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In the present work, the Van Leer flux vector splitting scheme is implemented on a finite-volume 
context. The two-dimensional Favre-averaged Navier-Stokes equations are solved using an upwind 
discretization on a structured mesh. The Jones and Launder and the Wilcox and Rubesin two-equation 
models are used in order to close the problem. The physical problems under studies are the low 
supersonic flow along a ramp and the moderate supersonic flow around a blunt body configuration. 
The implemented scheme uses a MUSCL (Monotone Upstream-centered Schemes for Conservation 
Laws) procedure to reach second order accuracy in space. The time integration uses a Runge-Kutta 
method of five stages and is second order accurate. The algorithm is accelerated to the steady state 
solution using a spatially variable time step. This technique has proved excellent gains in terms of 
convergence rate as reported in Maciel. The results have demonstrated that the Wilcox and Rubesin 
model has yielded more critical pressure fields than the ones due to Jones and Launder. The shock 
angle of the oblique shock wave in the ramp problem and the stagnation pressure ahead of the blunt 
body configuration are better predicted by the Wilcox and Rubesin turbulence model. 
 
Key words: Van Leer algorithm, Jones and Launder turbulence model, Wilcox and Rubesin turbulence model, 
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INTRODUCTION 
 
Conventional non-upwind algorithms have been used 
extensively to solve a wide variety of problems (Kutler, 
1975). Conventional algorithms are somewhat unreliable 
in the sense that for every different problem (and 
sometimes, every different case in the same class of 
problems) artificial dissipation terms must be specially 
tuned and judicially chosen for convergence. Also, 
complex problems with shocks and steep compression 
and expansion gradients may defy solution altogether. 

Upwind schemes are in general more robust but are 
also more involved in their derivation and application. 
Some upwind schemes that have been applied to the 
Euler equations are: Van Leer (1982) and Radespiel and 
Kroll (1995). Some comments about these methods are 
reported as follows subsequently 

Van Leer (1982) suggested an upwind scheme based 
on the flux vector splitting concept. This scheme 
considered   the   fact   that   the   convective   flux  vector 

components could be written as flow Mach number 
polynomial functions, as main characteristic. Such 
polynomials presented the particularity of having the 
minor possible degree and the scheme had to satisfy 
seven basic properties to form such polynomials. This 
scheme was presented to the Euler equations in 
Cartesian coordinates and three-dimensions. 

Radespiel and Kroll (1995) emphasized that the Liou 
and Steffen (1993) scheme had low computational 
complexity and low numerical diffusion when compared 
to other methods. They also mentioned that the original 
method had several deficiencies. It yielded pressure 
oscillations in the proximity of shock waves. Problems 
with adverse mesh and with flow alignment were also 
reported. Radespiel and Kroll (1995) proposed a hybrid 
flux vector splitting approach which alternated between 
the Liou and Steffen (1993) scheme and the Van Leer 
(1982) scheme, at the shock-wave regions. This  strategy  



 
 
 
 

assured that strength shock resolution was clear and well 
defined. 

In relation to turbulent flow simulations, Maciel and Fico 
(2004) applied the Navier-Stokes equations to transonic 
flows problems along a convergent-divergent nozzle and 
around the NACA 0012 airfoil. The Baldwin and Lomax 
(1978) model was used to close the problem. Three 
algorithms were implemented: The MacCormack (1969) 
explicit scheme, the Pulliam and Chaussee (1981) 
implicit scheme and the Jameson, Schmidt and Turkel 
(1981) explicit scheme. The results have shown that, in 
general terms, the MacCormack (1969) and the Jameson 
et al. (1981) schemes have presented better solutions. 

Maciel and Fico (2006) have performed a study 
involving three different turbulence models. In this paper, 
the Navier-Stokes equations were solved applied to the 
supersonic flow around a simplified configuration of the 
Brazilian Satellite Launcher, VLS. The algebraic models 
of Cebeci and Smith (1970) and of the Baldwin and 
Lomax (1978) and the one-equation model of Sparlat and 
Allmaras (1992) were used to close the problem. The 
algorithms of Harten (1983) and of Radespiel and Kroll 
(1995) were compared and presented good results. 

In terms of two-equation models, Maciel and Fico 
(2008) have presented a work that deals with such 
models applied to the solution of supersonic aerospace 
flow problems. The 2-D Navier-Stokes equations written 
in conservative form, employing a finite volume 
formulation and a structured spatial discretization were 
solved. The Van Leer (1982) algorithm, first order 
accurate in space, was used to perform the numerical 
experiments. Turbulence was taken into account using 

two k-ε turbulence models, namely: The Jacon and 
Knight (1994) and the Kergaravat and Knight (1996) 
models. The steady state supersonic flow around a 
simplified version of the Brazilian Satellite Launcher, 
VLS, configuration was studied. The results have shown 
that the pressure field generated by the Kergaravat and 
Knight (1996) model was stronger than the respective 
one obtained with the Jacon and Knight (1994) model, 
although the latter predicts more accurate aerodynamic 
coefficients in this problem. The Kergaravat and Knight 
(1996) model predicted less intense turbulence kinetic 
energy- and dissipation-rate profiles than the Jacon and 
Knight model, yielding less intense turbulence fields. 

