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The cylindrical vessels are used for storing fluids at high pressure. If the magnitude of the 
internal/external pressure is closer to the yield strength of the material used, then no thickness of the 
material will prevent the failure of the vessel. Hence shrink-fitted compound cylinders are used, which 
can store the fluids at higher pressure closer to the yield stress of the material. Optimally designed 
compound cylinder has equal maximum hoop stress in both - the inner and outer cylinders. The value 
of this hoop stress is closer to the value of yield stress of the material used. There are many parameters 
in the design of compound cylinder. Out of them only a few are important. Three important parameters 
are chosen for optimization – interface diameter, interference and outside diameter, keeping other 
parameters such as material, internal diameter, etc constant. The optimization is highly nonlinear and if 
the number of parameters is large, solution time will be more. Compound cylinders have historically 
been designed such that the maximum shear stress is equal in each cylinder.  This is the optimum 
condition for yielding of the cylinder, since both cylinders yield at the same pressure. If compound 
cylinders are subjected to fatigue, this is not the case. A better design criterion is to equate the 
maximum tensile stress in each cylinder, since the maximum tensile stress controls fatigue crack 
propagation. I have used maximum tensile stress (Hoop stress) criterion to arrive at the optimum 
design of compound cylinder. This paper describes the method of determining the optimum dimensions 
of both the cylinders made of specified material and to withstand a specified internal pressure so that 
the volume (and weight) is minimum. The results obtained are verified by using ANSYS finite element 
analysis packages. 
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INTRODUCTION 
 
In the classical design of thick cylinders, if the internal 
fluid pressure approaches the safe working stress limit of 
the material, the thickness of the cylinder approaches 
infinite value. To overcome this difficulty, compound 
cylinders are used, where one cylinder is shrink fitted on 
another cylinder. Some researchers (Liu and Zhou, 1994; 
Lazzarin and Livieri, 1997; Majzoobi et al., 2003; Hojjati 
and Hassani, 2007).have analyzed the autofrettaged 
cylinders, which are similar to compound cylinders. 

Designing a shrink fit assembly is tricky because the 
stress developed in the cylinders is a function of internal 
fluid pressure, shrinkage pressure and the dimensions  of 

the cylinders. Also the shrinkage pressure is a function of 
the amount of interference and dimensions of the 
cylinders. That is, unless the shrinkage pressure is 
known, stresses developed cannot be computed and to 
compute shrinkage pressure, dimensions of both the 
cylinders must be known. Hence a cumbersome trial and 
error method is to be used. 

In the optimum design of compound cylinders, the 
thickness of both the cylinders should be just sufficient to 
withstand the hoop stresses developed. That means the 
maximum hoop stress produced in both cylinders should 
be equal. In this, shrinkage  (contact)  pressure  plays  an
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important role. 

The shrinkage pressure can be such that the limiting 
compressive stress is produced in inner cylinder. But 
when subjected to internal pressure, it causes unequal 
stresses in both cylinders. That is, in one of the cylinders, 
the stress can be equal to maximum allowable stress and 
in other, less than maximum allowable stress. 

This paper describes the method of determining the 
optimum dimensions of both the cylinders made of 
specified material and to withstand a specified internal 
pressure so that the volume (and weight) is minimum. 
The results obtained are verified by using ANSYS finite 
element analysis packages. 

In the classical design of thick cylinder, the thickness (t) 
of thick cylindrical shell is computed by using various 
formulae depending upon the type of material used. For 
ductile material and open type of pressure vessels, 
Birnie’s equation given below is used. 
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As per this equation, if the internal pressure of fluid 
approaches the tensile strength of the material, the 
thickness of cylinder tends to infinity. Hence the 
cylindrical shell is shrink-fitted with another cylinder called 
a jacket, with certain interference at the interface 
diameter. Due to shrinkage, a contact pressure (Ps) is 
developed at the interface. This causes a compressive 
pre-stress in the inner cylinder and tensile pre-stress in 
the outer cylinder (jacket). These stresses can be 
computed by using following equations. 

