% for the class 2 integron, and 13% for the class 3 integron. The results of this study showed the presence of three classes of integrons in several clinical isolates of multi-drug resistant *E. coli*. The simultaneous presence of resistance genes and integron classes in several extended-spectrum beta-lactamase-producing isolates demonstrates the need for increased monitoring of antibiotic use.

Key words: Integron, multi-drug resistant, Escherichia coli, extended-spectrum beta-lactamase.

INTRODUCTION

The increasing of resistance to commonly applied antimicrobial agents is being reflected by growing multiple drug resistance in bacteria and is becoming a growing threat to public health. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria (Agyare et

al., 2018).

Escherichia coli, a conditional pathogen, is one of the most common and important pathogens in medical care settings. It is the most prominent cause of diarrhea, urinary tract infections, septicemia, and various other clinical infections, including neonatal meningitis (Wu et al., 2021). The problem of bacterial antibiotic resistance is one of the World Health Organization's highest priorities when it comes to threats to human health (Nasif et al., 2022). Beta-lactamase mediated resistance in *E. coli* is a significant problem that requires immediate attention (Tewari et al., 2022).

Acquiring mobile elements, including plasmids, transposons, and integrons among Gram-negative bacteria, plays an important role in the development of antibiotic resistance (Sütterlin et al., 2020). Various classes of integrons possessing a wide variety of gene cassettes are distributed in bacteria throughout the world. The role of integrons as mobile genetic elements playing a central role in antibiotic resistance has been well studied and documented. Integrons are the ancient structures that mediate the evolution of bacteria by acquiring, storing, disposing, and resorting to the reading frameworks in gene cassettes (Sabbagh et al., 2021).

Several classes of integron have been described, including classes 1 and 2 of the most common integrons of multi-drug resistant. Gram-negative bacteria are associated with antibiotic treatment failure (Kaushik et al., 2018).

The presence of integrons in the clinical *E. coli* isolates is also highly related to antibiotic resistance, class 1integron was highly prevalent in these pathogenic isolates (Nasif et al., 2022). Class I integrons of *E. coli* strains were present in all sources, while the prevalence of intl2 was lower but remarkable in food isolates (Etayo et al., 2018).

The percentage of clinical multi-drug resistant *E. coli* isolates was higher among those positive for integron II gene followed by integron III gene (Taha et al., 2018).

The gene *bla*_{TEM}, *bla*_{SHV}, *bla*_{OXA}, and *bla*_{CTX-M} as well as integrons (*Int*1, *Int*2, and *Int*3) are involved in the antibiotic resistance of diarrheagenic *E. coli* (Dembélé et al., 2022).

This study aims to determine the prevalence of class 1, 2, and 3 integrons in multidrug-resistant *E. coli* isolated from the clinical specimen in two hospitals in Niamey, Niger.

MATERIALS AND METHODS

Study design and samples

It is a cross-sectional study conducted in two hospitals of Niamey,

Niger (National and AMIROU BOUBACAR DIALLO hospitals). The study investigated 195 isolates of multi-drug resistant *E. coli* obtained from various clinical specimens collected from March 2014 to June 2016. The clinical specimens included: urine, stool, blood, vaginal swab, and pus.

Isolation, identification, antimicrobial susceptibility testing of isolates, and phenotypic characterization of extended-spectrum beta-lactamases (ESBL) were described in our previous study (Alio et al., 2017).

Genomic DNA extraction

Genomic DNA extraction was performed with the QIAmp, DNA mini kit (Qiagen Germany). Two colonies of E. coli isolates were suspended in 180 µl ATL buffer for the first digestion. The mixture was homogenized, then 20 µl of proteinase K was added, vortexed, and incubated at 56°C. After 1 h of incubation, the tube was centrifuged for 1 min at 8,000 rpm. After, 200 µl of AL buffer was added. The mixture was homogenized and incubated at 70°C for 10 min. Then 200 µl of 100% ethanol was added. The mixture was centrifuged at 8,000 rpm for 3 min. The tube containing 600 µl of the total mixture was placed in the Qiagen column and centrifuged at 8000 rpm. After 3 min, 500 µl of AW1 buffer was added to the column and centrifuged at 8000 rpm for 3 min. Once this step was complete, 500 µl of buffer AW2 was added to the column and centrifuged at 14,000 rpm for 3 min. The column was then placed in an Eppendorf tube and 200 µl of buffer AE was added. The Eppendorf tube was incubated at room temperature for 1 min and then centrifuged at 8000 rpm for 3 min. The column was then discarded, and the Eppendorf tube DNA was stored at -20°C for integron analysis.