In the present work, the Van Leer (1982) flux vector 
splitting scheme is implemented, on a finite-volume 
context. The 2-D Favre-averaged Navier-Stokes 
equations are solved using an upwind discretization on a 

structured mesh. The Jones and Launder (1972) k-ε and 

the Wilcox and Rubesin (1980) k-ω
2
 two-equation models 

are used in order to close the problem. The physical 
problems under studies are the low supersonic flow along 
a ramp and the moderate supersonic flow around a blunt 
body configuration. The implemented scheme uses a 
MUSCL procedure to reach second order accuracy in 
space. The time integration uses a  Runge-Kutta  method 
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of five stages and is second order accurate. The 
algorithm is accelerated to the steady state solution using 
a spatially variable time step. This technique has proved 
excellent gains in terms of convergence rate as reported 
in Maciel (2005, 2008). 

The results have demonstrated that the Wilcox and 
Rubesin (1980) model have yielded more critical 
pressure fields than the ones due to Jones and Launder 
(1972). The shock angle of the oblique shock wave in the 
ramp problem and the stagnation pressure ahead of the 
blunt body configuration are better predicted by the 
Wilcox and Rubesin (1980) turbulence model. 

 
 
NAVIER-STOKES EQUATIONS 

 
The 2-D flow is modeled by the Navier-Stokes equations, 
which express the conservation of mass and energy as 
well as the momentum variation of a viscous, heat 
conducting and compressible media, in the absence of 
external forces. The integral form of these equations may 
be represented by: 

 

,                              (1)  
                                                                                        
where Q is written for a Cartesian system, V is the cell 
volume, nx and ny are components of the unity vector 
normal to the cell boundary, S is the flux area, Ee and Fe 
are the components of the convective, or Euler, flux 
vector, Ev and Fv are the components of the viscous, or 
diffusive, flux vector and G is the source term of the two-
equation models.  

 
The vectors Q, Ee, Fe, Ev and Fv are, incorporating a k-ε 

or k-ω
2
 formulation, represented by: 
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where the components of the viscous stress tensor are 
defined as: 

 

( )[ ]  Reyvxu32xu2t MMxx ∂∂+∂∂µ−∂∂µ=
, 

( ) Re xvyut Mxy ∂∂+∂∂µ=
;                                (3) 

 
( ) ( )[ ]  Reyvxu32yv2t MMyy ∂∂+∂∂µ−∂∂µ=

.      (4)                                                 

 
The components of the turbulent stress tensor (Reynolds 
stress tensor) are described by the following expressions: 

 

, 

( ) RexvyuTxy ∂∂+∂∂µ=τ
;                                  (5) 

                             

.                         (6) 
                                                                                        
Expressions to fx and fy are given as: 

 

( ) ( )
xxyxyxxxxx qvtutf −τ++τ+=

    
 
and    
 

( ) ( )
yyyyyxyxyy qvtutf −τ++τ+=

,                  (7) 
                    
where qx and qy are the Fourier heat flux components and 
are given by: 
 

( ) xeq iTTLMx ∂∂µ+µγ−= PrPrRe
 

 
and   
 

( ) yeq iTTLMy ∂∂µ+µγ−= PrPrRe
.                      (8)                                                    

                                                                                   

The diffusion terms related to the k-ε or k-ω
2
 equations 

are defined as: 
            

( ) xk1 kTMx ∂∂σµ+µ=α Re
   

 
 and    
 

( ) yk1 kTMy ∂∂σµ+µ=α Re
;                  (9) 

                                                                                                          

( ) xs1 sTMx ∂∂σµ+µ=β Re
  

 
 
 
 
and    
 

( ) ys1 sTMy ∂∂σµ+µ=β Re
.                        (10) 

 

In the aforementioned equations, ρ is the fluid density; u 
and v are Cartesian components of the velocity vector in 
the x and y directions, respectively; e is the total energy 
per unit volume; p is the static pressure; k is the 
turbulence kinetic energy; s is the second turbulent 
variable, which can be the rate of dissipation of the 

turbulence kinetic energy (k-ε model) or the square of the 

flow vorticity (k-ω
2
 model); the t’s are viscous stress 

components; τ’s are the Reynolds stress components; 
the q’s are the Fourier heat flux components; Gk takes 
into account the production and the dissipation terms of 
k; Gs takes into account the production and the 

dissipation terms of s; µM and µT are the molecular and 
the turbulent viscosities, respectively; PrL and PrT are the 
laminar and the turbulent Prandtl numbers, respectively; 

σk and σs are turbulence coefficients; γ is the ratio of 
specific heats; Re is the laminar Reynolds number, 
defined by: 
 

MREFREF lV µρ=Re
,                                        (11) 

 
where VREF is a characteristic flow velocity and lREF is a 
configuration characteristic length.  
 
