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The present work critically emphasize on the deformation limit of an elliptical disc. The upper- bound 
theorem has been used to determine the forging load. A suitable kinematically admissible velocity 
fields for three dimensional deformations have been chosen for analyzing deformation limit as well as 
the bulging of disc. During the analysis satisfactory friction factor, yield strength and other process 
parameter have been assumed and mathematically analyzed. It has been seen that parametric and 
experimental analysis makes very close agreement. This paper will be worthy for industrial applications 
in estimating forging load of such shapes. 
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INTRODUCTION  
 
Forging process has becomes increasingly important in 
almost all manufacturing industries such as aerospace, 
steel plants, automobile applications. Upsetting with a flat 
die has great significance in metal forming applications 
and is particularly useful when the geometrical shape of 
billets is very complicated. As we know in many industrial 
metal forming processes, bulging of free work-piece 
surfaces occurs. At the same time these surfaces may 
fold over and come into contact with the dies. To 
understand the deformation characteristics of axi-
symmetric forging operations, much effort is required to 
devote. 

The technique (Baskaran et al., 2008) of forming 
process is widely and increasing accepted world-wide in 
the production industries, however a large number of 
process parameter still needs exact methodology to 
predict forging load. Among various theoretical methods 
available for metal forming problems, the upper-bound 
theorem is known to be a limiting approach to predict the 
maximum energy and assures a material to plastically 
deform into a desired shape. When this method is applied, 
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an admissible velocity field that satisfies the incompressi-
bility, continuity, and the velocity boundary conditions is 
usually an impart element to the upper-bound solution. 
Based on this velocity field and limit theorems (Yeh et al., 
2005), the total forming energy and also the forming load 
can be computed to represent an upper-bound to the 
actual forming energy or actual forming load. For quite 
some time the studies made were for forging circular 
cylinder, ring and rectangular section in plane strain with 
the assumption that the plane sections remain plane 
during deformation. Avitzur (1968) has constructed upper 
bound solutions for both the circular discs and the 
rectangular plates taking into account the barreling along 
thickness. Alexander (1955) and Kudo (1960) have given 
slip line solutions for plane strain compression between 
rough dies. Kanacri (1972) modified the general method 
of analysis proposed by Hill (1963) and applied it to the 
compression analysis of rectangular blocks. In their study 
only the sidewise spread was considered without bulging 
along thickness under the assumption of small thickness. 
Juneja (1973a) proposed some appropriate velocity fields 
for the upper-bound analysis of polygonal disks under the 
assumption on that only the sidewise spread occurs 
during deformation. Juneja (1973b) also made a further 
analysis    for    upset    forging    of   polygonal   disks   in  
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Fig.1. Upset forging of an elliptical disc 

 
 
Figure 1. Upset forging of an elliptical disc. 

 
 

 

consideration of only bulging along thickness and in 
comparison with his previous work could obtain better 
upper-bound solutions for some forging conditions. Park 
(1984) employed the three-dimensional finite element 
method which took eight node hexahedral elements in 
order to analyze the block compression. The numerical 
results were in good agreement with the experiment. But 
computation time should be reduced considerably in 
order to solve more complicated upset forging problems. 
Very recently Kim (1985) analyzed upset forging of 
square blocks by using a simple velocity field with in a 

reasonably short computational time. In this paper a 
kinematically  admissible velocity field for the three-
dimensional deformation in upset forging of elliptical disks 
is proposed which takes into account not only the 
sidewise spread in the plane perpendicular to the 
upsetting axis but also bulging along thickness. By 
optimizing the parameters in the upper bound 
formulation, the forging load and the deformed 
configuration of the billet are found at each step of height 
reduction. 

 
 
METHODOLOGY 

 
Velocity field 

 
As shown in Figure 1, the cylindrical coordinates are taken as such 
that the origin lies at the center of the bottom surface of an elliptical 

disk. As the deformation proceeds in the upset forging of the disk, 
the side wise spread in the plane perpendicular to the Z-axis as well 
as bulging along thickness takes place due to non-uniform flow 
caused by friction at the die work piece interfaces.     

As seen from the Figure 1, the disk is symmetrical about Z-axis 
and r-axis. Hence from the symmetry of the disk only a segment 
OABO

' 
A

' 
B

'
 is considered for the velocity field. As from the 

assumption the plane section remain plane, here the geometrical 
symmetry demands that the surface OAA'O' and the surface OBB

'
O

'
 

must remain flat plane throughout the deformation. This means, no 
tangential velocity discontinuity can occur on these surfaces and 
also the normal velocity component across them must not exist. 