Characterization of integrons

The presence of class 1, 2, and 3 integrons was tested using simple PCR according to Ploy et al. (2000). Primers sequences and amplicons of the different classes of integrons are listed in Table 1.

Single PCRs were performed with a final reaction volume of 25 μ l. The PCR mix contained 2.5 μ l of 10 X GC buffer, 0.5 μ l of dNTPs (10 mM), 2 μ l of MgCl₂ (25 mM), 0.25 μ l of Taq Polymerase (5 U/l), 14.25 μ l of H₂O, 1.5 μ l of Forward primers, 1.5 μ l of Reverse primers and 2.5 μ l of DNA lysate. The PCR conditions were 94°C for 5 min, followed by 35 cycles of 94°C for 30 s for denaturation, annealing at 60°C (Int11) and 62°C (Int12 and Int13) for 1 min, and then extension at 72°C for 1 min followed by a final extension of 72°C for 7 min. Amplicons were stored at 4°C for electrophoretic separation. After PCR, 10 μ l of each amplicon was mixed with a drop of blue loading buffer and then separated by electrophoresis on agarose gel (1%) with tris borate EDTA buffer (1X) at 130 V and 300 mA during 1 h.

Ladder of 100 and 200 bp (HyperLadder I, Bioline) were used. Once migrated, ethidium bromide gels were visualized under UV light. The molecular weight of the amplified fragment was checked against the expected fragment using several ladders. For the positive control, DNAs from the reference strains R3 and R7 were used for class 1 and 2 integrons, respectively.

Data analysis

Data were processed and analyzed using Microsoft Excel 2013 and

*Corresponding author. E-mail: juniorfodym@gmail.com. Tel: +22796577781 or +22793587333..

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u>

Integrons	Primer sequence (5'-3')	Amplicon size (PB)	Annealing temp. (°C)	References
Intl1	F: ATTTCTGTCCTGGCTGGCGA R: ACATGTGATGGCGACGCACGA	600	60	Ploy et al. (2000)
Intl2	F: CACGGATATGCGACAAAAAGGT R: GTAGCAAACGACTGACGAAATG	806	62	Ploy et al. (2000)
Intl3	F: GCCCCGGCAGCGACTTTCAG R: ACGGCTCTGCCAAACCTGACT	600	62	Ploy et al. (2000)

Table 1. Primers used for the detection of integrons.

Table 2. Prevalence of class 1, 2 and 3 integrons among MDR E. coli.

Integrano alago n (0/)	Isolates origin								
Integrons class n (%)	Stool N=49	Urine N=134	Pus N=7	Blood N=4	Vaginal swabs N=1				
Intl1	44 (89.8)	68 (50.7)	4 (57)	2 (50)	0 (0)				
Intl2	2 (4.1)	3 (2.2)	1 (14.3)	0 (0)	0 (0)				
Intl3	24 (49)	0 (0)	0 (0)	0 (0)	0 (0)				

Med Cal version 11.0.1.0. p < 0.05 was considered to be statistically significant.

RESULTS

Bacterial isolates and antimicrobial susceptibility testing

A total of 195 multi-drug resistance (MDR) *E. coli* were collected and analysed during the study period. Among these isolates, 54 (27.7%) were extended-spectrum betalactamases producers. Therefore, 49 (25.1%) strains of multi-resistant *E. coli* were isolated from stool samples, 134 (68.7%) strains from urine samples, 7 (3.6%) from pus samples, 4 (2.1%) from blood samples, and one strain from vaginal swabs.

As shown in our previous study, high resistance to beta-lactams was observed, mainly with ampicillin (100%), amoxicillin + clavulanic acid (93.1%), cephalothin (98.2%), cefotaxime (92.6%), ceftazidime (97.2%), and ceftriaxone (83.9%) as compared to quinolone with ofloxacin (77.4%), ciprofloxacin (84.9%), and nalidixic acid (91.2%). Resistance to the monobactams was 77.4% to aztreonam, and the sulphonamides were 95.4% to trimethoprim-sulfamethoxazole (Alio et al., 2017).

Prevalence of class 1, 2 and 3 integrons in multidrugresistant *E. coli* isolates

The PCR amplification results showed that, of the 195 isolates, 118 were positive for the class 1 integron (*Intl1*) which represented 60.5% of all tested strains while class

2 Integron (*Intl2*) was found in 6 isolates (3.1%) and the class 3 integron (*Intl3*) was found in 24 isolates (12.3%) (Table 2).