The internal energy of the fluid, ei, is defined as: 
 

( )22

i u5.0ρee v+−=
.                                      (12) 

  
The molecular viscosity is estimated by the empiric 
Sutherland formula: 
   

( )TS1bT 21

M +=µ
,                                    (13) 

 

where T is the absolute temperature (K), b = 1.458 × 10
-6

 
Kg/(m.s.K

1/2
) and S = 110.4 K, to the atmospheric air in 

the standard atmospheric conditions (Fox and McDonald, 
1988). 
 
The Navier-Stokes equations are nondimensionalized in 

relation to the freestream density, ρ∞, the freestream 

speed of sound, a∞, and the freestream molecular 

viscosity, µ∞. The system is closed by the stated equation 
for a perfect gas: 
  

( )[ ]ρkvu0.5ρe1)(γp 22 −+−−=
,           (14)                    

 

Considering the ideal gas hypothesis. The total enthalpy 

is given by 
( ) ρ+= peH . 

 
[ 32xu2 TTxx µ−∂∂µ=τ

( )]  Re k32yvxu ρ−∂∂+∂∂

 
 [ 32yv2 TTyy µ−∂∂µ=τ

( )]  Re k32yvxu ρ−∂∂+∂∂



 
 
 
 
NUMERICAL ALGORITHM – VAN LEER (1982) 
SCHEME 

 
The space approximation of the integral Equation (1) 
yields an ordinary differential equation system given by: 

 

jijiji RdtdQV
,,,

−=
,                    (15) 

 
with Ri,j representing the net flux (residual) of the 
conservation of mass, conservation of momentum and 
conservation of energy in the volume Vi,j.  

 
The residual is calculated as: 
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,      (16) 

 

with 
d

j21i

c

j21ij21i RRR ,/,/,/ +++ −=
, where the superscripts 

“c” and “d” are related to convective and diffusive 
contributions, respectively.  

 
The cell volume is given by: 

 

 

   (17) 

 
The convective discrete flux calculated by the AUSM 
scheme (Advection Upstream Splitting Method) can be 
understood as a sum of the arithmetical average between 
the right (R) and the left (L) states of the cell face (i+½,j), 
involving volumes (i+1,j) and (i,j), respectively, multiplied 
by the interface Mach number, plus a scalar dissipative 
term, as shown in Liou and Steffen (1993). Hence, 
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(18) 

 

where 
[ ] t

j21iyxj21i SSS
,/,/ ++ =

 defines the normal area 
vector for the surface (i+½,j). The normal area 
components Sx and Sy to each flux interface are given in 
Table 1. Figure 1 exhibits the computational cell adopted 
for the simulations, as well its respective nodes and flux 
interfaces. The quantity “a” represents the speed of 
sound, which is defined as: 

 

( ) 50
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Mi+½,j defines the advective Mach number at the (i+½,j) 
face, which is calculated according to Liou and Steffen 
(1993): 
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+ += RLj21i MMM ,/ ,                                       (20) 

 
where the separated Mach numbers are defined by Van 
Leer (1982): 
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ML and MR represent the Mach numbers associated with 
the left and the right states, respectively. The advection 
Mach number is defined by: 
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Table 1. Values of Sx and Sy. 
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Figure 1. Computational cell. 

 
 
 

The pressure at the face (i+½,j), related to the cell (i,j), is 
calculated by a similar formula: 
 

−+
+ += RLj21i ppp ,/ ,                                   (23)                                                   

 

with p
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 denoting the pressure separation and according 
to Van Leer (1982): 
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The definition of a dissipative term φ determines the 
particular formulation of the convective fluxes. The 
following choice corresponds to the Van Leer (1982) 
scheme, according to Radespiel and Kroll (1995): 

                              
                                                                                 (25) 

 
The aforementioned equations clearly show that to a 
supersonic cell face Mach number, the Van Leer (1982) 
scheme represents a discretization purely upwind, using 
either the left state or the right state to the convective 
terms and to the pressure, depending on the Mach 
number signal. This Van Leer (1982) scheme is first order 
accurate in space. The time integration is performed 
using an explicit Runge-Kutta method of five stages, 
second order accurate, and can be represented in 
generalized form by: 
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with k = 1,...,5; α1 = 1/4, α2 = 1/6, α3 = 3/8, α4 = 1/2 and 