The symmetric nature of the velocity field together with foregoing 
boundary conditions and the deformation characteristics of the 
sidewise spread and bulging along thickness lead to the selection 
of the following velocity field: 
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Where ‘a’ and ‘b’ are half lengths of major and minor axes of the 
initial elliptical disc respectively. ‘B’ and ‘C’ are the parameters by 
which the amount of the sidewise spread and bulging along 

thickness can be determined through optimization at each step of 
deformation. ‘A’ is a parameter to be determined from the velocity 
boundary condition. As we know the incompressibility Avitzur (1968) 
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 (1968) condition in the cylindrical coordinates is given by: 
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This shows that 
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Here  ,rf  is a function of only r and θ to be determined from the 

boundary condition at the top and bottom surfaces. 
 

as at z = 0          0zU  

and at z = h        
0UU z   

 
By putting these values in Equation (5) we get 

When z = 0,          0zU             ,rf = 0 

and  

When z = h,        
oz UU   

We find the value of A as 
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Thus the velocity field includes only two free parameters ‘B’ and ‘C’. 
Finally the velocity field is written as  
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If half length of the major axis, ‘a’ is equal to the half length of minor 
axis, ‘b’ the above velocity field can also be applied to the analysis 
of axisymmetric upset forging problem.  
 
 
Strain rates 
 
The strain rates are obtained from the derived velocity field as: 
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It can be easily seen that Equations 8(a) to 8(f) satisfy the 
incompressibility Equation (3) and the required velocity boundary 
conditions. Therefore, the velocity field given by Equations 7(a) to 
7(c) is kinematically admissible and thus can be used for the upper 
– bound analysis of upset forging of elliptical discs. 
 
 
Upper bound 

 
The initial configuration in upset forging of an elliptical disc is shown 
in Figure 1. The top and bottom dies are assumed to be rigid. The 
top die moves downward with the velocity of U0, while the bottom 
die is stationary. The working material is assumed to be isotropic, 
incompressible and rigid plastic work-hardening. It also obeys von 

Mises’ flow rule and the frictional stress at the die-material interface 
is assumed to be constant. 

The upper-bound theorem was formulated by Prager (1951) and 
was later modified by Drucker (1954) to include velocity 
discontinuities in the deforming region. It reads, among all the 
kinematically admissible strain rate fields the actual one minimizes 
the following expression. 

 

fd WWJ *
                                                                      (9)                                                                                                                           

 
Where J

*
 is an upper-bound energy on the total power 

consumption.  
The Equation (9) can be written as the product of upper platen 
velocity and forging load applied by the upper platen as follows: 
 

0
* UFJ L                                                                          (10)     

 
 
Energy consumed in deformation 

 
The energy consumed in deformation, Wd, is calculated from the 
derived strain rate field. 
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Figure 2. Shows variation of Forging Load Vs. % Reduction in the Height 
of the perform. 
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The geometrical configuration of the working material changes 
continuously, as deformation proceeds. It is difficult to express the 
continuously changing configuration analytically and moreover to 
carry out the integration without resort to numerical calculation. 
Therefore, for integration the deformation region is divided into 
small quadrilateral elements and integration is carried out 
numerically for each elemental region. Since upset forging is a non-

steady deformation problem, a slight reduction in height ( h ) 

should be applied for each step and each element has its own 
values for strain rates, strain and flow stress. After each step of 
deformation, new values of velocity and strain rate are calculated 
for each element. The strain is obtained by adding up the 
incremental strain for each step which is the strain rate multiplied by 
the time required for a deformation step. The flow stress is then 
obtained from the stress-strain relationship.  
From Equations (11) and (12) we can find the value of Wd written as 
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Energy consumed in overcoming friction 

 
The frictional power, W f, dissipated over the frictional boundary at 
the die-material interface is given by: 
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From Equations (14) and (15) 
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From Equation (10), (13) and (16) we find: 
 






















































































 




Ch

aB
aBC

h

aBz

h

aBz

h

m

bC

h

bz

h

bz

bh

zBa

b

CBa

hb

zBa

h

m

C
CChb

BaC

CCh

b

aAFL

32

2

2

2

2

2222222

4

22

4

0

12

2344

3

2
cos.sin

3

1

2

2244

33

2

34
5

8

4

23

92

32

5

2

48

23

3









                

 
(17)                                                                                                                                                                                                                      
 
 
RESULTS AND DISCUSSION 
 
The upper-bound load given by Equation (17) was 
determined by numerical computation with the work 
hardening effect considered for each element. The 
computational results of forging load are shown in Figure 
2 for different values of “θ” whereas the other parameters 
are assume to be constant i.e. a = 16mm, mmh 100   for 

the load calculations. 
Figure 2 reveals that at initial conditions for all set of 

assumed values of “ ” similar deformation pattern 

follows and around 25-30% age reduction in height, a 
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Figure 3. Shows Variation of Forging Load Vs. Increase in Major Axis. 
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Figure 4. Shows Variation of Forging Load Vs. Increase in Min 

 
 
 
sharp increase in the forging load is noticed 
comparatively less deformation. It may be due to the fact 
that sticking of pallet with platens takes place and 
consumes large amount of load. 