The results in Table 2 indicated a higher prevalence of *Intl1* in stool isolates (89.8%) than in other isolates from urine (50.7%), pus (57%), and blood (50%) (p = 0.0006).

In contrast, the prevalence of *Intl2* observed in pus isolates (14.3%) was higher than that observed in stool isolates (4.1%) and urine isolates (2.2%) (p = 0.0020).

On the other hand, results of this study reported the presence of *Intl3* only in stool isolates with a prevalence of 49%. Figure 1 shows amplicons sizes of the different classes of integrons.

Prevalence of class 1, 2, and 3 integrons in ESBLproducing *E. coli* isolates

Among the multidrug resistant *E. coli* isolates, 54 of them were producing extended spectrum beta-lactamases.

From stools samples, the results indicate that there was no significant difference (p = 0.7637) between the prevalence of *Intl1* in ESBL-producing *E. coli* (85.7%) and that observed in multidrug-resistant *E. coli* strains that did not express ESBL (91.4%). No ESBL-producing *E. coli* contained *Intl2* gene was observed. However, a prevalence of 5.7% of these integrons was observed in *E. coli* which does not express ESBL. Moreover, for *Intl3*, a prevalence of 50 and 48.6% was observed in ESBL-producing *a* non-ESBL-producing *E. coli* isolates, respectively (p = 1.00).

In urine samples, the prevalence of *Intl1* was 59.5% in ESBL-producing *E. coli* and 47.4% in multidrug-resistant *E. coli* which do not express ESBL (p = 0.2460). The

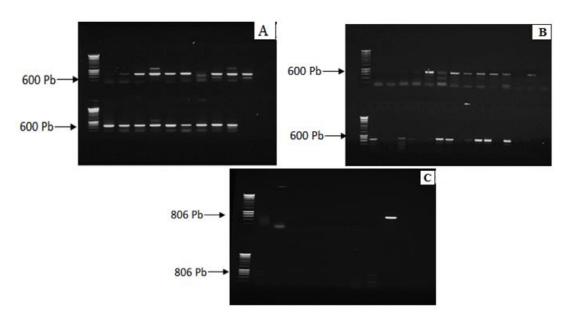


Figure 1. Integrons class Intl1 (A), Intl2 (C) and Intl3 (B) of stool samples gel on agarose.

Table 3. Prevalence of class 1, 2, and 3 integrons in ESBL-producing and non-producing *E. coli* isolates.

					Isolates ori	gin				
Integrons class	Stools		Urine		Pus		Blood		Vaginal swabs	
	ESBL + N=14	ESBL - N=35	ESBL + N=37	ESBL - N=97	ESBL + N=2	ESBL - N=5	ESBL + N=1	ESBL - N=3	ESBL + N=0	ESBL - N=1
<i>Intl1</i> n (%)	12 (85.7)	32 (91.4)	22 (59.5)	46 (47.4)	2 (100)	2 (40)	1 (100)	1 (33.3)	0 (0)	0 (0)
<i>Intl</i> 2 n (%)	0 (0)	2 (5.7)	2 (5.4)	1 (1.0)	0 (0)	1 (20)	0 (0)	0 (0)	0 (0)	0 (0)
<i>IntI3</i> n (%)	7 (50)	17 (48.6)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Table 4. Combination prevalence of different resistance integron classes.

Integrana alago	Isolates origin									
Integrons class	Stools N=49	Urine N=134	Pus N=7	Blood N=4	Vaginal swabs N=1					
Intl1 + Intl2	2 (4.1)	2 (1.2)	0 (0)	0 (0)	0 (0)					
Intl1 + Intl3	24 (49)	0 (0)	0 (0)	0 (0)	0 (0)					
Intl2 + Intl3	2 (4.1)	0 (0)	0 (0)	0 (0)	0 (0)					
Intl1 + Intl2 + Intl3	1 (2.0)	0 (0)	0 (0)	0 (0)	0 (0)					

prevalence of *Intl*² was 5.4 and 1% in ESBL-producing *E. coli* and non-ESBL-producing *E. coli*, respectively (p = 0.2207). No *Intl*³ was detected in urine isolates. Only *Intl*¹ in ESBL-producing isolates from pus and blood was detected with a prevalence of 100% (Table 3).