α5 = 1. The gradients of the primitive variables are 
calculated using the Green theorem, which considers that 
the gradient of a primitive variable is constant at the 
volume and that the volume integral which defines the 
gradient is replaced by a surface integral (Long et al., 

1991). To the xu ∂∂  gradient, for example, it is possible 
to write: 
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MUSCL APPROACH 
 
Second order spatial accuracy can be achieved by 
introducing more upwind points or cells in the schemes. It 
has been noted that the projection stage, whereby the 
solution is projected in each cell face (i-1/2,j; i+1/2,j) on 
piecewise constant states, is the cause of the first order 
space accuracy of the Godunov schemes (Hirsch, 1990). 
Hence, it is sufficient to modify the first projection stage 
without modifying the Riemann solver, in order to 
generate higher spatial approximations. The state 
variables at the interfaces are thereby obtained from an 
extrapolation between neighboring cell averages. This 
method for the generation of second order upwind 
schemes based on variable extrapolation is often referred 
to in the literature as the MUSCL (Monotone Upstream-
centered Schemes for Conservation Laws) approach. 
The use of nonlinear limiters in such procedure, with the 
intention of restricting the amplitude of the gradients 
appearing in the solution, avoiding thus the formation of 
new extrema, allows that first order upwind schemes be 
transformed in TVD high resolution schemes with the 
appropriate definition of such nonlinear limiters, assuring 
monotone preserving and total variation diminishing 
methods. Details of the present implementation of the 
MUSCL procedure are found in Maciel (2010). In this 
work, the minmod nonlinear limiter, defined in Hirsch 
(1990) and in Maciel (2010), was employed in the 
numerical simulations. 

 
 
TURBULENCE MODELS 
 

In this work, the k-ε turbulence model of Jones and 

Launder (1972) and the k-ω
2
 model of Wilcox and 

Rubesin (1980) were studied. 
 
 
Jones and Launder (1972) model 
 

In the Jones and Launder (1972) turbulence model, s = ε. 
To define the turbulent viscosity, or eddy viscosity, it is 
necessary to define the turbulent Reynolds number: 
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( )ων= MT kRe ,    

 
with  
 

 ρµ=ν MM     

 
and    
 

kε=ω .                                                              (28) 

 
It is also necessary to determine the D damping factor: 
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The turbulent viscosity is expressed in terms of k and ω 
as: 
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with Cµ a constant to be defined.                        
 
The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and ε. 

To the Jones and Launder (1972) model, the Gk and Gε 
terms have the following expressions: 
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,                           (34) 

 
with the second damping factor Ef defined as: 

( )36

f

2
Te921E

Re−−= . The closure coefficients adopted 

to the Jones and Launder (1972) model assume the 

following values: 01k .=σ ; 31.=σ ε ; 090C .=µ ; 

451C 1 .=ε ; 921C 2 .=ε ; PrdL = 0.72; PrdT = 0.9. 

 
 
Wilcox and Rubesin (1980) model 
  
In the Wilcox and Rubesin (1980) turbulence model, s 

=ω
2
. To define the turbulent viscosity, it is also necessary 

to define the turbulent Reynolds number, according to 

Equation (28), with ω defined as 
2s ω= . It needs to 

define a D damping factor: 
 

( )Te1D
Re−α−= ,   with: α a constant to be defined.                                                   

                                                                                 (35) 
 

The turbulent viscosity is expressed in terms of k and ω 
as: 
                                     

ωρ=µ kDT Re .                                                     (36)                                                                                                       

 
The source term denoted by G in the governing equation 

contains the production and dissipation terms of k and ω
2
. 

To the Wilcox and Rubesin (1980) model, the Gk and 

2G
ω

 terms have the following expressions: 

 

kkk DPG −−=     

 
and    
 

222 DPG
ωωω

−−= ,                                               (37)                                                               

 
where: 
 

 
y

u

x

v

y

u
P

∂

∂









∂

∂
+

∂

∂
= , Rek

DP
P

2k ρω








ω
= , 

Re
* k

y

v

x

u

3

2
Dk ρω








β−ω









∂

∂
+

∂

∂
−= ;              (38) 

 
 
 
 

Re
3

2

EP
P 2 ρω









ω

γ
= ∞

ω
, 

 

,                                                                                
                                                                                 (39) 
 
with the second damping factor E defined as: 

( )T50
e1E

Re.−α−= . The closure coefficients adopted to 

the Wilcox and Rubesin (1980) model assume the 

following values: 991740.=α ; 150.=β ; 090.
* =β ;

02k .=σ ; 022 .=σ
ω

; 90.=γ ∞ ; PrdL = 0.72; PrdT = 

0.9. 
 