Figure 3 and 4 reveal that at initial conditions for all set 
of assumed values of “θ” similar deformation pattern 
follows and after approximate 30 – 35 % reduction in 
height, it was noticed that the forging load increased 
rapidly as compared to the deformation of the billet. It 
may be due to the fact that sticking of billet with platens 
takes place and consumes maximum amount of load.  

Conclusion 
 
A simple kinematically admissible velocity field taking into 
account the sidewise spread as well as bulging along 
thickness is proposed for upset forging of elliptical disks. 
From the velocity field the forging load and the deformed 
configuration are determined by minimizing the total 
power with respect to two free parameters. The 
theoretical predication of the deformed configuration 
shows a good result. The velocity field proposed in the 
present   work   can   be    used    conveniently    for    the  



 
 
 
 
predication of forging load and deformation in upset 
forging of elliptical disks and cylinders. 
 
 
Nomenclature 
 

rU U  
zU   Radial, circumferential and axial velocity 

components  

0U     Velocity of top die. 

U   Magnitude of velocity discontinuity. 

r,  , z       cylindrical coordinate system 

m      friction factor at the die-material interface 
FL      forging load  
J

*          
upper-bound forming energy 

0       Yield strength of material in tension 

a, b  lf length of major and minor axes of the elliptical disc 
A , B , C       optimization parameters 

0h      Initial height of the billet 

h     Current height of the deforming zone 

H.R.   Height reduction in percentage   










100

h

h    

 
 
REFERENCES 
 
Alexander JM (1955). The effect of Coulomb friction in the plane-strain 

compression of a plastic-rigid material. J. Mech. Phys. Solids, 3: 233. 
Avitzur B (1968). “Metal Forming: Processes and Analysis”, McGraw-

Hill, NY, pp. 37, 52-64, 77-80. 

 
 
 

 

Phogat et al.          135 
 
 
 
Baskaran, K, Narayanasamy R (2008). Some aspects of Barrelling in 

Elliptical shaped Billets of Aluminium during Cold Upset-Forging with 
Lubricant, Mat. Des., 29: 638-661. 

Drucker DC (1954). Coulomb friction, plasticity, and limit loads. ASME 
J. Appl. Mech., 21: 71-74. 

Hill R (1963). A general method of analysis for metalworking processes 

.  J. Mech. Phys. Solids. 11: 305-326.  
Hoffman O, Sachs G (1953). “Introduction to the Theory of Plasticity for 

Engineers”, McGraw Hill, NY.  

Juneja BL (1973a). Forging of polygonal discs. Int. J. Mach. Tool Des. 
Res., 13: 17-28.  

Juneja BL (1973b). Forging of polygonal discs with barrelling. Int. J. 

Mach. Tool Des. Res., 13: 87-93.  
Kanacri F, Lee CH, Beck LR, Kobayashi S (1972). Plastic Compression 

of rectangular blocks between two parallel platens, Proc. 13
th 

Int. 

MTDR Conf., pp. 481-490. 
Kim JH, Yang DY (1985). An analysis of upset forging of square blocks 

considering the three-dimensional bulging of sides.  Int. J. Mach. Tool 

Des. Res., 25: 327-336.  
Kudo H (1960). An upper-bound approach to plane-strain forging and 

extrusion-III. Int. J. Mech. Sci., 1:229.  

Park JJ, Kobayashi S (1984). Three- Dimensional Finite-element 
Analysis of Block Compression. Int. J. Mech. Sci., 26: 165-176. 

Prager W, Hodge PG (1951). Theory of Perfectly Plastic Solids. 

Chapman and Hall, London. 
Yeh WC, Wu MC (2005). A Variational Upper –Bound Method for 

Analysis of Upset Forging of Rings, J. Mat. Proc. Tech., 170: 392-

402. 
 
 

 
 
 

 
 
 

 
 
 

 

 
 

http://www.sciencedirect.com/science/article/pii/002073577390019X
http://www.sciencedirect.com/science/article/pii/0020735785900332
http://www.sciencedirect.com/science/article/pii/0020735785900332