Compressive stress at inner surface of inner cylinder 
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Tensile stress at inner surface of outer cylinder 
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           (3)   
 
When the compound cylinder is subjected to internal fluid 
pressure (P), it causes tensile (hoop) stress in both the 
cylinders, which can be computed by – 
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Both these stresses are superimposed to get the 
resultant stresses. The other stresses that is, radial and 
longitudinal stresses are small as compared to hoop 
stresses. Hence they are not considered. The resultant 
maximum hoop stresses occur at the inner surfaces of 
both the cylinders and are given by 
 
(a) At inside surface of inner cylinder (d=d1) 
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(b) At inside surface of outer cylinder (d=d2) 
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OPTIMUM DESIGN BASED ON MAXIMUM TENSILE STRESS 

 
In the optimum design of compound cylinder, the contact pressure 
plays a very important role. If the maximum contact pressure is 
used such that limiting compressive stress is produced in the inner 

cylinder, then the thickness of outer cylinder will be more to keep 
the tensile stress within limits. Similarly, if minimum contact 
pressure is used, then thickness of inner cylinder is increased to 
keep the tensile stress within limits. In either case, the tensile stress 
developed in both the cylinders will be unequal. So the proper value 
of contact pressure will produce equal tensile stresses in both the 
cylinders. This value of contact pressure is computed by equating 
Equations (5) and (6) as follows. 
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Taking ratios as c1=d2/d1, c2=d3/d2 and solving for shrinkage 
pressure (Ps) 
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                                          (8)  
 
To produce the contact pressure which develops equal tensile 
stresses in both cylinders, the amount of diameter-wise interference 
required is computed by –  
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Figure 1. Variation of σimin and σimax w.r.t. c1. 

 
 
 

 
 

 

Figure 2. Variation of σimin and σimax  w.r.t. c2. 

 
 
 
It is observed that for a specified thickness of inner cylinder, there 
exists a certain thickness of outer cylinder which produces equal 
tensile stresses in both the cylinders. Hence for minimum volume 
(or weight) of compound cylinder, the thickness of inner cylinder is 
so chosen that it will give minimum thickness of outer cylinder while 
keeping the tensile stresses in both cylinders equal and max. It is 
computed by using any iterative numerical methods. 

Generally the inside diameter is dictated by the volume of fluid to 
be stored. It is computed by using following formula 
 
d1 = (4V/πL)

1/2 

 
The inside diameter (d1) is kept constant at 100 mm. The material 
for both the cylinders is assumed to be linear isotropic with following 
properties: 
 

Permissible tensile stress = 250 MPa 
Modulus of elasticity = 2.1 X 10

5
 MPa 

Poisson’s ratio = 0.3 

The effect of variation of c1, c2 and interference (δ1) on the 
maximum principal stress in inner cylinder is as shown in Figures 1 
to 3. 

The effect of variation of c1 and c2 on the maximum principal 
stress in outer cylinder is as shown in the Figures 3 to 6. 

It is observed that for a given value of c1, there exists a value of 
c2, where the maximum hoop stress developed in both the cylinders 
is equal to permissible hoop stress. But the volume (or weight) of 
compound cylinder is not minimum. 

 
 
Optimization problem definition 

 
Given,  P = σy, E, d1 = (4V/πL)

1/2, 

 

Minimize f(x) = π*(d3
2
 – d1

2
)/4 

 
In terms of parameters c1 and c2, 
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Figure 3. Variation of σimin and σimax w.r.t. δ1. 

 
 
 

 
 

Figure 4. Variation of σomin and σomax w.r.t. c1. 

 
 
 

 
 
Figure 5. Variation of σomin and σomax  w.r.t. c2 



94         J. Mech. Eng. Res. 
 
 
 

  
 

Figure 6. Variation of σomin  and σomax  w.r.t. δ1. 

 
 
 
f(x) = π*d1
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Subject to constraints: 
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δ1 >  0 

 
Parameters to optimize – c1, c2, δ1. 
 