 
INITIAL AND BOUNDARY CONDITIONS 
 
Initial condition 
 

k-εεεε model 
 
Freestream values, at all grid cells, are adopted for all 
flow properties as initial condition, as suggested by 
Jameson and Mavriplis (1986) and Maciel (2002). 
Therefore, the vector of conserved variables is defined 
as: 
                  

,                (40) 

 
where α is the angle of attack, K is the kinetic energy of 
the mean flow and f1 and f2 are fractions. The kinetic 
energy of the mean flow is determined, considering the 

present nondimensionalization, as 
2M50K ∞= .

. The 
values adopted for f1 and f2 in the present work were 
0.005 and 0.2, respectively. 
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Again freestream values, at all grid cells, are adopted for 
all flow properties  as  initial  condition,  as  suggested  by  
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Jameson and Mavriplis (1986) and Maciel (2002). 
Therefore, the vector of conserved variables is defined 
as: 
 

,                  (41) 
 

where k∞ is the freestream turbulent kinetic energy and 

ω∞ is the freestream turbulent vorticity. These parameters 

assumes the following values in the present work: k∞ = 

1.0 × 10
-6

 and 
( )2

REF
lu10 ∞∞ =ω

, with u∞ the 
freestream u Cartesian component and lREF a 
characteristic length, the same adopted in the definition 
of the Reynolds number. 
 
 
Boundary conditions 
  
The boundary conditions are basically of four types: Solid 
wall, entrance, exit and far field. These conditions are 
implemented with the help of ghost cells. Wall condition: 
At a solid boundary, the non-slip condition is enforced. 
Therefore, the tangent velocity component of the ghost 
volume at wall has the same magnitude as the respective 
velocity component of its real neighbor cell, but opposite 
signal. In the same way, the normal velocity component 
of the ghost volume at wall is equal in value, but opposite 
in signal, to the respective velocity component of its real 
neighbor cell. 

The normal pressure gradient of the fluid at the wall is 
assumed to be equal to zero in a boundary-layer like 
condition. The same hypothesis is applied for the normal 
temperature gradient at the wall, assuming an adiabatic 
wall. The normal gradient of the turbulence kinetic energy 
at the wall is also assumed to be equal to zero. 

 
 
k-εεεε model 
 
From the aforementioned considerations, density, 
pressure and turbulence kinetic energy at the ghost 
volume are extrapolated from the respective values of its 
real neighbor volume (zero order extrapolation). The total 
energy is obtained by the perfect gas law and the rate of 
dissipation of the turbulence kinetic energy is determined 
by the following expression, considering production-
destruction equilibrium: 

 

( ) ( )n

23

w

43

ghost d410kC .
//

µ=ρε
,                      (42)                                                                               
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where kw is the wall turbulence kinetic energy and dn is 
the distance of the first mesh point to the wall. 
 

The properties of the first real volumes (j = 1) are 
necessary to be determined, aiming to guarantee that the 
u profile is correctly calculated by the numerical scheme. 
The u component of these cells is determined by the “wall 
law”. It is initially necessary to calculate the wall shear 
stress, which is defined as: 
 

+
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where u

+
 is defined as: 
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with Mn
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w

250
dkCd µρ= µ

+ ..

. The value of u of the real 
volume at the wall is obtained from: 
                                 

ghostMwn udu +µτ=
                               (45) 

 

The v component is extrapolated from the ghost volume, 
with opposite signal, and the pressure is extrapolated 
from the real volume at j = 2. The turbulence kinetic 
energy is defined by its value at wall and the total energy 
of this volume is determined by the state equation for a 
perfect gas. The rate of dissipation of the turbulence 
kinetic energy to this volume is determined by Equation 
(46). 
 
 

k-ωωωω
2
 model 

 

From the aforementioned considerations, density and 
pressure are extrapolated from the respective values of 
its real neighbor volume (zero order extrapolation). The 
total energy is obtained by the state equation for a perfect 
gas. The turbulent kinetic energy and the turbulent 
vorticity at the ghost volumes are determined by the 
following expressions: 
 

00k ghost .=
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where β assumes the value 3/40 and dn is the distance of 
the first mesh point to the wall. 
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Figure 2. Ramp configuration.   