Combination of different resistance integron classes

Results in Table 4 indicated that only isolates from stool

and urine carry two or three classes of integrons simultaneously. In stool isolates, the prevalence of *Intl1* + *Intl3* (49%) was significantly higher (p < 0.0001) than the other types of combinations *Intl1* + *Intl2* (4.1%) and *Intl2* + *Intl3* (4.1%). However, the combination of all three integron classes (*Intl1* + *Intl2* + *Intl3*) was only observed in stool isolates with a prevalence of 2%. For urine isolates, only a prevalence of 1.2% of *Intl1* + *Intl2* was observed.

						lso	lates origin						
Integrons class	Stools			Urine		Pus			Blood				
	<i>bla</i> _{тем}	<i>Ыа</i> _{СТХ-М}	bla _{0XA-1}	bla _{sнv}	<i>Ыа</i> _{тем}	<i>Ыа</i> _{СТХ-М}	bla _{0XA-1}	<i>Ыа</i> _{ТЕМ}	<i>Ыа</i> _{СТХ-М}	bla _{0XA-1}	<i>Ыа</i> _{тем}	<i>Ыа</i> _{СТХ-М}	bla _{0XA-1}
<i>Intl1</i> n (%)	42 (95.5)	31 (70.5)	33 (75)	8 (18.2)	56 (82.4)	29 (42.6)	3 (4.4)	2 (50)	2 (50)	3 (75)	2 (100)	2 (100)	2 (100)
<i>Intl2</i> n (%)	2 (100)	1 (50)	1 (50)	1 (50)	3 (100)	1 (33.3)	0 (0)	0 (0)	1 (100)	1 (100)	1 (100)	0 (0)	0 (0)
<i>Intl3</i> n (%)	24 (100)	20 (83.3)	20 (83.3)	7 (29.2)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Table 5. Prevalence of isolates harbouring integron classes and resistance genes.

Prevalence of integron classes associated with resistance genes

Results of stool samples showed a high prevalence (95.5%) of *E. coli* isolates that harboured both the *Intl1* and *bla* _{*TEM*} genes. This prevalence was higher (p < 0.0001) than that of isolates that harboured both *Intl1* and *bla* _{*CTX-M*} (70.5%), *bla* _{*OXA-1*} (75%), and *bla* _{*SHV*} (18.2%). The prevalence of isolates harbouring *Intl2*, *Intl3*, and the *bla* _{*TEM*} gene was also higher (p < 0.0001) than those harbouring *Intl2* and *Intl3* with the *bla* _{*CTX-M*}, *bla* _{*OXA-1*}, and *bla* _{*SHV*} genes.

For urine isolates carrying *Intl1* and the *bla TEM*, *bla CTX-M*, and *bla SHV* genes showed a prevalence of 82.4, 42.6, and 4.4%, respectively. These results showed that there was a significant difference in isolates harbouring *Intl1* and *bla TEM*, *bla CTX-M*, and *bla SHV* genes simultaneously (p < 0.0001). For isolates carrying *Intl2*, 100 and 33.3% prevalence was observed with *bla TEM* and *bla CTX-M* genes, respectively. For isolates from pus and blood, only isolates carrying *Intl1* harboured *bla TEM*, *bla CTX-M*, and *bla OXA-1* genes (Table 5).

DISCUSSION

Integrons are genetic elements that play a major role in antibiotic resistance transmission. They can carry several resistance genes at the same time. Integrons play an essential role in disseminating drug-resistance genes among bacteria isolates (Barzegar et al., 2022). The cooccurrence of these genetic elements significantly contributes to the dissemination of antibiotic resistance in Enterobacteriaceae and has been associated with specific genes conferring resistance to β -lactams, quinolones, and aminoglycosides (Tewari et al., 2022).

The results obtained in strains isolated from stool samples showed a higher prevalence of Intl1 (89.8%) than Intl2 (4.1%) and Intl3 (49%). Similar results were reported by a study in Iran where the prevalence of Intl1(78.26%) was higher than Intl2 (76.81%) (Kargar et al., 2014). Furthermore, the results of a study in Spain reported by Vinue et al. (2008) showed a higher prevalence of Intl1 than Intl2 detected in isolates from stool (Vinue et al., 2008). Otherwise, the prevalence of Intl3 was higher than that observed in a study in Burkina Faso (Dembelé et al., 2022). Globally, these results showed that class I integrons are extremely important for the development and transmission of resistance genes in clinical E. coli strains. Overall, given the high prevalence of Intl1, it can be suggested that multidrug resistance is associated with the presence of these Intl1.