The above set of non-linear equations is solved by using a non-
linear solver available in MS-Excel and the results are as given 
below. 
 

c1=1.5522,   c2=1.556,   δ1=0.108. 
 

If d1 = 100 mm, then by using c1 = d2/d1, c2 = d3/d2, we obtain 
 

d2 = 155.22 mm, d3 = 421.5 mm. 
 
 
Manual calculations 

 
The MathCAD worksheet is used to perform the calculations as 

shown below. 
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Inner cylinder 
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Outer cylinder 
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Validation by FEA 

 
The inner and outer cylinders are modeled in Design Modeler of 
Ansys Workbench 10 with the computed dimensions. The model is 
meshed by using brick elements. The contact elements are 
generated at the interface. The inside surface of inner cylinder is 
subjected to a fluid pressure of 250 N/mm2. Here constraining the 
model is not required as the forces acting on the model are 
balanced. To avoid rigid body motion, weak spring forces in 
appropriate directions are applied by the software. By using non-
linear solver in Ansys Workbench FEA software, the results are 
obtained. They are as shown in Figures 7 to 12 and tabulated in 
Tables 1 to 3. 



 
 
 
 

 
 
Figure 7. Minimum hoop stress contours – inner cylinder 

(without internal pressure). 
 

 
 

 

 
 
Figure 8.  Maximum hoop stress contours – inner cylinder 

(with internal pressure). 
 
 
 

 
 

Figure 9.  Maximum hoop stress contours – outer cylinder 
(without internal pressure). 
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Figure 10.  Maximum hoop stress contours – outer cylinder 

(with internal pressure). 
 
 
 

 
 

Figure 11. Contact pressure contours (without internal 
pressure). 

 
 
 

 
 

 
Figure 12.  Contact pressure contours (with internal pressure).
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Table 1. Optimization results. 
 

d1 d2 d3 δ1 

100 mm 155.22 mm 241.5 mm 0.108 mm 

 

 
 

Table 2.  Absolute maximum hoop stress. 

 

Parameter 

Absolute maximum hoop stress 
without internal pressure (0 MPa) 

 Absolute maximum hoop stress with 
internal pressure ( 250 MPa) 

Exact FEA  Exact FEA 

Inner cylinder -103.55 -101.5  250 254.5 

Outer cylinder 72.88 77.11  250 256.15 

 

 
 

Table 3. Contact pressure. 

 

Parameter 
Contact  pressure (MPa) 

Exact FEA 

Without internal pressure 30.27 32.4 

With internal pressure 103.8 108.3 

 
 
 

RESULTS AND CONCLUSION 
 
The values in Tables 1 to 3 indicate that the theoretical 
and FEA results are matching within 5% accuracy. 

The compound cylinder is optimized for minimum 
volume (or weight) based on maximum tensile stress 
developed in both the cylinders. An iterative solver was 
used to find the optimum design parameters - the 
interface diameter, outside diameter and the diameter-
wise interference between the cylinders. The results 
obtained by numerical optimization were confirmed by 
manual calculations and verified by Ansys Workbench 10 
finite element code. The results obtained by finite element 
analysis are matching very closely (within 5% error level) 
with the theoretical results. Recently the accuracy of finite 
element software has improved many folds, thus avoiding 
the need for physical prototype testing. 
 
 
Nomenclature 
 
d1, Inner diameter of compound cylinder; d2, Interface 
diameter of compound cylinder; d3, Outer diameter of 
compound cylinder; P, internal pressure of the fluid;  Ps, 
Contact pressure due to shrink fit; Ps1, Contact pressure 
due to internal pressure; δ1, Interference at the interface 
diameter;  E, Modulus of elasticity; σt, Max. permissible 
tensile (hoop) stress; µ, Poisson’s ratio; c1, d2/d1; c2, d3/d2 
σimax, Max Principal Stress in Inner Cylinder, σomax, Max 
Principal Stress in Outer Cylinder; σimin, Minimum 
Principal Stress in Inner Cylinder; σomin, Minimum 
Principal Stress in Outer Cylinder; V, Volume of fluid to be 
stored. 
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