 
 
 
Entrance condition 
 
Subsonic flow 
 
Five properties are specified and one extrapolated. This 
approach is based on information propagation analysis 
along characteristic directions in the calculation domain 
(Maciel, 2002). In other words, for subsonic flow, five 
characteristic propagate information point into the 
computational domain. Thus five flow properties must be 
fixed at the inlet plane. Just one characteristic line allows 
information to travel upstream. So, one flow variable must 
be extrapolated from the grid interior to the inlet 
boundary. The pressure was the extrapolated variable 
from the real neighbor volumes, for all studied problems. 
Density and velocity components adopted values of 
freestream flow. The turbulence kinetic energy and the 
rate of dissipation of the turbulence kinetic energy were 
fixed with the values of the initial condition, with the 

modification of 
2

u50K .= . To the k-ω
2
 model, the 

turbulence kinetic energy and the turbulence vorticity 
assume the values of the initial condition (freestream 
flow). The total energy is determined by the state 
equation of a perfect gas. 
 
 
Supersonic flow 
 
In this case, no information travels upstream; therefore all 
variables are fixed with their of freestream values. 
 
 
Exit condition 
 
Subsonic flow  
 
Five characteristic propagate information outward the 
computational domain. Hence, the associated variables 
should   be   extrapolated  from  interior  information.  The  

 
 
 
 
characteristic direction associated to the “(qnormal-a)” 
velocity should be specified because it point inward to the 
computational domain (Maciel, 2002). In this case, the 
ghost volume pressure is specified from its initial value. 
Density, velocity components, the turbulence kinetic 
energy, the rate of dissipation of the turbulence kinetic 
energy and the turbulence vorticity are extrapolated. The 
total energy is obtained from the state equation of a 
perfect gas. 
 
 
Supersonic flow 
 
All variables are extrapolated from interior grid cells, as 
no flow information can make its way upstream. In other 
words, nothing can be fixed. 
 
 
Far field condition 
 

To both problems and only to the k-ω
2
 model, the mean 

flow kinetic energy is assumed to be  
2

u50K .=  and the 

turbulence kinetic energy at the far field adopts the value 
kff = 0.01K, or 1% of K. The turbulence vorticity is 
determined by its freestream value. 
 
 
RESULTS 
 

Tests were performed in an INTEL CELERON - 1.5 GHz 
and 1.0 Gbytes of RAM microcomputer. Three orders of 
reduction of the maximum residual in the field were 
considered to obtain a converged solution. The residual 
was defined as the value of the discretized conservation 
equation. The entrance or attack angle was adopted 

equal to zero. The ratio of specific heats, γ, assumed the 
value 1.4. 
 
 
Ramp physical problem 
  
Figure 2 exhibits the ramp configuration. An algebraic 
mesh of 61 × 70 points, with an exponential stretching of 

10% in the η direction was used. This mesh is equivalent 
in finite volumes as being composed of 4,140 rectangular 
cells and 4,270 nodes. This mesh is shown in Figure 3. 
The initial condition adopted a freestream Mach number 
of 2.0, at a flight altitude of 10,000 m, a characteristic 
configuration length equals to 0.041 m and a 
corresponding Reynolds number of 6.966 × 10

5
, based 

on Fox and McDonald (1988). The Courant-Friedrichs-
Lewy (CFL) number to the laminar and turbulent 
simulations was 0.1. 

Figure 4 shows the pressure contours obtained by the 
Van Leer (1982) scheme in the laminar case. Figures 5 
and 6 exhibit the pressure contours obtained by the 
Jones and Launder (1972) and the  Wilcox  and  Rubesin  

            0.15 m           0.12 m         0.15 m 

  
 0

.3
4
5
 m

 



 
 
 
 

 
 
Figure 3. Ramp mesh. 

 
 
 

 
 
Figure 4. Pressure contours (Lam).    

 
 
 
(1980) turbulence models, respectively. As can be 
observed, the most severe pressure field is obtained by 
the Van Leer (1982) scheme using the Wilcox and 
Rubesin (1980) turbulence model. 

Figure 7 shows the Mach number contours obtained by 
the Van Leer (1982) scheme in the laminar case.  Figures  
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Figure 5. Pressure contours (JL). 

 
 
 
8 and 9 exhibit the Mach number contours obtained by 
the Jones and Launder (1972) and the Wilcox and 
Rubesin (1980) turbulence models, respectively. 

As can be observed, the most intense Mach number 
field is obtained by the Van Leer (1982) scheme using 
the Jones and Launder (1972) turbulence model. 

Figure 10 shows the laminar and turbulent wall 
pressure distributions obtained by the Van Leer (1982) 
scheme. They are compared with the inviscid solution, 
which corresponds to the correct solution according to 
the boundary layer theory. The laminar and the 
turbulence model of Jones and Launder presents the 
same pressure plateau width, whereas the Wilcox and 
Rubesin (1980) presents smaller pressure plateau width. 
However, the formers slightly under-predict the pressure 
plateau, whereas the latter estimates the correct value to 
this plateau. Moreover, the Wilcox and Rubesin (1980) 
model predicts a discrete separation before the ramp. All 
solutions, laminar and turbulent, predict the same value 
to the expansion pressure after the ramp. They agree 
correctly with the inviscid solution.  