Regarding urine isolates, the results showed a higher prevalence of *Intl1* (50.7%) than *Intl2* (2.2%). However, *Intl3* was not found. The results

of the present study are similar to those reported by a study that was done in Iran by Khoramrooz et al. (2016), where a prevalence of Intl1 of 52 and 2.5% for *Intl2* was reported. The same study reported the absence of *Intl3* in urine isolates (Khoramrooz et al., 2016).

However, the results of this study are lower than those of Zeighami et al. (2014) who reported a prevalence of 78.8 and 4.5% for Intl1 and Intl2. respectively (Zeighami et al., 2014). A recent study in Iran reported the incidence of class 1 and 2 integrons was obtained in 39.9 and 14.1% of the isolates, respectively. Class 3-integron was not detected in any of the Uropathogenic E. coli isolates (Nasif et al., 2022; Barzegar et al., 2022). However, results of this study were contradicted by those reported by Lin et al. (2015) in which any isolates from urine carried Intl2 and Intl3 (Lin et al., 2015). Overall, the results showed an absence of Intl3 in isolates from urine, pus, blood, and vaginal swabs. This suggests that Intl3 appears to play a minor role in resistance in these E. coli strains (Moura et al., 2010).

The results of this study also showed the coexistence of two or even three integrons class in certain isolates. Integrons of class 1 and 3 were found simultaneously in 24 (49%) stool isolates. Etayo et al. (2018) reported the coexistence of *Intl1* and *Intl* 2 in 8% in ESBL-producing *E. coli* (Etayo et al., 2018). Rizk and El-Mahdy (2017) reported the co-existence of more than one type

of integron in 36.9% of isolates, and a prevalence of 38% was reported by Kargar et al. (2014) in a study performed in 69 multidrug-resistant (MDR) E. coli. Kor et al. (2013) found only one isolate carrying both integrons among clinical isolates. Odetoyin et al. (2017) reported a prevalence of 2.4% in fecal E. coli isolated from motherchild pairs in Nigeria. Results of the present study revealed a prevalence of 1.2% for Intl1 and Intl2 simultaneously in urine isolates. Previous studies have reported the simultaneous occurrence of Intl1 and Intl2 in 3.3% (Alkhudhairy et al., 2019). Integrons, capable of integrating, expressing, and disseminating gene cassettes carrying resistance determinants, play a critical role in facilitating the multidrug resistance (MDR) phenotype in these bacteria (Sabbagh et al., 2021).

Conclusion

This study reported the existence of class 1, 2 and 3 integrons in clinical isolates of multi-resistant *E. coli* obtained from different biological samples. Thus, class 1 integrons were observed with a high percentage. The coexistence of these integrons with resistance genes in ESBL-producing strains of *E. coli* had also been demonstrated. Hence, it is necessary to set up a surveillance system in order to better control the dissemination of resistance genes.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

- Agyare C, Boamah VE, Zumbi CN, and Osei FB (2018). Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrobial Resistance-A global threat pp. 33-51.
- Alio MF, Laouali B, Ali M, Hadiza IB, Ali K, Chaibou Y, Cheikna Z, Chaibou S, Alhousseini D, Ramatou S, Alfred ST (2017). Phenotypic detection of extended spectrum beta-lactamase in multidrug-resistant *Escherichia coli* from clinical isolates in Niamey, Niger. African Journal of Microbiology Research 11(18):712-717.
- Alkhudhairy M, Saki M, Seyed–Mohammadi S, Jomehzadeh N, Khoshnood S, Moradzadeh M, and Yazdansetad S (2019). Integron frequency of *Escherichia coli* strains from patients with urinary tract infection in Southwest of Iran. Journal of Acute Disease 8(3):113-117
- Barzegar S, Arzanlou M, Teimourpour A, Esmaelizad M, Yousefipour M, MohammadShahi J, Teimourpour R (2022). Prevalence of the Integrons and ESBL Genes in Multidrug-Resistant Strains of *Escherichia coli* Isolated from Urinary Tract Infections, Ardabil, Iran. Iranian Journal of Medical Microbiology 16(1):56-65.
- Dembélé R, Kaboré WA, Soulama I, Traoré O, Ouédraogo N, Konaté A, Guessennd NK, N'Golo DC, Sanou A, Serme S, Zongo S (2022). Beta-Lactamase-Producing Genes and Integrons in *Escherichia coli* from Diarrheal Children in Ouagadougou, Burkina Faso. In *Benign* Anorectal Disorders-An Update. IntechOpen.
- Etayo LP, Berzosa M, González D and Vitas AI (2018). Prevalence of Integrons and Insertion Sequences in ESBL-Producing *E. coli* isolated from different sources in Navarra, Spain. International Journal of Environmental Research and Public Health 15(10):2308.