One way to quantitatively verify if the solutions are 
generated by each case (laminar and turbulent) is by 
determining the shock angle of the oblique shock wave, 

β, measured in relation to the initial direction of the flow 
field. Anderson (1984: 352-353) presents a diagram with 

values of the shock angle, β, to oblique shock waves. 
The value of this angle is determined as function of the 
freestream Mach number and of the deflection angle of 

the flow after the shock wave, φ. To the ramp problem, φ 
= 20º (ramp inclination angle)  and  the  freestream  Mach 
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Figure 6. Pressure contours (WR).    

 
 
 

 
 
Figure 7. Mach number contours (Lam). 

 
 
 

number is 2.0, resulting from this diagram a value to β 
equals to 53.0º. Using a transfer in Figures 4 to 6, it is 

possible to obtain the shock angle, β, as well as the 
respective percentage errors, presented in Table 2. The 
best result was due to the Wilcox and Rubesin (1980) 
turbulence model, which predicts correctly the shock 
angle (error of 0.00%). 

 
 
 
 

 
 
Figure 8. Mach number contours (JL).                            

 
 
 

 
 
Figure 9. Mach number contours (WR). 

 
 
 
Blunt body physical problem 
  
Figure 11 exhibits the blunt body configuration. An 
algebraic mesh of 103 × 70 points, with an exponential 

stretching of 10% in the η direction was used. This mesh 
is equivalent in finite volumes as being composed of 
7,038 rectangular cells and 7,210 nodes. This mesh is 
shown in Figure 12. The initial condition adopted a 
freestream Mach  number  of  3.0,  at  a  flight  altitude  of  
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Figure 10. Wall pressure distributions. 

 
 
 

Table 2. Values of the shock angle of the oblique shock wave and respective percentage 
errors. 
 

Type of viscous case ββββ(°°°°) Error (%) 

Laminar 53.4 0.75 

Jones and Launder (1972) - turbulent 52.9 0.19 

Wilcox and Rubesin (1980) - turbulent 53.0 0.00 

 
 
 
40,000 m, a characteristic configuration length equals to 
3.76 m and a corresponding Reynolds number of 8.933 × 
10

5
 (Fox and McDonald, 1988). The CFL number to the 

laminar and turbulent simulations was 0.1. 
Figure 13 shows the pressure contours obtained by the 

Van Leer (1982) scheme in the laminar case. Figures 14 
and 15 exhibit the pressure contours obtained by the 
Jones and Launder (1972) and the Wilcox and Rubesin 
(1980) turbulence models, respectively. As can be 
observed, the most severe pressure field is obtained by 
the Van Leer (1982) scheme using the Wilcox and 
Rubesin (1980) turbulence model. 

Figure 16 shows the Mach number contours obtained 
by the Van Leer (1982) scheme in the laminar case. 
Figures 17 and 18 exhibit the Mach number contours 
obtained by the Jones and Launder (1972) and the 
Wilcox and Rubesin (1980) turbulence models, 
respectively. As can be observed, the most intense Mach 
number field is obtained by the Van Leer (1982) scheme 
using the Wilcox and Rubesin (1980) turbulence model. 

Figure 19 shows the –Cp distribution of the Van Leer 
(1982) scheme in the laminar and turbulent cases. As 
can   be    observed,   the   Jones   and   Launder   (1972) 

turbulence model slightly under-predicts the –Cp plateau. 
The Wilcox and Rubesin (1980) turbulence model agrees 
with the laminar solution. 

Table 3 shows the lift and drag aerodynamic 
coefficients calculated by the Van Leer (1982) scheme in 
the laminar and turbulent cases. As the geometry is 
symmetrical and an attack angle of zero value was 
adopted in the simulations, the lift coefficient should have 
a zero value. The most correct value to the lift coefficient 
is due to the laminar simulation, but the Wilcox and 
Rubesin (1980) turbulence model provides the second 
best value to this coefficient. 

Another possibility to quantitative comparison of the 
laminar and turbulent cases is the determination of the 
stagnation pressure ahead of the configuration. Anderson 
(1984) presents a table of normal shock wave properties 
in its B Appendix. This table permits the determination of 
some shock wave properties as function of the 
freestream Mach number. In front of the blunt body 
configuration, the shock wave presents a normal shock 
behavior, which permits the determination of the 
stagnation pressure, behind the shock wave, from the 
tables encountered in Anderson (1984). So it  is  possible  
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Figure 11. Blunt body configuration.  

 
 
 

 
 
Figure 12. Blunt body mesh. 

 
 
 

 
 
Figure 13. Pressure contours (Lam).      

 
 
 
 

 
 
Figure 14. Pressure contours (JL). 

 
 
                

 
 
Figure 15. Pressure contours (WR).  

 
 
        

to determine the ratio ∞prpr0  from Anderson (1984), 

where pr0 is the stagnation pressure in front of the 

configuration and pr∞ is the freestream pressure (equals 

to 1/γ to the present nondimensionalization). 

Hence, to this problem, M∞ = 3.0 corresponds to 

∞prpr0 = 12.06 and remembering that pr∞  = 0.714, it is 

possible to conclude that pr0 = 8.61. Values of the 
stagnation pressure to the laminar and turbulent cases 
and respective percentage errors are shown in Table 4. 
They are obtained from Figures 13 to 15. As can be 
observed,   the   Wilcox  and  Rubesin  (1980)  turbulence  
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 Figure 16. Mach number contours (Lam). 

 
 
 

 
 
Figure 17. Mach number contours (JL).  

 
 
                   

 
 
Figure 18. Mach number contours (WR). 
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Figure 19. -Cp distributions. 

 
 
 

model presents the best result, with a percentage error of 
3.83%. 

The computational costs to each case are: Laminar - 
0.0001520 seconds/per cell/per iteration; Jones and 
Launder (1972) - 0.0001766 seconds/per cell/per 
iteration; and Wilcox and Rubesin (1980) - 0.0001803 
seconds/per cell/per iteration. The Jones and Launder 
(1972) model is roughly 2.10% cheaper than the Wilcox 
and Rubesin (1980) model. 

 
 
CONCLUSIONS 
  
In the present work, the Van Leer (1982) flux vector 
splitting scheme is implemented, on a finite-volume 
context. The 2-D Favre-averaged Navier-Stokes 
equations are solved using an upwind discretization on a 

structured mesh. The Jones and Launder (1972) k-ε and 

the Wilcox and Rubesin (1980) k-ω
2
 two-equation models 

are used in order to close the problem. The physical 
problems under studies are the low supersonic flow along 
a ramp and the moderate supersonic flow around a blunt 
body configuration. The implemented scheme uses a 
MUSCL procedure to reach second order accuracy in 
space. The time integration uses a Runge-Kutta method 
of five stages and is second order accurate. The 
algorithm is accelerated to the steady state solution using 
a spatially variable time step. This technique has proved 
excellent gains in terms of convergence rate as reported 
in Maciel (2005, 2008). 

The results have demonstrated that the Wilcox and 
Rubesin (1980) model has yielded more critical pressure 
fields than the ones due to Jones and Launder (1972). 
The shock angle of the oblique shock wave in the ramp 
problem and the stagnation pressure ahead  of  the  blunt 
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Table 3. Lift and drag aerodynamic coefficients- laminar and turbulent cases. 
 

Type of viscous case cL cD 

Laminar -4.104 × 10
-15

 0.507 

Jones and Launder (1972) - turbulent 1.192 × 10
-10

 0.515 

Wilcox and Rubesin (1980) - turbulent 3.897 × 10
-12

 0.510 
 
 
 

Table 4. Values of the stagnation pressure and respective percentage errors. 

 

Type of viscous case pr0 Error (%) 

Laminar 8.23 4.41 

Jones and Launder (1972) - turbulent 8.11 5.81 

Wilcox and Rubesin (1980) - turbulent 8.28 3.83 
 
 
 

body configuration are better predicted by the Wilcox and 
Rubesin (1980) turbulence model. In the ramp problem, 
the best wall pressure distributions are due to the laminar 
and the Jones and Launder (1972) turbulence model 
because they provide the correct pressure plateau width. 
However, they slightly under-predicted the pressure 
plateau. The Wilcox and Rubesin (1980) turbulence 
model predicted the correct pressure plateau. The shock 
angle of the oblique shock wave is correctly predicted by 
the Wilcox and Rubesin (1980) turbulence model. In the 
blunt body case, the –Cp distribution generated by the 
Wilcox and Rubesin (1980) model is in agreement with 
that generated by the laminar solution. The lift 
aerodynamic coefficient is better predicted by the laminar 
solution, although the second best solution is provided by 
the Wilcox and Rubesin (1980) model. The stagnation 
pressure ahead of the configuration is best predicted by 
the latter, with an error of 3.83%. The Jones and Launder 
(1972) turbulence model is roughly 2.10% cheaper than 
the Wilcox and Rubesin (1980) turbulence model, which 
is insignificant. Hence, the Wilcox and Rubesin (1980) is 
the best turbulence model in this study. 
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