- Kargar M, Mohammadalipour Z, Doosti A, Lorzadeh S, Japoni-Nejad A (2014). High Prevalence of Class 1 to 3 Integrons among Multidrug Resistance Diarrheagenic *Escherichia coli* in the Southwest of Iran. Osong Public Health and Research Perspectives 5(4):193-198.
- Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P (2018). Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. International Journal of Antimicrobial Agents 51(2):167-176
- Khoramrooz SS, Sharifi A, Yazdanpanah M, Hosseini SA, Emaneini M, Gharibpour F, Parhizgari N, Mirzaii M, Zoladl M, Khosravani SA (2016). High frequency of class 1 integrons in *Escherichia coli* isolated from patients with urinary tract infections in Yasuj, Iran. Iranian Red Crescent Medical Journal 18(1).
- Kor SB, Choo QC, Chew CH (2013). New integron gene arrays from multiresistant clinical isolates of members of the *Enterobacteriaceae* and *Pseudomonas aeruginosa* from hospitals in Malaysia. Journal of Medical Microbiology 62(3):412-420.
- Lin Z, Lai YM, Zaw MT (2015). Prevalence of class 1, class 2, and class 3 integrons in antibiotic-resistant uropathogenic *Escherichia coli* isolates. Indian Journal of Medical Research and Pharmaceutical Sciences 2:1-9.
- Moura A, Henriques I, Smalla K, Correia A (2010). Wastewater bacterial communities bring together broad-host-range plasmids, integrons, and a wide diversity of uncharacterized gene cassettes. Research in Microbiology 161(1):58-66.
- Nasif SH, Alsakini AH, Ali MR (2022). Prevalence of integrons and antibiogram typing among *Escherichia coli* causing communityacquired urinary tract Infection. Chinese Journal of Medical Genetics 32(4).
- Odetoyin BW, Labar AS, Lamikanra A, Aboderin AO, Okeke IN (2017). Classes 1 and 2 integrons in faecal *Escherichia coli* strains isolated from mother-child pairs in Nigeria. PLoS One 12(8):e0183383.
- Ploy MC, Denis F, Courvalin P, Lambert T (2000). Molecular characterization of integrons in *Acinetobacter baumanii*: Description of a hybrid class 2 integron. Antimicrobial Agents and Chemotherapy 44:2684-2688.
- Rizk DE, El-Mahdy AM (2017). Emergence of class 1 to 3 integrons among members of Enterobacteriaceae in Egypt. Microbial Pathogenesis 112:50-56.
- Sabbagh P, Rajabnia M, Maali AH, Ferdosi-Shahandashti E (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Science 24:136-142.
- Sütterlin S, Bray JE, Miaden MCJ, Tano E (2020). Distribution of class 1 integrons in historic and contemporary collections of human pathogenic *Escherichia coli*. PLoS One 15:e0233315.
- Taha MME, Homeida HE, Dafalla OME, Abdelwahab SI (2018). Multidrug resistance, prevalence and phylogenetic analysis of genes encoding class II and III integrons in clinically isolated *Escherichia coli*. Cellular and Molecular Biology 64(5):122-126.
- Tewari R, Ganaie F, Venugopal N, Mitra S, Shome R, Shome BR (2022). Occurrence and characterization of genetic determinants of β-lactam-resistance in *Escherichia coli* clinical isolates. Infection, Genetics and Evolution 100:105257.
- Vinue L, Saenz Y, Somalo S, Escudero E, Moreno MA, Ruiz-Larre F Torres C (2008). Prevalence and diversity of integrons and associated resistance genes in fecal *Escherichia coli* isolates of healthy humans in Spain. Journal of Antimicrobial Chemotherapy 62:934-937.
- Wu D, Ding Y, Yao K, Gao W Wang Y (2021). Antimicrobial Resistance Analysis of Clinical *Escherichia coli* Isolates in Neonatal Ward. Frontiers in Pediatrics 9:670470.
- Zeighami H, Haghi F, Hajiahmadi F (2014). Molecular characterization of integrons in clinical isolates of beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in Iran. Journal of Chemotherapy 27(3):145-151.